
SelfVoxeLO: Self-supervised LiDAR Odometry with
Voxel-based Deep Neural Networks

Yan Xu1 Zhaoyang Huang1,2 Kwan-Yee Lin*1,3 Xinge Zhu1 Jianping Shi3
Hujun Bao2 Guofeng Zhang2 Hongsheng Li1

1Multimedia Laboratory, The Chinese University of Hong Kong
2State Key Lab of CAD&CG, Zhejiang University 3SenseTime Research

Abstract: Recent learning-based LiDAR odometry methods have demonstrated
their competitiveness. However, most methods still face two substantial chal-
lenges: 1) the 2D projection representation of LiDAR data cannot effectively
encode 3D structures from the point clouds; 2) the needs for a large amount of
labeled data for training limit the application scope of these methods. In this pa-
per, we propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO,
to tackle these two difficulties. Specifically, we propose a 3D convolution net-
work to process the raw LiDAR data directly, which extracts features that better
encode the 3D geometric patterns. To suit our network to self-supervised learn-
ing, we design several novel loss functions that utilize the inherent properties of
LiDAR point clouds. Moreover, an uncertainty-aware mechanism is incorporated
in the loss functions to alleviate the interference of moving objects/noises. We
evaluate our method’s performances on two large-scale datasets, i.e., KITTI and
Apollo-SouthBay. Our method outperforms state-of-the-art unsupervised meth-
ods by 27%/32% in terms of translational/rotational errors on the KITTI dataset
and also performs well on the Apollo-SouthBay dataset. By including more unla-
belled training data, our method can further improve performance comparable to
the supervised methods.

Keywords: Odometry, 3D vision, Deep learning

1 Introduction

Ego-motion estimation from temporal sequences of sensor data, also known as odometry, is
of fundamental importance for many robotic vision tasks, including navigation, mapping, vir-
tual/augmented reality, etc. Compared with visual sensors, the LiDAR can capture richer 3D ge-
ometric information of the environments and is robust against varying lighting conditions. Hence, a
reliable LiDAR odometry system is desirable for localization systems.

The classic methods [1, 2, 3, 4, 5] are mainly based on the point registration and work well in ideal
scenarios, but they might fail in practice due to the sparse nature of point clouds and environmen-
tal noises. Typically, ICP [1] and its variants [1, 2, 3] iteratively find the point correspondences
with nearest-neighbor searching and optimize for the pose transformations. This optimization pro-
cedure ignoring the correspondence reliability can easily run into local optimum especially when
noise and dynamic objects exist. In the past a few years, the advances in deep learning have sig-
nificantly advanced state of the arts in odometry estimation. Seminal works [6, 7, 8], demonstrate
the feasibility of 6-DOF pose regression via convolutional neural network for visual odometry esti-
mation. Following the visual pipelines, several LiDAR odometry estimation approaches have been
proposed [9, 10, 11], where they often project the 3D LiDAR points onto a cylindrical surface and
then adopt the similar framework from CNN-based visual odometry methods. However, projecting
the point clouds to the cylindrical surface inevitably alters the 3D topology and cannot effectively
capture the geometric information. As illustrated in Fig. 1a, the 2D convolution on the cylindrical

* Kwan-Yee Lin is the corresponding author.

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

Cylindrical Projection Map 2D Convolution Operation

3D Convolution OperationLiDAR Point-cloud

Convoluted Points

Convoluted Points

(a) (b)

Figure 1: (a) The difference between the 2D convolution and the 3D convolution. (b) The distribu-
tion of point clouds with respect to LiDAR range value, and the measured average distances with
different metrics (i.e., Euclidean distance and angular distance [14]) in each bin. Large Euclidean
distances in distant regions make the unreliable remote points count more, which is not desirable.

projection map might process the points on objects far away from each other, which ignore the 3D
topology relations and contaminate the encoded features. A straightforward idea to tackle the is-
sue of cylindrical projection is to adopt 3D representations and process the points in the 3D space
directly. Therefore, the 3D convolution network is an appealing alternative. In contrast to the 2D
convolution, the 3D convolution can better retain the 3D topology relations and structures during
the hierarchical feature extraction. On the other hand, it should be noted that the significant progress
of CNN-based methods relies, to a large extent, on large-scale annotated training data, which is not
always feasible in practice, due to the huge cost needed for large-scale annotations. How to train a
LiDAR odometry network in an unsupervised manner is still an imperative problem.

In this work, we develop an self-supervised learning-based LiDAR odometry method with 3D con-
volution networks. Specifically, our network first voxelizes the point clouds into fine-grid voxel
cells, and extracts 3D features via 3D convolutional neural networks. Then, the extracted features
are fed into our odometry regression network to predict the final 6-DOF ego-motions. To suit our
network to self-supervised training, we analyse the inherent properties of the LiDAR point clouds
and propose several losses: the spherical reprojection loss that essentially pushes the network to
focus on the nearby stable points, the transformation residual loss to stabilize the training, and the
deep flow supervision loss to facilitate the point-wise feature learning. Furthermore, to mitigate
the interference from noise and dynamic objects, we also propose to estimate the correspondence-
pair confidences, which are incorporated into our self-supervised losses to set lower weights for the
unreliable point correspondences.

Our contributions can be summarized as follows: (1) We abandon the common 2D projection-
based LiDAR odometry framework and investigate the effectiveness of voxel-based 3D geometric
representation. We propose a framework that predicts ego-motions from raw LiDAR points based on
3D convolutional neural networks, which are trained in an unsupervised manner. (2) Several self-
supervised loss functions are introduced, i.e., the spherical reprojection loss, the range alignment
loss, the transformation residual loss and the deep flow supervision loss to train ego-motion predici-
ton without any annotations. Furthermore, we incorporate an uncertainty-aware mechanism into the
loss functions to mitigate the interference of moving objects and noise. (3) The proposed method
achieves state-of-the-art performances on two public odometry datasets, i.e., the KITTI dataset [12]
and the Apollo-SouthBay Dataset [13].

2 Related Work
Odometry. LiDAR odometry algorithms can be categorized as two-frame methods [1, 2, 3] and
multi-frame methods [4, 5]. The classic two-frame methods are mostly based on the point registra-
tion, where ICP [1] and its variants [15, 2, 3, 16] are typical exemplars. The ICP iteratively finds the
point correspondences and optimizes for the pose transformation between two LiDAR pointclouds
util convergence. Different ICP methods may apply different weights on the correspondence pairs
during optimization according to the geometric characteristics. However they often fail to model
the moving objects that violate the algorithm assumption. Moreover, most of these methods are too
computationally expensive to be applied in real-time systems. The multi-frame algorithms (often re-
ferred as mapping [4, 5, 17]) are often used to refine the two-frame based estimation by incorporating
more frames into optimization. They are computationally heavier and usually runs in the backend at
a lower frequency. In our work, we mainly focus on the two-frame method which is more fundamen-
tal and can be combined with multi-view methods. Recently, many CNN-based odometry methods

2

Geometric Feature Encoding

Point Preprocessing

Voxelization

3D LiDAR Point clouds

𝑆𝑡−1 𝑆𝑡

3D Convolution Module

3D Convolution Module

Ego-motion
Regression

𝐑𝑝𝑟𝑒𝑑 , 𝐭𝑝𝑟𝑒𝑑

ConfidenceConfidence
Estimation

𝐿𝑠𝑟

𝐿𝑡𝑟

𝐿𝑟𝑎

𝑉𝑡

Auxiliary Scene Flow Predictions {𝐹ℎ
𝑝𝑟𝑒𝑑

|ℎ = 1, 2,3} 𝐿𝑓𝑠

Scene Flow Prediction
Branches

{ഥ𝐩1, … , ഥ𝐩𝑁}

𝑀𝑡−1, 𝑀𝑡

𝑉𝑡−1

𝑃𝑡−1 𝑃𝑡′ 𝑃𝑡

𝐑t
𝑝𝑟𝑒𝑑

, 𝐭t
𝑝𝑟𝑒𝑑

NN-searching

Point cloud transformation

Correspondence

𝐑∗, 𝐭∗

(b)

Loss constraint

𝑐𝑗

𝐩𝑗

𝑂𝑡−1

𝜃

𝐱

𝐺𝑡

𝐑𝑔𝑡, 𝐭𝑔𝑡

𝑃𝑡
𝑃𝑡′

𝐺′𝑡

(a)

𝐱′𝑡 = 𝐑𝑝𝑟𝑒𝑑𝐱𝑡−1
+𝐭𝑝𝑟𝑒𝑑

Framework Losses

𝑃𝑡𝑃𝑡−1

Figure 2: Framework overview and loss functions. The input LiDAR point clouds are voxelized
and then fed to the 3D geometric feature encoding module, where the points are pre-downsampled
(obtaining point sets Pt and Pt−1) and encoded by the 3D convolution modules to obtain the 3D
geometric feature sets Vt−1 and Vt. Based on these 3D features, the ego-motion regression module
and the confidence estimation module predict the ego-motion (Rpred, tpred) and the voxel-wise
confidence estimations (Mt−1 and Mt) for each sweep. The sub-figure (a) and (b) demonstrate our
spherical reprojection loss and transformation residual loss, which are elaborated in Sec. 3.2.

were proposed. Initially, several seminal methods were proposed for visual odometry [6, 7, 8].
More recently, researchers used CNN in LiDAR odometry [10, 9]. They represented the LiDAR
pointclouds by cylindrical projection and then borrowed the network architectures from the visual
odometry methods. Cho et al. [11] extended this pipeline to unsupervised learning inspired by the
unsupervised visual odometry [8, 18]. However, the cylindrical projection may lose the spatially
geometric structures of the input pointclouds, which leads to unreliable feature extraction.
3D network. In the past few years, various 3D DNNs have been proposed to better handle the 3D
data. The 3D convolution operation is also applied on local areas centered at fixed grids, but the
operation are conducted in the 3D space rather than the 2D space. PointNet [19, 20] determines
the grid locations with furthest sampling and find the related feature points in respective local areas
with nearest-neighbor searching. It achieves high flexibility but sacrifices speed. To achieve high
efficiency, Zhou et al. [21] proposed to split the space into voxels uniformly and apply the 3D con-
volution on these uniform 3D grids. Gu et al. [22] proposed the 3D convolution on permutohedral
lattices. Hanocka et al. [23] proposed a new set of convolution operations to handle 3D mesh data.
Compared with 2D convolution, 3D convolution is more suitable to process the 3D data and has
made great success in 3D object detection [21, 24, 25, 26, 27], 3D scene flow predicition[22, 28]
and 3D semantic segmentaion [19, 20, 23, 29]. However, few investigation has been made using 3D
convolutional networks on LiDAR odometry.

3 Method
To tackle the mentioned challenges, i.e., the limitation of 2D convolution and the need of large-scale
labeled data, our framework aims to estimate the 6-DOF agent’s pose transformation (Rpred, tpred)
from two successively scanned point clouds St−1 and St, without ground-truth transformations.
Different from the previous works [10, 9, 11] adopting 2D convolutions on cylindrical projection
maps of the point clouds, we use fine-grid voxels to represent the LiDAR point cloud and propose to
directly process the point clouds with 3D convolutions, which can better maintain the 3D geometric
information than the 2D convolutions in existing projection-based methods. To enable stable train-
ing of LiDAR-based odometry without ground-truth, we introduce three self-supervised losses and
uncertainty-aware mechanism. As shown in Fig. 5, our framework mainly consists of three mod-
ules: (1) 3D geometric feature encoding, (2) ego-motion regression and (3) confidence estimation.
We will detail each part and the proposed unsupervised loss functions in the ensuing sections.

3.1 3D Geometric Feature Encoding
The odometry task requires real-time response as well as high precision. As mentioned above,
the 3D convolution on 3D feature spaces can efficiently preserve the geometric information from

3

the scene, which is an appealing candidate. However, the 3D space is unbounded with low data
occupancy. Directly applying 3D convolutions to 3D point clouds is resource intensive. Previous
works make a compromise and project the LiDAR point clouds to cylindrical maps to persist with
the legacy of 2D CNNs, which obviously is not an optimal solution. Recently, with the development
of 3D CNNs, many efficient 3D operators spring up making efficient 3D geometric feature encoding
possible. Hence, to achieve precise feature encoding while maintaining real-time speed, we conduct
3D feature encoding in our framework by adopting the voxel representation and the recent proposed
sparse submanifold convolutions [30].

Voxelization. Let C denotes the 3D overall space with sizes of (D,W,H) along the axes of x,
y and z. As illustrated in Fig.5, we first divide the space into equal-sized cells ci with sizes of
(D/nD,W/nW , H/nH). Then, the points pi’s in the point cloud P are dispensed to the respective
cells and we refer to these cells as voxels in the following. Due to the sparse nature of LiDAR
data, most voxels are only allocated 2-3 points with the voxel size of (10 cm, 10 cm, 20 cm), which
achieves a good balance between representation precision and resource cost.

Feature Encoding. Each LiDAR point pi ∈ S is a vector of [xi, yi, zi, nix, n
i
y, n

i
z, r

i]T , where
(xi, yi, zi) is the i-th point’s coordinate, (nix, n

i
y, n

i
z) is its normal vector (which can be obtained

via cross products over four neighbors similar to [10, 11]) and ri stands for the reflectance value.
For computational efficiency, we compute the arithmetic average p̄j = 1/|cj |

∑
pi∈cj p

i for each
voxel as its representation and obtain down-sampled point clouds Pt and Pt−1, which will be used as
the initial point cloud’s representation. Thereafter, we extract the high level features from the point
cloud through stacked 3D submanifold convolutions [30] illustrated in Fig. 5. The 3D submanifold
convolution, combined of valid sparse convolution and sparse convolution, has the advantages of
accurately capturing 3D local geometric patterns of the input point cloud while ignoring the empty
voxels to accelerate the encoding process. The 3D convolution maintains the geometric structures
and spatial topology during down-sampling/up-sampling, which is quite challenging for the 2D
convolution as shown in Fig. 1a. Finally, we obtain the voxel feature volumes Vt−1 and Vt as an
intermediate high-level representation for the point clouds Pt−1 and Pt respectively.

3.2 Odometry Regression
After encoding the voxel features Vt−1 and Vt from the input point clouds, we design a network to
predict the ego-motion from these features. To reduce the memory cost and improve the computa-
tional efficiency, we follow [21] to reshape the 3D features volume of the two timestamps t− 1 and
t to the 2D bird-view feature maps respectively and channel-wisely concatenate the features of the
two timestamps before feeding them into the ego-motion regression module. Thanks to the powerful
encoding capability of 3D CNNs, the features can successfully encode the agent’s motion in both
the ground plane and the vertical direction.

The ego-motion regression module is constituted by several ResNet [31] blocks followed by fully
connected layers, which estimates the ego-motions (Rpred, tpred) as illustrated in Fig. 5. In our
implementation, we let the network predict the quaternion vector, a more compact representation for
rotation, which is more suitable as the regression target. Since the quaternion representation and the
matrix representation are equivalent, we uniformly refer to the rotation prediction as Rpred in the
following for simplicity.

Spherical Reprojection Loss. Let Ot−1 and Ot be the agent coordinate systems at two consecutive
timestamps and x denote an arbitrary static point in the 3D scene. As illustrated in Fig 5a. The
observations of this point in systems Ot−1 and Ot are denoted as xt−1 and xt respectively. Ideally,
we can obtain xt as

xt = Rgtxt−1 + tgt, (1)

where Rgt and tgt are the ground-truth ego-motion, which however is not available in our setup.
To achieve self-supervised learning of ego-motion prediction, our network leverages the geomet-
ric consistency among frames: to first transform the point cloud Pt−1 with the current prediction
(Rpred, tpred) obtaining P ′t , i.e., transform each point xt−1 ∈ Pt−1 as x′t = Rpredxt−1 + tpred,
and then minimize the distance between P ′t and Pt to push the prediction closer to (Rgt, tgt). The
nearest-neighbor Euclidean distance is a common choice to point-wisely measure the deviation be-
tween the two point clouds. However, we find that the Euclidean distance is not an optimal choice
to directly measure the discrepancy between the two 3D point clouds, because of the high sparsity
level and less measurement accuracy in the distance caused by the sparsity nature of the LiDAR

4

point clouds. Due to the noise and the erroneous correspondence identifying caused by the increas-
ing sparsity level, the nearest-neighbor Euclidean distances between the two point clouds are much
larger in distant regions than those of the nearby regions, which are illustrated in Fig. 1b. As a re-
sult, the distant unreliable points might contribute more in the loss function with Euclidean distance
measurement, which is not desirable. Inspired by the reprojection error [32] widely used in visual
odometry, we propose the spherical reprojection loss to make the loss focusing more on the nearby
reliable points. Specifically, we adopt the pair-wise angular distance to measure the distance between
the associated points with nearest-neighbor searching from the point clouds Pt and P ′t , where the
angular distance is defined as the angle between origin-to-point rays of associated correspondence
points in Pt and Pt−1. As shown in Fig. 5a, the angular distance between the nearest-neighboring
points xt and x′t is defined as the angle θ between the rays OtGt and OtG′t, where Gt and G′t are
the projection of nearest-neighboring points on a unit sphere centered at Ot. The minimization of
this angle error is equivalent to minimize the geodesic distance on the sphere, which is similar to
the minimization of reprojection error. For numeric stability, we minimize the − cos(θ), a mono-
tonically increasing function of θ in [0, π]. The spherical reprojection loss is hence expressed as

Lsr = − 1

|Pt|
∑

xi
t∈Pt,j=M(i)

(
xit · x

′j
t

||xit||2||x
′j
t ||2

)
, (2)

where M(·) denotes the nearest-neighbor identifying process between the points in Pt and P ′t .
As illustrated by the green curve in Fig. 1b, the nearby errors contribute more to the spherical
reprojection loss, which makes the loss focus more on the nearby reliable regions.

Transformation Residual Loss. To stabilize and speed up the convergence, we further incorporate
the classic ICP algorithm [33, 34] into the loss function to directly guide the ego-motion estimation
learning. As illustrate in Fig. 5b, we first align the point cloud Pt−1 to P ′t with the current ego-
motion prediction as in the previous section, and then calculate transformation residual (δR, δt)
from P ′t to Pt with ICP iteration. The ICP iteratively finds the nearest-neighbor correspondences
(xit,x

′j
t)’s and minimize the point-to-plane distances D(xit,x

′j
t) between them. By accumulating

the computed transformation residual to the current prediction (Rpred,tpred), we can obtain a more
accurate ego-motion:

t∗ = δRtpred + δt, R∗ = δRRpred (3)

To improve the prediction accuracy, we design our transformation residual loss as

Ltr = uα(||(δR− I)tpred + δt||22) + uβ(||δR− I||2F), (4)

to push tpred → t∗ and Rpred → R∗, where u�(·) is a uncertainty-aware loss: u�(l) = e−�l + �,
to model the homoscedastic noise during training [35], where � is a learnable parameter. Ideally,
the transformation residual (δR, δt) should be close to an identity transformation (I, 0) after the
training converges.

Deep Flow Supervision Loss. All the above losses are used to directly supervise the final ego-
motion estimation. To further enhance the point-wise feature representations, we incorporate the
3D scene flow prediction as an auxiliary task in a unsupervised manner. The flow prediction highly
relies on the local topology patterns, which could makes the features encode more geometric infor-
mation. As shown in Fig. 5, we add several scene flow prediction branches (with several convolution
layers) at the different depths of the ego-motion regression encoder to predict scene flow F pred from
the voxel features (each feature vector can be mapped to a 3D voxel location xit with our voxel-based
representation). The flow of a point xit is defined as its coordinate difference between two times-
tamps: Fh(xit) = xit − xit−1 = (I −Rgt)Txit + (Rgt)Ttgt. Since the ego-motion ground-truth is
not available, we approximate the scene flow targets with the rectified ego-motion prediction with
the transformation residuals obtained by the ICP iteration according to Eq. (3), and then calculate
the scene flow of the voxels: h ∈ H: F ∗h (xit) = (I−R∗)Txt + (R∗)Tt∗, where xit denotes the i-th
voxel center’s coordinate in encoder layer h. Finally, we take this approximated flow as the target to
supervise the flow prediction at different encoder depths:

Lfs =
∑
h,i

wh · uα(||F predh (xit)− F ∗h (xit)||22), (5)

where wh is the weight for layer h, and uα(·) is a uncertainty-aware loss mentioned before.

5

3.3 Correspondence Confidence Estimation

In practical scenarios, the nearest-neighbor-based correspondence mappingM(·) used in the Eq. (2)
and Eq. (4) to associate corresponding points in two timestamps are not always accurate, because of
the existence of moving objects, noise, and measurement errors. To alleviate the adverse effects from
these inaccurate correspondences, we design a 3D decoder sub-network following the geometric
feature encoder to estimate the reliability for the points, which is implemented as 3D transposed
convolution layers followed by sigmoid functions squeezing the output range to [0, 1]. As illustrated
in Fig. 5, the confidence estimation decoder estimates the point-wise confidence M ′t = {m′it |i =

1, . . . , N} (trivially obtained from Mt) and Mt = {mj
t |j = 1, . . . , N} for point sets P ′t and Pt

respectively. We takes pair-wise product {Mij = m′itm
j
t |i = 1, . . . , N, j =M(i)} to estimate the

reliability of each matched correspondence pair (xit,x
′j
t) needed by Eq. 2 and the ICP optimization

for Eq. 4. The confidence factors can be straightforwardly incorporated into Eq. (2):

Lsr = − 1

|Pt|
∑

xi
t∈Pt,j=M(i)

Mij · xit · x
′j
t

||xit||2||x
′j
t ||2

. (6)

For the transformation residual loss (Eq. (4)), we modify the original ICP optimization term as

E =
1

|Pt|
∑

xi
t∈Pt,j=M(i)

(Mij/max
i

(Mij) + ε) · D(xit,x
′j
t), (7)

where D(·, ·) denotes the distance function in ICP, (xit,x
′j
t) are the identified correspondences be-

tween Pt and P ′t with the nearest-neighbor mappingM(·), and the constant addend ε (empirically
set to 0.1 in our experiments) is to avoid the extreme imbalance of weights in early training phases.
The classic ICP assumes that all correspondence pairs can be matched perfectly by optimizing the
transformation (δR,δt) in Fig. 5b, which is often not true especially when moving objects/noises
exist. The correspondence confidence factors successfully handle this dilemma to lower the weights
on the unreliable correspondences during optimization.

Since there is no ground-truth for the confidence prediction, we use the self-supervised range align-
ment error to guide this confidence estimation similar to [8]:

Lra =
1

|Pt|
∑

xi
t∈Pt,j=M(i)

Mij(r(xit)− r(x
′j
t))2 − γ log(Mij), (8)

where r(·) = || · ||2 calculates the range value and the regularization term − log(Mij) with weight
γ avoids the all-zero trivial prediction.

In summary, our overall loss function is finally expressed as
L = w1Lsr + w2Lra + w3Ltr + w4Lfs, (9)

where w1-w4 are the weights of different losses.

4 Experimental Results

4.1 Benchmark Dataset and Evaluation Metrics

KITTI Odometry Dataset. KITTI Odometry dataset[12] consists of 22 LiDAR sequences with
corresponding color/gray images. It provides ground-truth poses for sequences 00-10 obtained from
IMU/GPS fusion algorithms. The remaining sequences are for benchmark testing and do not pro-
vide ground-truth poses. This dataset covers different types of road environments (including country
roads, urban areas, highways etc.), and contains pedestrains, cyclists and different types of vehicles.
The speed of acquisition vehicles varies in different areas ranging from 0 km/h to 90 km/h.
Apollo-SouthBay Dataset. Apollo-SouthBay Dataset [13] collected in the San Francisco Bay area,
United States, covers various scenarios including residential area, urban downtown areas and high-
ways. It also provides the ground-truth poses and training/testing splits for the first five scenarios
which are adopted in our experiments. The apollo sequence is longer than the KITTI’s and the sce-
narios are more complicated, which is suitable for testing the generality of our method.
We adopt the official evaluation metrics provide by the KITTI benchmark [12] to measure the trans-
lational and rotational drift on length of 100m-800m in our experiments. The implementation details
of our method can be found in supplementary materials.

6

Table 1: Comparison with the state of the arts on KITTI odometry dataset. We also list the supervised
methods and visual odometry methods here for reference.

Seq. Training Seq. 7 8 9 10 Testing Avg.
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

C
la

ss
ic

ICP-po2po 6.45 3.16 5.17 3.35 10.04 4.93 6.93 2.89 8.91 4.47 7.76 3.98
ICP-po2pl 3.76 1.79 1.55 1.42 4.42 2.14 3.95 1.71 6.13 2.60 4.01 1.97
GICP [2] 1.87 0.76 0.64 0.45 1.58 0.75 1.97 0.77 1.31 0.62 1.38 0.65

NDT-P2D [36] 34.2 5.73 7.51 3.07 13.6 4.62 33.7 7.06 20.5 3.06 18.8 4.45
CLS [37] 2.30 0.93 1.04 0.73 2.14 1.05 1.95 0.92 3.46 1.28 2.15 1.00

LOAM (w/o mapping) 3.90 1.53 2.98 1.55 4.89 2.04 6.04 1.79 3.65 1.55 4.39 1.73
LOAM (w/ mapping) [4] 1.12 0.50 0.69 0.50 1.18 0.44 1.20 0.48 1.51 0.57 1.15 0.50

Su
p.

Velas et al. [9] 2.90 - 1.77 - 2.89 - 4.94 - 3.27 - 3.22 -
LO-Net (w/o mapping) [10] 1.05 0.66 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.75 0.79
LO-Net (w/ mapping) [10] 0.71 0.45 0.56 0.45 1.08 0.43 0.77 0.38 0.92 0.41 0.83 0.42

U
ns

up
.

Zhou et al. * [8] 30.8 4.63 21.3 6.65 21.9 2.91 18.8 3.21 14.3 3.30 19.1 4.02
UnDeepVO* [18] 4.80 2.69 3.15 2.48 4.08 1.79 7.01 3.61 10.6 4.65 6.22 3.13

Cho et al. [11] 3.68 0.87 - - - - 4.87 1.95 5.02 1.83 4.95 1.89
Ours 2.50 1.11 3.09 1.81 3.16 1.14 3.01 1.14 3.48 1.11 3.19 1.30

Ours (more data) 2.31 1.06 2.51 1.15 2.65 1.00 2.86 1.17 3.22 1.26 2.81 1.15
Ours (more data, w/mapping) 0.70 0.37 0.34 0.21 1.18 0.35 0.83 0.34 1.22 0.40 0.89 0.32

trel, rrel: Average translational RMSE (%) and rotational RMSE (◦/100m) on length of 100m-800m [12]. *: Visual odometry methods. Some results were
obtained from [10, 11]

Seq. 09 Seq. 10

Seq. 07 Seq. 08

(a) (b) (c)

Figure 3: (a) Trajectory plots comparison among some two-frame methods on KITTI. (b) The av-
erage translation and rotation errors with respect to trajectory length intervals for different methods
on Apollo. (c) Performance variation of our method on KITTI test set with different ε values.

4.2 Comparison with State-of-the-arts

Evaluation on KITTI Dataset. We compare our method with other competitive methods on the se-
quences 00-10 of the KITTI odometry dataset. These compared methods adopted different splitting
strategies for training and testing 1. Since most of their code are not available, for fair comparison,
we choose the splitting strategy with minimal training data (i.e. 00-06/07-10 for training/testing)
to evaluate our method against them. Table 1 shows the evaluation results where we exclude the
results of Seq. 01 following other unsupervised methods [11]. The Seq. 01 on highway is in a very
open space with few structures to infer the agent’s motions, where most of the unsupervised method
and classic methods fail. Compared with other state-of-the-art unsupervised methods, our method
achieves the best performance (denoted as ‘Ours’ in Table 1) even with the least amount of data
for training. We also try to add the more unlabeled (Seq. 11-21) into the training set (denoted as
‘Ours (more data)’), and our performances are further improved and even surpasses those of some
supervised methods, which shows our unsupervised method’s scalability to be benefited from more
training data. We also compare our method with classic methods [1, 36, 2, 37]. Our method achieves
significant better performance than most two-frame methods widely used, i.e., point-to-point ICP
[1], point-to-plane ICP [33] and NDT-P2D [36], and reasonably inferior performance than the time-
consuming (only ∼ 0.5Hz) GICP [2] and CLS [37] which iteratively refine the pose transformation
with computational heavily correspondence association modeling. (Specific runtime comparison
can be found in the supplementary materials.) Fig. 3a plots example trajectories in Seq. 09-10 of
different two-frame methods for visualization. Although we mainly focus on the two-frame ego-
motion estimation in this paper, we also incorporate the mapping module from LOAM [4] into our
framework to test the odometry performance with the additional backend multi-frame refinement.
The results (denoted as ‘Ours (more data, w/ mapping)’) in Table 1 demonstrate that our method can
be successfully coupled with multi-frame refinement widely used in SLAM systems. We achieves
better performance than LOAM, a competitive classic LiDAR-based SLAM system, and show com-
parable performance with state-of-the-art supervised odometry method LO-net [10] with mapping
refinement.

1[9] takes the sequences 00-07/08-10 as the train/test split, [10] takes 00-06/07-10 as the train/test sets,
while the others CNN-based methods takes 00-08/09-10 for training/testing

7

Table 2: The evaluation results on Apollo-SouthBay test set.
ICP-po2po ICP-po2pl GICP [2] NDT-P2D [36] LOAM(w/ mapping) [4] Ours Ours (w/ mapping)

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel
Avg. 22.8 2.35 7.75 1.20 4.55 0.76 57.2 9.40 5.93 0.26 6.42 1.65 2.25 0.25

Table 3: Comparison among different ablation variants.
Lsr Lsr, Lra Lsr, Lra, Ltr Lsr, Lra, Ltr, Lfs, w/o conf. Leu, Lra, Ltr, Lfs Lsr, Lra, Ltr, Lfs

train test train test train test train test train test train test
Avg. trel 12.4 19.1 4.63 7.19 2.59 4.84 3.24 3.59 2.88 3.50 2.50 3.19
Avg. rrel 4.72 6.54 1.90 2.65 1.20 1.96 1.82 2.04 1.41 1.27 1.11 1.30

Evaluation on Apollo-SouthBay Dataset.We also evaluate our model on more challenging Apollo-
SouthBay dataset to further demonstrate our generality. As shown in Table 2 and Fig. 3b, our two-
frame-based network prediction (denoted as ‘Ours’) consistently outperform most of the classic
two-frame-based methods [1, 33, 36] and achieves comparable translational accuracy to the multi-
frame-based LOAM [4]. We also prove that our method with mapping refinement can outperform
other methods. The Apollo dataset is closer to actual autonomous driving scenarios with more
moving objects. By training on large-scale data and correspondence confidence estimation, our
method shows consistent robustness.

4.3 Ablation Study

To verify the effectiveness of each proposed module and unsupervised loss functions, we conduct a
throughout ablation study on the KITTI dataset as shown in Table 3. We test different combinations
of loss functions incrementally and the proposed full loss to show that it has optimal performance
compared with losses with fewer terms. We also try to remove our confidence mechanism from our
model (denoted as ‘w/o conf.’), and we can see evident performance drop due to unreliable corre-
spondences caused by noises, dynamic objects and varying pointcloud densities. We visualize some
estimated confidence examples in Fig. 4, where our network successfully lowers the confidences of
points on dynamic objects, e.g. vehicles, cyclists etc. and has higher confidence on the static poles
and vertical surfaces. Moreover, we substitute the Euclidean loss Leu for our spherical reprojection
loss Lsr and find obvious performance drop. Besides, in Fig. 3c, we analyse the the performance
variations with different ε values in Eq. 7 and find that large ε values lead to inferior performances,
as the large ε weakens the effect of estimated confidence weights.

Figure 4: Our confidence prediction visualiza-
tion. The brighter denotes higher confidendence.

Table 4: The runtime of our submodules and the
comparison with other methods.

Our submodule runtime
Module Time (ms)

Voxelization 0.7
Voxel Feature Extraction 65.8

Odometry Regression 21.9
Total 88.4

Runtime comparison with other methods
Methods Time (ms)

ICP-po2po [1] 261
ICP-po2pl [33] 1250

GICP [2] 1781
NDT-P2D [36] 1723

CLS [37] 19843
Ours 88.4

4.4 Runtime Analysis
We further analyse the running time of our framework on a machine with a Xeon(R) E5-2697A v4
CPU and a NVIDIA Tesla V100 GPU. The results are listed in Table 4. Our method achieve real-
time efficiency, which is suitable for practical deployment. Although GICP can achieve more robust
results than our network prediction in Table 1 and Table 2, it is too time-consuming to be directly
applied to large-scale LiDAR data.

5 Conclusions
We present a novel unsupervised LiDAR odometry framework based on the 3D convolutional neu-
ral networks. Several 3D self-supervised losses are proposed and uncertainty-aware mechanism is
introduced to jointly enable our network to train in the wild. Our method achieve the state-of-art per-
formance on two public datasets. It is worth mentioning that our method can run in real-time and can
be combined with other off-the-shelf mapping algorithms for deployment in practical applications.

8

Acknowledgments

This work is supported in part by the General Research Fund through the Research Grants Council
of Hong Kong under Grants(Nos. CUHK14208417, CUHK14207319), in part by the Hong Kong In-
novation and Technology Support Program (No. ITS/312/18FX), in part by CUHK Strategic Fund.

References
[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point sets. IEEE

Trans. Pattern Anal. Mach. Intell., 9(5):698–700, 1987.

[2] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Robotics: science and systems,
volume 2, page 435. Seattle, WA, 2009.

[3] J. Serafin and G. Grisetti. Nicp: Dense normal based point cloud registration. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 742–749,
2015.

[4] J. Zhang and S. Singh. Loam: Lidar odometry and mapping in real-time. In Robotics: Science
and Systems, volume 2, 2014.

[5] T. Shan and B. Englot. Lego-loam: Lightweight and ground-optimized lidar odometry and
mapping on variable terrain. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4758–4765, 2018.

[6] K. R. Konda and R. Memisevic. Learning visual odometry with a convolutional network. In
VISAPP (1), pages 486–490, 2015.

[7] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: Towards end-to-end visual odometry
with deep recurrent convolutional neural networks. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 2043–2050, 2017.

[8] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-
motion from video. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1851–1858, 2017.

[9] M. Velas, M. Spanel, M. Hradis, and A. Herout. Cnn for imu assisted odometry estimation
using velodyne lidar. In 2018 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), pages 71–77, 2018.

[10] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li. Lo-net: Deep real-time lidar
odometry. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 8473–8482, 2019.

[11] Y. Cho, G. Kim, and A. Kim. Unsupervised geometry-aware deep lidar odometry. In 2020
International Conference on Robotics and Automation (ICRA). IEEE, 2020.

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3354–3361, 2012.

[13] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song. L3-net: Towards learning based lidar localiza-
tion for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6389–6398, 2019.

[14] E. W. Weisstein. Angular distance. URL https://mathworld.wolfram.com/
AngularDistance.html.

[15] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In Proceedings Third
International Conference on 3-D Digital Imaging and Modeling, pages 145–152. IEEE, 2001.

[16] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga. Fast registration based on noisy planes
with unknown correspondences for 3-D mapping. IEEE Transactions on Robotics, 26(3):424–
441, 2010.

9

https://mathworld.wolfram.com/AngularDistance.html
https://mathworld.wolfram.com/AngularDistance.html

[17] J. Behley and C. Stachniss. Efficient surfel-based SLAM using 3D laser range data in urban
environments. In Robotics: Science and Systems, 2018.

[18] R. Li, S. Wang, Z. Long, and D. Gu. Undeepvo: Monocular visual odometry through unsu-
pervised deep learning. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 7286–7291, 2018.

[19] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3D
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017.

[20] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural information processing systems, pages
5099–5108, 2017.

[21] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3D object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4490–4499, 2018.

[22] X. Gu, Y. Wang, C. Wu, Y. J. Lee, and P. Wang. Hplflownet: Hierarchical permutohedral
lattice flownet for scene flow estimation on large-scale point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3254–3263, 2019.

[23] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or. Meshcnn: a network
with an edge. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

[24] Y. Yan, Y. Mao, and B. Li. Second: Sparsely embedded convolutional detection. Sensors, 18
(10):3337, 2018.

[25] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 12697–12705, 2019.

[26] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3D object detection
from rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 918–927, 2018.

[27] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell, and K. Q.
Weinberger. Pseudo-lidar++: Accurate depth for 3D object detection in autonomous driving.
arXiv preprint arXiv:1906.06310, 2019.

[28] X. Liu, C. R. Qi, and L. J. Guibas. Flownet3D: Learning scene flow in 3D point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
529–537, 2019.

[29] S. Prokudin, C. Lassner, and J. Romero. Efficient learning on point clouds with basis point
sets. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
2019.

[30] B. Graham and L. van der Maaten. Submanifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[32] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge univer-
sity press, 2003.

[33] Y. Chen and G. Medioni. Object modelling by registration of multiple range images. Image
and vision computing, 10(3):145–155, 1992.

[34] K.-L. Low. Linear least-squares optimization for point-to-plane icp surface registration. Chapel
Hill, University of North Carolina, 4(10):1–3, 2004.

10

[35] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression with deep
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5974–5983, 2017.

[36] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal. Fast and accurate scan
registration through minimization of the distance between compact 3D ndt representations.
The International Journal of Robotics Research, 31(12):1377–1393, 2012.

[37] M. Velas, M. Spanel, and A. Herout. Collar line segments for fast odometry estimation from
velodyne point clouds. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 4486–4495, 2016.

[38] B. L. Yan Yan. Spconv: Pytorch spatially sparse convolution library, 2020. URL https:
//github.com/traveller59/spconv.

6 Appendix

6.1 Network Details

V
al

id
Sp

ar
se

C
o

n
v.

(3
x3

x3
, C

=
1

6
)

Sp
ar

se
 C

o
n

v.
(3

x3
x3

,S
=2

x2
x2

, C
=3

2
)

Sp
ar

se
 C

o
n

v.
(3

x3
x3

,S
=

2
x2

x2
, C

=6
4

)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=

3
2

)

3
D

 T
ra

n
sp

. C
o

n
v.

(3
x3

x3
, S

=
2

x2
x2

, C
=

3
2

)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=

1
6

)

3
D

 T
ra

n
sp

. C
o

n
v.

(3
x3

x3
, S

=
2

x2
x2

, C
=

1
6

)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=

8
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=

1
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=1

6
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=3

2
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=3

2
)

Sp
ar

se
 C

o
n

v.
(3

x3
x3

,S
=2

x2
x2

, C
=6

4
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=6

4
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=6

4
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=6

4
)

Sp
ar

se
 C

o
n

v.
(3

x3
x3

,S
=2

x2
x2

, C
=6

4
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=6

4
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=6

4
)

V
al

id
 S

p
ar

se
 C

o
n

v.
(3

x3
x3

, C
=6

4
)

R
es

n
et

 B
lo

ck
 (

#L
ay

er
=3

, S
=2

)

R
es

n
et

 B
lo

ck
 (

#L
ay

er
=5

, S
=2

)

R
es

n
et

 B
lo

ck
 (

#L
ay

er
=

5
, S

=2
)

A
d

ap
ti

ve
 A

vg
. P

o
o

lin
g

(5
x5

)

D
ro

p
o

u
t

(p
=0

.2
)

Fu
lly

C
o

n
n

ec
te

d
 L

ay
er

 (
1

0
2

4
)

Fu
lly

 C
o

n
n

ec
te

d
 L

ay
er

 (
7

)

C
o

n
v

(3
x3

, S
=1

, C
=6

4
)

C
o

n
v

(3
x3

, S
=1

, C
=3

)

Geometric Feature Encoding Network
Confidence Estimation

Network
Ego-motion Regression

Network

Scene Flow
Prediction

Branch

Figure 5: The design details of our proposed modules.

As shown in Fig. 5, the geometric feature encoding network adopts interlaced valid sparse convo-
lutions and sparse convolutions proposed by Graham et al. [30]2 to encode the point clouds into
high-dimension features. The confidence estimation network is constituted by interlaced 3D trans-
posed convolutions and valid sparse convolutions to upsample and decode the confidences from the
high-level features generated by the geometric feature encoding network. Moreover, the specific
design of ego-motion regression network and the scene flow prediction branch are also presented in
Fig. 5. Note that most of the convolution layers are followed by a ReLU layer and a batch normal-
ization layer except for those in the geometric feature encoding network where we omit the batch
normalizations and find better performance.

6.2 Implementation Details

Our proposed network is implemented with PyTorch and trained on the NVIDIA V100 Tesla
V100 GPU. We voxelize the 3D space of size (D=137.6m, W=80m, H=8m) into small voxels
of (0.1m,0.1m,0.2m). We set the initial learning rate to 0.001, which slowly decays with a cosine
annealing strategy. The batchsize is set to 8 and the network is trained 200k iterations to achieve
good convergence. During training, we set the length of input sequences to 3 and form the temporal
pairs by choosing scans [St−2, St−1], [St−1, St], [St−2, St] respectively. We exponentially decay
the wh in Eq. (5) and set wh = 1, 0.1, 0.01 . . . (indexed from the end of the encoder). Besides we
set ε = 0.1, γ = 0.0001, w1 = 1000, w2 = w3 = w4 = 1 in Eq. (7), Eq. (8) and Eq. (9) as the base
settings in our experiment.

2The valid sparse convolution, sparse convolution and the following transposed convolution in our work are
implemented with [38]

11

https://github.com/traveller59/spconv
https://github.com/traveller59/spconv

	Introduction
	Related Work
	Method
	3D Geometric Feature Encoding
	Odometry Regression
	Correspondence Confidence Estimation

	Experimental Results
	Benchmark Dataset and Evaluation Metrics
	Comparison with State-of-the-arts
	Ablation Study
	Runtime Analysis

	Conclusions
	Appendix
	Network Details
	Implementation Details

