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Abstract

To capture the interdependencies between labels in multi-label classification prob-
lems, classifier chain (CC) tries to take the multiple labels of each instance into
account under a deterministic high-order Markov Chain model. Since its perfor-
mance is sensitive to the choice of label order, the key issue is how to determine
the optimal label order for CC. In this work, we first generalize the CC model over
a random label order. Then, we present a theoretical analysis of the generaliza-
tion error for the proposed generalized model. Based on our results, we propose
a dynamic programming based classifier chain (CC-DP) algorithm to search the
globally optimal label order for CC and a greedy classifier chain (CC-Greedy)
algorithm to find a locally optimal CC. Comprehensive experiments on a num-
ber of real-world multi-label data sets from various domains demonstrate that our
proposed CC-DP algorithm outperforms state-of-the-art approaches and the CC-
Greedy algorithm achieves comparable prediction performance with CC-DP.

1 Introduction

Multi-label classification, where each instance can belong to multiple labels simultaneously, has
significantly attracted the attention of researchers as a result of its various applications, ranging from
document classification and gene function prediction, to automatic image annotation. For example,
a document can be associated with a range of topics, such as Sports, Finance and Education [1]; a
gene belongs to the functions of protein synthesis, metabolism and transcription [2]; an image may
have both beach and tree tags [3].

One popular strategy for multi-label classification is to reduce the original problem into many bina-
ry classification problems. Many works have followed this strategy. For example, binary relevance
(BR) [4] is a simple approach for multi-label learning which independently trains a binary classifier
for each label. Recently, Dembczynski et al. [5] have shown that methods of multi-label learn-
ing which explicitly capture label dependency will usually achieve better prediction performance.
Therefore, modeling the label dependency is one of the major challenges in multi-label classifica-
tion problems. Many multi-label learning models [5, 6, 7, 8, 9, 10, 11, 12] have been developed to
capture label dependency. Amongst them, the classifier chain (CC) model is one of the most popular
methods due to its simplicity and promising experimental results [6].

CC works as follows: One classifier is trained for each label. For the (i + 1)th label, each instance
is augmented with the 1st, 2nd, · · · , ith label as the input to train the (i + 1)th classifier. Given a
new instance to be classified, CC firstly predicts the value of the first label, then takes this instance
together with the predicted value as the input to predict the value of the next label. CC proceeds
in this way until the last label is predicted. However, here is the question: Does the label order
affect the performance of CC? Apparently yes, because different classifier chains involve different
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classifiers trained on different training sets. Thus, to reduce the influence of the label order, Read et
al. [6] proposed the ensembled classifier chain (ECC) to average the multi-label predictions of CC
over a set of random chain ordering. Since the performance of CC is sensitive to the choice of label
order, there is another important question: Is there any globally optimal classifier chain which can
achieve the optimal prediction performance for CC? If yes, how can the globally optimal classifier
chain be found?

To answer the last two questions, we first generalize the CC model over a random label order. We
then present a theoretical analysis of the generalization error for the proposed generalized model.
Our results show that the upper bound of the generalization error depends on the sum of reciprocal
of square of the margin over the labels. Thus, we can answer the second question: the globally
optimal CC exists only when the minimization of the upper bound is achieved over this CC. To
find the globally optimal CC, we can search over q! different label orders1, where q denotes the
number of labels, which is computationally infeasible for a large q. In this paper, we propose the
dynamic programming based classifier chain (CC-DP) algorithm to simplify the search algorithm,
which requires O(q3nd) time complexity. Furthermore, to speed up the training process, a greedy
classifier chain (CC-Greedy) algorithm is proposed to find a locally optimal CC, where the time
complexity of the CC-Greedy algorithm is O(q2nd).

Notations: Assume xt ∈ Rd is a real vector representing an input or instance (feature) for t ∈
{1, · · · , n}. n denotes the number of training samples. Yt ⊆ {λ1, λ2, · · · , λq} is the corresponding
output (label). yt ∈ {0, 1}q is used to represent the label set Yt, where yt(j) = 1 if and only if
λj ∈ Yt.

2 Related work and preliminaries

To capture label dependency, Hsu et al. [13] first use compressed sensing technique to handle the
multi-label classification problem. They project the original label space into a low dimensional label
space. A regression model is trained on each transformed label. Recovering multi-labels from the
regression output usually involves solving a quadratic programming problem [13], and many works
have been developed in this way [7, 14, 15]. Such methods mainly aim to use different projection
methods to transform the original label space into another effective label space.

Another important approach attempts to exploit the different orders (first-order, second-order and
high-order) of label correlations [16]. Following this way, some works also try to provide a proba-
bilistic interpretation for label correlations. For example, Guo and Gu [8] model the label correla-
tions using a conditional dependency network; PCC [5] exploits a high-order Markov Chain model
to capture the correlations between the labels and provide an accurate probabilistic interpretation of
CC. Other works [6, 9, 10] focus on modeling the label correlations in a deterministic way, and CC
is one of the most popular methods among them. This work will mainly focus on the deterministic
high-order classifier chain.

2.1 Classifier chain

Similar to BR, the classifier chain (CC) model [6] trains q binary classifiers hj (j ∈ {1, · · · , q}).
Classifiers are linked along a chain where each classifier hj deals with the binary classification prob-
lem for label λj . The augmented vector {xt, yt(1), · · · , yt(j)}nt=1 is used as the input for training
classifier hj+1. Given a new testing instance x, classifier h1 in the chain is responsible for predict-
ing the value of y(1) using input x. Then, h2 predicts the value of y(2) taking x plus the predicted
value of y(1) as an input. Following in this way, hj+1 predicts y(j + 1) using the predicted value
of y(1), · · · , y(j) as additional input information. CC passes label information between classifiers,
allowing CC to exploit the label dependence and thus overcome the label independence problem
of BR. Essentially, it builds a deterministic high-order Markov Chain model to capture the label
correlations.

1! represents the factorial notation.
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2.2 Ensembled classifier chain

Different classifier chains involve different classifiers learned on different training sets and thus the
order of the chain itself clearly affects the prediction performance. To solve the issue of selecting a
chain order for CC, Read et al. [6] proposed the extension of CC, called ensembled classifier chain
(ECC), to average the multi-label predictions of CC over a set of random chain ordering. ECC first
randomly reorders the labels {λ1, λ2, · · · , λq} many times. Then, CC is applied to the reordered
labels for each time and the performance of CC is averaged over those times to obtain the final
prediction performance.

3 Proposed model and generalization error analysis

3.1 Generalized classifier chain

We generalize the CC model over a random label order, called generalized classifier chain (GCC)
model. Assume the labels {λ1, λ2, · · · , λq} are randomly reordered as {ζ1, ζ2, · · · , ζq}, where ζj =
λk means label λk moves to position j from k. In the GCC model, classifiers are also linked along
a chain where each classifier hj deals with the binary classification problem for label ζj (λk). GCC
follows the same training and testing procedures as CC, while the only difference is the label order.
In the GCC model, for input xt, yt(j) = 1 if and only if ζj ∈ Yt.

3.2 Generalization error analysis

In this section, we analyze the generalization error bound of the multi-label classification problem
using GCC based on the techniques developed for the generalization performance of classifiers with
a large margin [17] and perceptron decision tree [18].

Let X represent the input space. Both s and s̄ are m samples drawn independently according to
an unknown distribution D. We denote logarithms to base 2 by log. If S is a set, |S| denotes its
cardinality. ∥ · ∥ means the l2 norm. We train a support vector machine(SVM) for each label ζj .
Let {xt}nt=1 as the feature and {yt(ζj)}nt=1 as the label, the output parameter of SVM is defined as
[wj , bj ] = SVM({xt, yt(ζ1), · · · , yt(ζj−1)}nt=1, {yt(ζj)}nt=1). The margin for label ζj is defined
as:

γj =
1

||wj ||2
(1)

We begin with the definition of the fat shattering dimension.
Definition 1 ([19]). Let H be a set of real valued functions. We say that a set of points P is γ-
shattered by H relative to r = (rp)p∈P if there are real numbers rp indexed by p ∈ P such that for
all binary vectors b indexed by P , there is a function fb ∈ H satisfying

fb(p) =

{
≥ rp + γ if bp = 1

≤ rp − γ otherwise

The fat shattering dimension fat(γ) of the set H is a function from the positive real numbers to the
integers which maps a value γ to the size of the largest γ-shattered set, if this is finite, or infinity
otherwise.

Assume H is the real valued function class and h ∈ H. l(y, h(x)) denotes the loss function. The
expected error of h is defined as erD[h] = E(x,y)∼D[l(y, h(x))], where (x, y) drawn from the
unknown distribution D. Here we select 0-1 loss function. So, erD[h] = P(x,y)∼D(h(x) ̸= y).

ers[h] is defined as ers[h] =
1
n

n∑
t=1

[yt ̸= h(xt)].2

Suppose N (ϵ,H, s) is the ϵ-covering number of H with respect to the l∞ pseudo-metric measuring
the maximum discrepancy on the sample s. The notion of the covering number can be referred to
the Supplementary Materials. We introduce the following general corollary regarding the bound of
the covering number:

2The expression [yt ̸= h(xt)] evaluates to 1 if yt ̸= h(xt) is true and to 0 otherwise.
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Corollary 1 ([17]). Let H be a class of functions X → [a, b] and D a distribution over X . Choose
0 < ϵ < 1 and let d = fat(ϵ/4) ≤ em. Then

E(N (ϵ,H, s)) ≤ 2
(4m(b− a)2

ϵ2

)d log(2em(b−a)/(dϵ))
(2)

where the expectation E is over samples s ∈ Xm drawn according to Dm.

We study the generalization error bound of the specified GCC with the specified number of labels
and margins. Let G be the set of classifiers of GCC, G = {h1, h2, · · · , hq}. ers[G] denotes the
fraction of the number of errors that GCC makes on s. Define x̂ ∈ X × {0, 1}, ĥj(x̂) = hj(x)(1−
y(j))−hj(x)y(j). If an instance x ∈ X is correctly classified by hj , then ĥj(x̂) < 0. Moreover, we
introduce the following proposition:

Proposition 1. If an instance x ∈ X is misclassified by a GCC model, then ∃hj ∈ G, ĥj(x̂) ≥ 0.

Lemma 1. Given a specified GCC model with q labels and with margins γ1, γ2, · · · , γq for each
label satisfying ki = fat(γi/8), where fat is continuous from the right. If GCC has correctly
classified m multi-labeled examples s generated independently according to the unknown (but fixed)
distribution D and s̄ is a set of another m multi-labeled examples, then we can bound the following
probability to be less than δ: P 2m{ss̄ : ∃ a GCC model, it correctly classifies s, fraction of s̄ misclas-
sified > ϵ(m, q, δ)} < δ, where ϵ(m, q, δ) = 1

m (Q log(32m)+log 2q

δ ) and Q =
∑q

i=1 ki log(
8em
ki

).

Proof. (of Lemma 1). Suppose G is a GCC model with q labels and with margins γ1, γ2, · · · , γq ,
the probability event in Lemma 1 can be described as

A = {ss̄ : ∃G, ki = fat(γi/8), ers[G] = 0, ers̄[G] > ϵ}.

Let ŝ and ˆ̄s denote two different set of m examples, which are drawn i.i.d. from the distribution
D × {0, 1}. Applying the definition of x̂, ĥ and Proposition 1, the event can also be written as
A = {ŝˆ̄s : ∃G, γ̂i = γi/2, ki = fat(γ̂i/4), ers[G] = 0, ri = maxtĥi(x̂t), 2γ̂

i = −ri, |{ŷ ∈ ˆ̄s :

∃hi ∈ G, ĥi(ŷ) ≥ 2γ̂i + ri}| > mϵ}. Here, −maxtĥi(x̂t) means the minimal value of |hi(x)|
which represents the margin for label ζi, so 2γ̂i = −ri. Let γki = min{γ′ : fat(γ′/4) ≤ ki}, so
γki ≤ γ̂i, we define the following function:

π(ĥ) =


0 if ĥ ≥ 0

−2γki if ĥ ≤ −2γki

ĥ otherwise

so π(ĥ) ∈ [−2γki , 0]. Let π(Ĝ) = {π(ĥ) : h ∈ G}.

Let Bki

ŝ̄̂s represent the minimal γki-cover set of π(Ĝ) in the pseudo-metric dŝ̄̂s. We have that for
any hi ∈ G, there exists f̃ ∈ Bki

ŝ̄̂s , |π(ĥi(ẑ)) − π(f̃(ẑ))| < γki , for all ẑ ∈ ŝˆ̄s. For all x̂ ∈ ŝ, by
the definition of ri, ĥi(x̂) ≤ ri = −2γ̂i, and γki ≤ γ̂i, ĥi(x̂) ≤ −2γki , π(ĥi(x̂)) = −2γki , so
π(f̃(x̂)) < −2γki

+ γki
= −γki

. However, there are at least mϵ points ŷ ∈ ˆ̄s such that ĥi(ŷ) ≥ 0,
so π(f̃(ŷ)) > −γki > maxtπ(f̃(x̂t)). Since π only reduces separation between output values, we
conclude that the inequality f̃(ŷ) > maxtf̃(x̂t) holds. Moreover, the mϵ points in ˆ̄s with the largest
f̃ values must remain for the inequality to hold. By the permutation argument, at most 2−mϵ of the
sequences obtained by swapping corresponding points satisfy the conditions for fixed f̃ .

As for any hi ∈ G, there exists f̃ ∈ Bki

ŝ̄̂s , so there are |Bki

ŝ̄̂s | possibilities of f̃ that satisfy the
inequality for ki. Note that |Bki

ŝ̄̂s | is a positive integer which is usually bigger than 1 and by the
union bound, we get the following inequality:

P (A) ≤ (E(|Bk1

ŝ̄̂s |) + · · ·+ E(|Bkq

ŝ̄̂s |))2
−mϵ ≤ (E(|Bk1

ŝ̄̂s |)× · · · × E(|Bkq

ŝ̄̂s |))2
−mϵ

Since every set of points γ-shattered by π(Ĝ) can be γ-shattered by Ĝ, so fatπ(Ĝ)(γ) ≤ fatĜ(γ),

where Ĝ = {ĥ : h ∈ G}. Hence, by Corollary 1 (setting [a, b] to [−2γki , 0], ϵ to γki and m to 2m),

E(|Bki

ŝ̄̂s |) = E(N (γki , π(Ĝ), ŝˆ̄s)) ≤ 2(32m)d log( 8em
d )
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where d = fatπ(Ĝ)(γki/4) ≤ fatĜ(γki/4) ≤ ki. Thus E(|Bki

ŝ̄̂s |) ≤ 2(32m)
ki log(

8em
ki

), and we
obtain

P (A) ≤ (E(|Bk1

ŝ̄̂s |)× · · · × E(|Bkq

ŝ̄̂s |))2
−mϵ ≤

q∏
i=1

2(32m)
ki log(

8em
ki

)
= 2q(32m)Q

where Q =
∑q

i=1 ki log(
8em
ki

). And so (E(|Bk1

ŝ̄̂s |)× · · · × E(|Bkq

ŝ̄̂s |))2
−mϵ < δ provided

ϵ(m, q, δ) ≥ 1

m

(
Q log(32m) + log

2q

δ

)
as required.

Lemma 1 applies to a particular GCC model with a specified number of labels and a specified margin
for each label. In practice, we will observe the margins after running the GCC model. Thus, we must
bound the probabilities uniformly over all of the possible margins that can arise to obtain a practical
bound. The generalization error bound of the multi-label classification problem using GCC is shown
as follows:
Theorem 1. Suppose a random m multi-labeled sample can be correctly classified using a GCC
model, and suppose this GCC model contains q classifiers with margins γ1, γ2, · · · , γq for each
label. Then we can bound the generalization error with probability greater than 1−δ to be less than

130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
where Q′ =

∑q
i=1

1
(γi)2 and R is the radius of a ball containing the support of the distribution.

Before proving Theorem 1, we state one key Symmetrization lemma and Theorem 2.
Lemma 2 (Symmetrization). Let H be the real valued function class. s and s̄ are m samples both
drawn independently according to the unknown distribution D. If mϵ2 ≥ 2, then

Ps(sup
h∈H

|erD[h]− ers[h]| ≥ ϵ) ≤ 2Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ϵ/2) (3)

The proof details of this lemma can be found in the Supplementary Material.
Theorem 2 ([20]). Let H be restricted to points in a ball of M dimensions of radius R about the
origin, then

fatH(γ) ≤ min
{R2

γ2
,M + 1

}
(4)

Proof. (of Theorem 1). We must bound the probabilities over different margins. We first use Lem-
ma 2 to bound the probability of error in terms of the probability of the discrepancy between the
performance on two halves of a double sample. Then we combine this result with Lemma 1. We
must consider all possible patterns of ki’s for label ζi. The largest value of ki is m. Thus, for fixed q,
we can bound the number of possibilities by mq . Hence, there are mq of applications of Lemma 1.

Let ci = {γ1, γ2, · · · , γq} denote the i-th combination of margins varied in {1, · · · ,m}q . G denotes
a set of GCC models. The generalization error of G can be represented as erD[G] and ers[G] is 0,
where G ∈ G. The uniform convergence bound of the generalization error is

Ps(sup
G∈G

|erD[G]− ers[G]| ≥ ϵ)

Applying Lemma 2,

Ps(sup
G∈G

|erD[G]−ers[G]| ≥ ϵ) ≤ 2Ps̄s(sup
G∈G

|ers̄[G]− ers[G]| ≥ ϵ/2)

Let Jci = {ss̄ : ∃ a GCC model G with q labels and with margins ci : ki = fat(γi/8), ers[G] =
0, ers̄[G] ≥ ϵ/2}. Clearly,

Ps̄s(sup
G∈G

|ers̄[G]− ers[G]| ≥ ϵ/2) ≤ Pmq
( mq∪

i=1

Jci

)
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As ki still satisfies ki = fat(γi/8), Lemma 1 can still be applied to each case of Pmq

(Jci). Let
δk = δ/mq . Applying Lemma 1 (replacing δ by δk/2), we get:

Pmq

(Jci) < δk/2

where ϵ(m, k, δk/2) ≥ 2/m(Q log(32m) + log 2×2q

δk
) and Q =

∑q
i=1 ki log(

4em
ki

). By the union

bound, it suffices to show that Pmq

(
∪mq

i=1 Jci) ≤
∑mq

i=1 P
mq

(Jci) < δk/2 ×mq = δ/2. Applying
Lemma 2,

Ps(sup
G∈G

|erD[G]− ers[G]| ≥ ϵ) ≤ 2Ps̄s(sup
G∈G

|ers̄[G]− ers[G]| ≥ ϵ/2)

≤ 2Pmq
( mq∪

i=1

Jci

)
< δ

Thus, Ps(supG∈G |erD[G] − ers[G]| ≤ ϵ) ≥ 1 − δ. Let R be the radius of a ball containing the
support of the distribution. Applying Theorem 2, we get ki = fat(γi/8) ≤ 65R2/(γi)2. Note
that we have replaced the constant 82 = 64 by 65 in order to ensure the continuity from the right
required for the application of Lemma 1. We have upperbounded log(8em/ki) by log(8em). Thus,

erD[G] ≤ 2/m
(
Q log(32m) + log

2(2m)q

δ

)
≤ 130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
where Q′ =

∑q
i=1

1
(γi)2 .

Given the training data size and the number of labels, Theorem 1 reveals one important factor in re-
ducing the generalization error bound for the GCC model: the minimization of the sum of reciprocal
of square of the margin over the labels. Thus, we obtain the following Corollary:
Corollary 2 (Globally Optimal Classifier Chain). Suppose a random m multi-labeled sample with
q labels can be correctly classified using a GCC model, this GCC model is the globally optimal
classifier chain if and only if the minimization of Q′ in Theorem 1 is achieved over this classifier
chain.

Given the number of labels q, there are q! different label orders. It is very expensive to find the
globally optimal CC, which can minimize Q′, by searching over all of the label orders. Next, we
discuss two simple algorithms.

4 Optimal classifier chain algorithm

In this section, we propose two simple algorithms for finding the optimal CC based on our result
in Section 3. To clearly state the algorithms, we redefine the margins with label order information.
Given label set M = {λ1, λ2, · · · , λq}, suppose a GCC model contains q classifiers. Let oi(1 ≤
oi ≤ q) denote the order of λi in the GCC model, γoi

i represents the margin for label λi, with
previous oi − 1 labels as the augmented input. If oi = 1, then γ1

i represents the margin for label λi,
without augmented input. Then Q′ is redefined as Q′ =

∑q
i=1

1
(γ

oi
i )2

.

4.1 Dynamic programming algorithm

To simplify the search algorithm mentioned before, we propose the CC-DP algorithm to find the
globally optimal CC. Note that Q′ =

∑q
i=1

1
(γ

oi
i )2

= 1
(γ

oq
q )2

+ · · ·+
[

1

(γ
ok+1
k+1 )2

+
∑k

j=1
1

(γ
oj
j )2

]
, we

explore the idea of DP to iteratively optimize Q′ over a subset of M with the length of 1, 2, · · · , q.
Finally, we can obtain the optimal Q′ over M. Assume i ∈ {1, · · · , q}. Let V (i, η) be the optimal
Q′ over a subset of M with the length of η(1 ≤ η ≤ q), where the label order is ending by label λi.
Suppose Mη

i represent the corresponding label set for V (i, η). When η = q, V (i, q) be the optimal
Q′ over M, where the label order is ending by label λi. The DP equation is written as:

V (i, η + 1) = min
j ̸=i,λi ̸∈Mη

j

{
1

(γη+1
i )2

+ V (j, η)

}
(5)
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where γη+1
i is the margin for label λi, with Mη

j as the augmented input. The initial condition of
DP is: V (i, 1) = 1

(γ1
i )

2 and M1
i = {λi}. Then, the optimal Q′ over M can be obtained by solving

mini∈{1,··· ,q} V (i, q). Assume the training of linear SVM takes O(nd). The CC-DP algorithm is
shown as the following bottom-up procedure: from the bottom, we first compute V (i, 1) = 1

(γ1
i )

2 ,

which takes O(nd). Then we compute V (i, 2) = minj ̸=i,λi ̸∈M1
j
{ 1
(γ2

i )
2 + V (j, 1)}, which requires

at most O(qnd), and set M2
i = M1

j ∪ {λi}. Similarly, it takes at most O(q2nd) time complexity to
calculate V (i, q). Last, we iteratively solve this DP Equation, and use mini∈{1,··· ,q} V (i, q) to get
the optimal solution, which requires at most O(q3nd) time complexity.

Theorem 3 (Correctness of CC-DP). Q′ can be minimized by CC-DP, which means this Algorithm
can find the globally optimal CC.

The proof can be referred to in the Supplementary Materials.

4.2 Greedy algorithm

We propose a CC-Greedy algorithm to find a locally optimal CC to speed up the CC-DP algorithm.
To save time, we construct only one classifier chain with the locally optimal label order. Based on
the training instances, we select the label from {λ1, λ2, · · · , λq} as the first label, if the maximum
margin can be achieved over this label, without augmented input. The first label is denoted by ζ1.
Then we select the label from the remainder as the second label, if the maximum margin can be
achieved over this label with ζ1 as the augmented input. We continue in this way until the last label
is selected. Finally, this algorithm will converge to the locally optimal CC. We present the details
of the CC-Greedy algorithm in the Supplementary Materials, where the time complexity of this
algorithm is O(q2nd).

5 Experiment

In this section, we perform experimental studies on a number of benchmark data sets from different
domains to evaluate the performance of our proposed algorithms for multi-label classification. All
the methods are implemented in Matlab and all experiments are conducted on a workstation with a
3.2GHZ Intel CPU and 4GB main memory running 64-bit Windows platform.

5.1 Data sets and baselines

We conduct experiments on eight real-world data sets with various domains from three websites.345

Following the experimental settings in [5] and [7], we preprocess the LLog, yahoo art, eurlex sm
and eurlex ed data sets. Their statistics are presented in the Supplementary Materials. We compare
our algorithms with some baseline methods: BR, CC, ECC, CCA [14] and MMOC [7]. To perform
a fair comparison, we use the same linear classification/regression package LIBLINEAR [21] with
L2-regularized square hinge loss (primal) to train the classifiers for all the methods. ECC is averaged
over several CC predictions with random order and the ensemble size in ECC is set to 10 according
to [5, 6]. In our experiment, the running time of PCC and EPCC [5] on most data sets, like slashdot
and yahoo art, takes more than one week. From the results in [5], ECC is comparable with EPCC
and outperforms PCC, so we do not consider PCC and EPCC here. CCA and MMOC are two
state-of-the-art encoding-decoding [13] methods. We cannot get the results of CCA and MMOC on
yahoo art 10, eurlex sm 10 and eurlex ed 10 data sets in one week. Following [22], we consider
the Example-F1, Macro-F1 and Micro-F1 measures to evaluate the prediction performance of all
methods. We perform 5-fold cross-validation on each data set and report the mean and standard
error of each evaluation measurement. The running time complexity comparison is reported in the
Supplementary Materials.

3http://mulan.sourceforge.net
4http://meka.sourceforge.net/#datasets
5http://cse.seu.edu.cn/people/zhangml/Resources.htm#data

7



Table 1: Results of Example-F1 on the various data sets (mean ± standard deviation). The best
results are in bold. Numbers in square brackets indicate the rank.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP

yeast 0.6076 ± 0.019[6] 0.5850± 0.033[7] 0.6096± 0.018[5] 0.6109 ± 0.024[4] 0.6132 ± 0.021 [3] 0.6144± 0.021[1] 0.6135± 0.015[2]
image 0.5247 ± 0.025[7] 0.5991± 0.021[1] 0.5947± 0.015[4] 0.5947 ± 0.009[4] 0.5960 ± 0.012[3] 0.5939± 0.021[6] 0.5976± 0.015[2]
slashdot 0.4898 ± 0.024[6] 0.5246± 0.028[4] 0.5123± 0.027[5] 0.5260 ± 0.021[3] 0.4895 ± 0.022[7] 0.5266± 0.022[2] 0.5268± 0.022[1]
enron 0.4792 ± 0.017[7] 0.4799± 0.011[6] 0.4848± 0.014[4] 0.4812 ± 0.024[5] 0.4940 ± 0.016[1] 0.4894 ± 0.016[2] 0.4880± 0.015[3]
LLog 10 0.3138 ± 0.022[6] 0.3219± 0.028[4] 0.3223± 0.030[3] 0.2978 ± 0.026[7] 0.3153 ± 0.026[5] 0.3269± 0.023[2] 0.3298± 0.025[1]
yahoo art 10 0.4840 ± 0.023[5] 0.5013± 0.022[4] 0.5070± 0.020[3] - - 0.5131± 0.015[2] 0.5135± 0.020[1]
eurlex sm 10 0.8594 ± 0.003[5] 0.8609± 0.004[1] 0.8606± 0.003[3] - - 0.8600± 0.004[4] 0.8609± 0.004[1]
eurlex ed 10 0.7170 ± 0.012[5] 0.7176± 0.012[4] 0.7183± 0.013[2] - - 0.7183± 0.013[2] 0.7190± 0.013[1]
Average Rank 5.88 3.88 3.63 4.60 3.80 2.63 1.50

5.2 Prediction performance

Example-F1 results for our method and baseline approaches in respect of the different data sets
are reported in Table 1. Other measure results are reported in the Supplementary Materials. From
the results, we can see that: 1) BR is much inferior to other methods in terms of Example-F1.
Our experiment provides empirical evidence that the label correlations exist in many real word
data sets and because BR ignores the information about the correlations between the labels, BR
achieves poor performance on most data sets. 2) CC improves the performance of BR, however,
it underperforms ECC. This result verifies the answer to our first question stated in Section 1: the
label order does affect the performance of CC; ECC, which averages over several CC predictions
with random order, improves the performance of CC. 3) CC-DP and CC-Greedy outperforms CCA
and MMOC. This studies verify that optimal CC achieve competitive results compared with state-
of-the-art encoding-decoding approaches. 4) Our proposed CC-DP and CC-Greedy algorithms are
successful on most data sets. This empirical result also verifies the answers to the last two questions
stated in Section 1: the globally optimal CC exists and CC-DP can find the globally optimal CC
which achieves the best prediction performance; the CC-Greedy algorithm achieves comparable
prediction performance with CC-DP, while it requires lower time complexity than CC-DP. In the
experiment, our proposed algorithms are much faster than CCA and MMOC in terms of both training
and testing time, and achieve the same testing time with CC. Through the training time for our
algorithms is slower than BR, CC and ECC. Our extensive empirical studies show that our algorithms
achieve superior performance than those baselines.

6 Conclusion

To improve the performance of multi-label classification, a plethora of models have been developed
to capture label correlations. Amongst them, classifier chain is one of the most popular approaches
due to its simplicity and good prediction performance. Instead of proposing a new learning model,
we discuss three important questions in this work regarding the optimal classifier chain stated in
Section 1. To answer these questions, we first propose a generalized CC model. We then provide
a theoretical analysis of the generalization error for the proposed generalized model. Based on our
results, we obtain the answer to the second question: the globally optimal CC exists only if the mini-
mization of the upper bound is achieved over this CC. It is very expensive to search over q! different
label orders to find the globally optimal CC. Thus, we propose the CC-DP algorithm to simplify
the search algorithm, which requires O(q3nd) complexity. To speed up the CC-DP algorithm, we
propose a CC-Greedy algorithm to find a locally optimal CC, where the time complexity of the CC-
Greedy algorithm is O(q2nd). Comprehensive experiments on eight real-world multi-label data sets
from different domains verify our theoretical studies and the effectiveness of proposed algorithms.
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