
S O U N D I N T E G R AT I O N O F P R O C E S S A N D D E C I S I O N M O D E L S

kimon batoulis

business process technology group

hasso plattner institute

digital engineering faculty

university of potsdam

potsdam , germany

dissertation

zur erlangung des akademischen grades eines

“doctor rerum naturalium”
– dr . rer . nat. –

date of defense : 23/10/2019

November 2019

This work is licensed under a Creative Commons License:
Attribution 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/

Supervisor: Prof. Dr. Mathias Weske, University of Potsdam
Reviewers: Prof. Dr. Jan Vanthienen, KU Leuven, and
Prof. Dr. Marco Montali, Free University of Bozen-Bolzano

Kimon Batoulis: Sound Integration of Process and Decision Models,
© November 2019

Published online at the
Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-43738
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-437386

A B S T R A C T

Business process management is an established technique for busi-
ness organizations to manage and support their processes. Those pro-
cesses are typically represented by graphical models designed with
modeling languages, such as the Business Process Model and Nota-
tion (BPMN).

Since process models do not only serve the purpose of documen-
tation but are also a basis for implementation and automation of the
processes, they have to satisfy certain correctness requirements. In
this regard, the notion of soundness of workflow nets was developed,
that can be applied to BPMN process models in order to verify their
correctness. Because the original soundness criteria are very restric-
tive regarding the behavior of the model, different variants of the
soundness notion have been developed for situations in which cer-
tain violations are not even harmful.

All of those notions do only consider the control-flow structure of
a process model, however. This poses a problem, taking into account
the fact that with the recent release and the ongoing development
of the Decision Model and Notation (DMN) standard, an increasing
number of process models are complemented by respective decision
models. DMN is a dedicated modeling language for decision logic
and separates the concerns of process and decision logic into two
different models, process and decision models respectively.

Hence, this thesis is concerned with the development of decision-
aware soundness notions, i.e., notions of soundness that build upon
the original soundness ideas for process models, but additionally take
into account complementary decision models. Similar to the various
notions of workflow net soundness, this thesis investigates different
notions of decision soundness that can be applied depending on the
desired degree of restrictiveness. Since decision tables are a standard-
ized means of DMN to represent decision logic, this thesis also puts
special focus on decision tables, discussing how they can be trans-
lated into an unambiguous format and how their possible output
values can be efficiently determined.

Moreover, a prototypical implementation is described that supports
checking a basic version of decision soundness. The decision sound-
ness notions were also empirically evaluated on models from partic-
ipants of an online course on process and decision modeling as well
as from a process management project of a large insurance company.
The evaluation demonstrates that violations of decision soundness
indeed occur and can be detected with our approach.

iii

Z U S A M M E N FA S S U N G

Das Prozessmanagement ist eine etablierte Methode für Unterneh-
men zur Verwaltung und Unterstützung ihrer Geschäftsprozesse. Sol-
che Prozesse werden typischerweise durch graphische Modelle dar-
gestellt, welche mit Modellierungssprachen wie etwa der Business
Process Model and Notation (BPMN) erstellt werden.

Da Prozessmodelle nicht nur der Dokumentation der Prozesse die-
nen, sondern auch die Grundlage für deren Implementierung und
Automatisierung sind, müssen sie bestimmte Korrektheitsanforderun-
gen erfüllen. In dieser Hinsicht wurde der Begriff der Soundness ei-
nes Workflow-Netzes entwickelt, welcher auch auf BPMN-Prozessmo-
delle angewendet werden kann, um deren Korrektheit zu prüfen. Da
die ursprünglichen Soundness-Kriterien sehr restriktiv bezüglich des
Verhaltens des Modells sind, wurden zudem Varianten des Soundness-
Begriffs entwickelt. Diese können in Situationen verwendet werden,
in denen bestimmte Verletzungen der Kriterien tolerabel sind.

Diese Soundness-Begriffe berücksichtigen allerdings ausschließlich
den Kontrollfluss der Prozessmodelle. Dies stellt ein Problem dar,
weil viele Prozessmodelle heutzutage durch Entscheidungsmodelle
ergänzt werden. In diesem Kontext ist die Decision Model and Nota-
tion (DMN) eine dedizierte Sprache zur Modellierung von Entschei-
dungen und unterstüzt die Trennung von Kontrollfluss- und Entschei-
dungslogik.

Die vorliegende Dissertation befasst sich daher mit der Entwick-
lung von erweiterten Soundness-Begriffen, die sowohl Prozess- als
auch Entscheidungsmodelle berücksichtigen. Ähnlich zu den beste-
henden Soundness-Varianten, werden in dieser Arbeit Varianten des
erweiterten Soundness-Begriffs untersucht, die je nach gewünschtem
Restriktionsgrad angewendet werden können. Da Entscheidungsta-
bellen eine in der DMN standadisierte Form sind, um Entscheidungs-
logik auszudrücken, fokussiert sich diese Arbeit inbesondere auf Ent-
scheidungstabellen. So wird diskutiert wie DMN-Tabellen in ein ein-
deutiges Format übersetzt werden können und wie sich deren mögli-
chen Rückgabewerte effizient bestimmen lassen.

Ferner beschreibt die Arbeit eine prototypische Implementierung,
die das Prüfen einer elementaren Variante des erweiterten Soundness-
Begriffs erlaubt. Die Begriffe wurden außerdem empirisch evaluiert.
Dazu dienten zum einen Modelle von Teilnehmern eines Online-Kur-
ses zur Prozess- und Entscheidungsmodellierung. Zum anderen wur-
den Modelle eines Versicherungsunternehmens analysiert. Die Evalu-
ierung zeigt, das Verstöße gegen den erweiterten Soundness-Begriff
in der Tat auftreten und durch den hier beschriebenen Ansatz erkannt
werden können.

iv

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

1. Kimon Batoulis, Andreas Meyer, Ekaterina Bazhenova, Gero
Decker, and Mathias Weske. “Extracting Decision Logic from
Process Models.” In: Advanced Information Systems Engineering.
Ed. by Jelena Zdravkovic, Marite Kirikova, and Paul Johannes-
son. Cham: Springer International Publishing, 2015, pp. 349–366.
isbn: 978-3-319-19069-3.

2. Kimon Batoulis, Stephan Haarmann, and Mathias Weske. “Var-
ious Notions of Soundness for Decision-Aware Business Pro-
cesses.” In: Conceptual Modeling. Ed. by Heinrich C. Mayr, Gian-
carlo Guizzardi, Hui Ma, and Oscar Pastor. Cham: Springer In-
ternational Publishing, 2017, pp. 403–418. isbn: 978-3-319-69904-
2.

3. Kimon Batoulis, Alexey Nesterenko, Guenther Repitsch, and
Mathias Weske. “Decision Management in the Insurance Indus-
try: Standards and Tools.” In: Proceedings of the BPM 2017 Indus-
try Track co-located with the 15th International Conference on Busi-
ness Process Management (BPM 2017), Barcelona, Spain, September
10-15, 2017. 2017, pp. 52–63.

4. Kimon Batoulis and Mathias Weske. “A Tool for Checking Sound-
ness of Decision-Aware Business Processes.” In: Proceedings of
the BPM Demo Track and BPM Dissertation Award co-located with
15th International Conference on Business Process Modeling (BPM
2017), Barcelona, Spain, September 13, 2017. 2017.

5. Kimon Batoulis and Mathias Weske. “Soundness of Decision-
Aware Business Processes.” In: Business Process Management Fo-
rum. Ed. by Josep Carmona, Gregor Engels, and Akhil Kumar.
Cham: Springer International Publishing, 2017, pp. 106–124. isbn:
978-3-319-65015-9.

6. Kimon Batoulis and Mathias Weske. “A Tool for the Uniqueifi-
cation of DMN Decision Tables.” In: Proceedings of the Disserta-
tion Award, Demonstration, and Industrial Track at BPM 2018 co-
located with 16th International Conference on Business Process Man-
agement (BPM 2018), Sydney, Australia, September 9-14, 2018. 2018,
pp. 116–119.

v

7. Kimon Batoulis and Mathias Weske. “Disambiguation of DMN
Decision Tables.” In: Business Information Systems. Ed. by Witold
Abramowicz and Adrian Paschke. Cham: Springer International
Publishing, 2018, pp. 236–249. isbn: 978-3-319-93931-5. (Best Pa-
per Award).

8. Stephan Haarmann, Kimon Batoulis, and Mathias Weske. “Com-
pliance Checking for Decision-Aware Process Models.” In: Busi-
ness Process Management Workshops - BPM 2018 International Work-
shops, Sydney, NSW, Australia, September 9-14, 2018, Revised Pa-
pers. 2018, pp. 494–506.

In addition to above publications, the author of this thesis was also
involved in the following research indirectly contributing to the the-
sis:

9. Kimon Batoulis, Rami-Habib Eid-Sabbagh, Henrik Leopold, Ma-
thias Weske, and Jan Mendling. “Automatic Business Process
Model Translation with BPMT.” In: Advanced Information Sys-
tems Engineering Workshops. Ed. by Xavier Franch and Pnina Sof-
fer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 217–
228. isbn: 978-3-642-38490-5.

10. Kimon Batoulis. “Proactive Decision Support During Business
Process Execution.” In: Joint Proceedings of the 1st International
Workshop on Modeling Inter-Organizational Processes and 1st In-
ternational Workshop on Event Modeling and Processing in Busi-
ness Process Management co-located with Modellierung 2014, Vienna,
Austria, March 19, 2014. 2014, pp. 35–41.

11. Andreas Meyer, Luise Pufahl, Kimon Batoulis, Sebastian Kruse,
Thorben Lindhauer, Thomas Stoff, Dirk Fahland, and Mathias
Weske. “Automating Data Exchange in Process Choreographies.”
In: Advanced Information Systems Engineering. Ed. by Matthias
Jarke, John Mylopoulos, Christoph Quix, Colette Rolland, Yan-
nis Manolopoulos, Haralambos Mouratidis, and Jennifer Horkoff.
Cham: Springer International Publishing, 2014, pp. 316–331. isbn:
978-3-319-07881-6.

12. Andreas Meyer, Luise Pufahl, Kimon Batoulis, Dirk Fahland,
and Mathias Weske. “Automating data exchange in process cho-
reographies.” In: Information Systems 53 (2015), pp. 296–329. issn:
0306-4379.

13. Han van der Aa, Henrik Leopold, Kimon Batoulis, Mathias Wes-
ke, and Hajo A. Reijers. “Integrated Process and Decision Mod-
eling for Data-Driven Processes.” In: Business Process Manage-
ment Workshops. Ed. by Manfred Reichert and Hajo A. Reijers.
Cham: Springer International Publishing, 2016, pp. 405–417. isbn:

978-3-319-42887-1.

vi

14. Kimon Batoulis, Anne Baumgraß, Nico Herzberg, and Mathias
Weske. “Enabling Dynamic Decision Making in Business Pro-
cesses with DMN.” In: Business Process Management Workshops.
Ed. by Manfred Reichert and Hajo A. Reijers. Cham: Springer In-
ternational Publishing, 2016, pp. 418–431. isbn: 978-3-319-42887-
1.

15. Adriatik Nikaj, Kimon Batoulis, and Mathias Weske. “REST-
Enabled Decision Making in Business Process Choreographies.”
In: Service-Oriented Computing. Ed. by Quan Z. Sheng, Eleni Strou-
lia, Samir Tata, and Sami Bhiri. Cham: Springer International
Publishing, 2016, pp. 547–554. isbn: 978-3-319-46295-0.

16. Luise Pufahl, Sankalita Mandal, Kimon Batoulis, and Mathias
Weske. “Re-evaluation of Decisions Based on Events.” In: Enter-
prise, Business-Process and Information Systems Modeling. Ed. by
Iris Reinhartz-Berger, Jens Gulden, Selmin Nurcan, Wided Gué-
dria, and Palash Bera. Cham: Springer International Publishing,
2017, pp. 68–84. isbn: 978-3-319-59466-8.

17. Stephan Haarmann, Kimon Batoulis, Adriatik Nikaj, and Math-
ias Weske. “DMN Decision Execution on the Ethereum Block-
chain.” In: Advanced Information Systems Engineering. Ed. by John
Krogstie and Hajo A. Reijers. Cham: Springer International Pub-
lishing, 2018, pp. 327–341. isbn: 978-3-319-91563-0.

18. Alaaeddine Yousfi, Kimon Batoulis, and Mathias Weske. “Achiev-
ing Business Process Improvement via Ubiquitous Decision-Aware
Business Processes.” In: ACM Trans. Internet Technol. 19.1 (Jan.
2019), 14:1–14:19. issn: 1533-5399.

vii

A C K N O W L E D G M E N T S

This dissertation is as much a work of mine as it is of my supervisor
Mathias Weske, who through his guidance and critical feedback stim-
ulated thoughts and ideas that would have otherwise stayed dormant.
I am grateful for the huge variety of experiences I could gain during
my time as a research assistant in his group.

Many thanks to Marco Montali and Jan Vanthienen for reviewing
this thesis. Their work and activity in the BPM community have been
an inspiration for me and served as prime examples for excellent
research.

Writing a PhD thesis is a decision that is not made easily. I was
lucky to be introduced to scientific work by Rami Eid-Sabbagh and
Henrik Leopold who co-authored my first paper with me and showed
me the beauty of BPM research.

Although this thesis has a single author, there are many fine re-
searchers whose input and feedback were vital for the completion of
this work. I especially want to express my gratitude to my colleagues
Stephan Haarmann and Adriatik Nikaj. Stephan for his constant in-
terest in and contribution to my research work during his time as a
master’s student, and for his consistent availability for discussions as
a colleague at BPT. Tiku for his undying interest and support in the
most intricate problems of my research. His patience and altruism are
fascinating.

I’d like to thank all of my (ex-)colleagues for creating a great at-
mosphere at the BPT group. Kiarash Diba, Stephan Haarmann, Sven
Ihde, Jan Ladleif, Luise Pufahl and Simon Remy for proofreading
this thesis. Sankalita Mandal and Tiku for sharing the suffering of
completing a PhD thesis.

Finally, I want to express my appreciation for my family and friends.
My parents — they have helped me make lots of decisions. Some of
them wrong, many of them right.

ix

C O N T E N T S

i background

1 introduction 3

1.1 Research Objective 4

1.2 Contributions 4

1.3 Structure of the Thesis 6

2 foundations and related work 9

2.1 Business Process Management 9

2.1.1 Business Process Lifecycle 9

2.1.2 Business Process Models 11

2.1.3 Verification of Business Process Models 23

2.2 Business Decision Management 29

2.2.1 DMN Decision Models 30

2.2.2 DMN Decision Table Hit Policies 32

2.2.3 Formalization of DMN Decision Models 33

2.2.4 Decision Table Analysis 34

2.3 Integration of Process and Decision Management 35

2.4 Related Work 38

2.4.1 Integration of Processes and Rules 38

2.4.2 Integration of Processes and Decisions 40

2.4.3 DMN Decision Model Analysis 43

2.4.4 Process Verification with Data 44

ii formal framework for processes and decisions

3 on the separation of concerns of processes and

decisions 49

3.1 Process and Decision Modeling in the Real World 49

3.2 Control-Flow-Based Decision Patterns 51

3.2.1 P1—Single Split Gateway 52

3.2.2 P2—Sequence of Split Gateways (Decision Tree) 53

3.2.3 P3—Sequence of Split Gateways Separated by
an Activity 54

3.3 Statistics about the Decision Patterns 55

4 input-output behavior of dmn decision tables 59

4.1 Problem Statement 59

4.2 Decision Table Uniqueification 60

4.3 Decision Tables as Functions 66

4.4 Maximum Number of Outputs of a Decision Table 68

5 formalizing decision-aware process models 75

5.1 Simple Colored Petri Net Mapping 75

5.1.1 Merging Decision Tables 75

5.1.2 Mapping Decision Fragments to CPNs 77

5.2 Abstract Colored Petri Net Mapping 78

5.2.1 Symbolic Abstraction 78

xi

xii contents

5.2.2 Mapping Decision Fragments to Abstract CPNs 81

5.2.3 Assumptions 84

5.3 Colored Workflow Nets and Their Soundness 85

5.4 Concurrent Execution of Decision Fragments 91

5.5 Summary and Discussion 92

iii soundness of decision-aware business processes

6 stateless decision soundness 97

6.1 Motivation and Problem Statement 97

6.2 Structural Consistency 98

6.3 Behavioral Consistency 99

6.3.1 Decision Deadlock Freedom 99

6.3.2 Dead Branch Absence 101

6.4 Stateless Decision-aware Soundness 102

6.5 Discussion and Shortcomings 103

7 state-based decision soundness 105

7.1 Using State Information for Soundness Checking 105

7.2 State-based Decision Deadlock Freedom 109

7.3 State-based Dead Branch Absence 111

8 a taxonomy for decision soundness 113

8.1 Relationship between the Stateless and State-based De-
cision Soundness Criteria 113

8.1.1 DDF =⇒ SB-DDF 113

8.1.2 SB-DBA =⇒ DBA 114

8.2 Various Notions of Decision Soundness 115

8.2.1 Decision Soundness 115

8.2.2 Relaxed Decision Soundness 116

8.2.3 Weak Decision Soundness 117

8.2.4 Easy Decision Soundness 118

8.2.5 Lazy Decision Soundness 119

8.3 Summary and Discussion 120

iv evaluation and conclusion

9 evaluation 125

9.1 Prototypical Implementation 125

9.1.1 Extended Camunda Tool 125

9.1.2 Runtime Analysis 126

9.2 Empirical Evaluations 130

9.2.1 Academic Models 131

9.2.2 Industry Use Case 134

9.3 Compliance Checking of Decision-aware Processes 136

10 conclusion 139

10.1 Summary 139

10.2 Limitations and Future Work 140

bibliography 143

L I S T O F F I G U R E S

Figure 1.1 Overview of the contributions of this thesis 5

Figure 2.1 Business process life cycle (cf. [53, p. 12]) 10

Figure 2.2 Petri net consisting of four places and four tran-
sitions 12

Figure 2.3 Reachability graph for the Petri net shown in
Figure 2.2 13

Figure 2.4 A simple colored Petri net checking the gender
of a person 16

Figure 2.5 BPMN notational elements for business pro-
cess diagrams considered in this thesis 19

Figure 2.6 Train ticket booking process derived from book-
ing tickets with Deutsche Bahn, modeled as a
BPMN process diagram 22

Figure 2.7 UML class diagram for the Booking data object
in Figure 2.6 22

Figure 2.8 Mapping of BPMN task, events and gateways
to Petri nets (cf. [30]) 24

Figure 2.9 A workflow net that is not sound, but relaxed
sound 26

Figure 2.10 A weak sound workflow net 26

Figure 2.11 A workflow net that is neither sound, nor weak
sound, nor relaxed sound, but lazy sound 27

Figure 2.12 A workflow net that is only easy sound 28

Figure 2.13 Various notions of soundness and their rela-
tionships [44] 28

Figure 2.14 Reachability graph for the Petri net shown in
Figure 2.9 29

Figure 2.15 An abstract DMN decision requirements dia-
gram 31

Figure 2.16 An example of a DMN decision table 31

Figure 2.17 DMN decision table to determine a credit rat-
ing 35

Figure 2.18 Decision table as a set of hyperrectangles cor-
responding to the rules in the table in Figure 2.17 35

Figure 2.19 An abstract decision fragment conforming to
Definition 20 36

Figure 2.20 Decision model referenced by the task Manage
discount in Figure 2.6 37

Figure 2.21 Decision model referenced by the task Manage
special offer in Figure 2.6 37

xiii

xiv list of figures

Figure 2.22 Decision task directly followed by another task
reading the output of the decision 37

Figure 2.23 Classification of related work 38

Figure 3.1 Misuse of BPMN for decision logic modeling 50

Figure 3.2 Process fragment representing a split gateway
with more than 2 outgoing edges 52

Figure 3.3 Process fragment representing a sequence of
split gateways that represents a decision tree 53

Figure 3.4 Process fragment representing a sequence of
split gateways separated by an activity 55

Figure 3.5 Frequencies of patterns P1–P3 in real world
process models 56

Figure 4.1 DMN decision table to determine a credit rat-
ing 59

Figure 4.2 Decision table as a set of hyperrectangles cor-
responding to the rules of the table in Figure 4.1 61

Figure 4.3 Line being swept through the second dimen-
sion in the interval [0, 10) 63

Figure 4.4 Line being swept through the second dimen-
sion in the interval [10, 20) 63

Figure 4.5 Set of matchingRules found so far before and
after merge 64

Figure 4.6 Decision table as a set of hyperrectangles 66

Figure 4.7 Uniqueified table derived from the table in Fig-
ure 4.1 66

Figure 4.8 Decision table with three rules and two differ-
ent output values 67

Figure 4.9 Example of a decision table with one input col-
umn, and its geometric interpretation 69

Figure 4.10 Another example of a decision table with one
input column, and its geometric interpretation 69

Figure 4.11 Induction base case 70

Figure 4.12 Induction hypothesis 70

Figure 4.13 Induction step—Option 1 71

Figure 4.14 Induction step—Option 2 71

Figure 4.15 Induction step—Option 3 72

Figure 4.16 Induction step—Option 4 72

Figure 5.1 Decision requirements diagram with more than
one decision 76

Figure 5.2 Decision tables associated with the decisions
in Figure 5.1 76

Figure 5.3 Equivalent decision model with merged deci-
sion tables 76

Figure 5.4 Example of a mapping of a decision task that
references the decision table in 5.4a to a col-
ored Petri net 77

list of figures xv

Figure 5.5 Colored Petri net corresponding to the table in
Figure 5.4a, employing symbolic abstraction 80

Figure 5.6 Reachability graph of the colored Petri net in
Figure 5.5 81

Figure 5.7 A generic decision fragment with its associated
decision table 82

Figure 5.8 Colored Petri net corresponding to the deci-
sion fragment in Figure 5.7, employing sym-
bolic abstraction 83

Figure 5.9 Decision-aware process model that references
the table in Figure 5.4a and that can be trans-
lated to a colored workflow net 86

Figure 5.10 Colored Petri net mapping of the decision-aware
process model in Figure 5.9 89

Figure 5.11 Reachability graph of colored workflow net in
Figure 5.10 90

Figure 5.12 Decision tasks being executed concurrently 91

Figure 5.13 Partial mapping of the process model in Fig-
ure 5.12 92

Figure 6.1 Train ticket booking process derived from book-
ing tickets with Deutsche Bahn, modeled as a
BPMN process diagram 97

Figure 6.2 Decision tables referenced by the decision tasks
of the process model in Figure 6.1 97

Figure 6.3 Different possibilities of covering table outputs
by edge conditions 101

Figure 6.4 A decision fragment that violates the dead branch
absence criterion 102

Figure 6.5 Decision task directly followed by another task
reading the output of the decision 103

Figure 7.1 Train ticket booking process derived from book-
ing tickets with Deutsche Bahn, repeated for
convenience 105

Figure 7.2 Decision tables referenced by the decision tasks
of the process model in Figure 7.1, repeated for
convenience 105

Figure 7.3 Simplified version of the process model in Fig-
ure 7.1 106

Figure 7.4 Colored Petri net mapping of the decision-aware
process model in Figure 7.3 107

Figure 7.5 Reachability graph of the colored Petri net in
Figure 7.4 108

Figure 7.6 Sketch of a CPN decision fragment to visualize
Definitions 34 and 35 110

Figure 7.7 Adapted version of the process model in Fig-
ure 7.3 111

Figure 8.1 Various notions of (decision) soundness 115

Figure 8.2 Non-decision sound variant of the process model
in Figure 7.3 116

Figure 8.3 Decision table called by Manage special offer 116

Figure 8.4 Relaxed decision sound variant of the process
model in Figure 7.3 116

Figure 8.5 Easy decision sound variant of the process model
in Figure 7.3 119

Figure 8.6 Decision tables referenced by the decision tasks
of the process model in Figure 8.5 119

Figure 8.7 Lazy decision sound variant of the process model
in Figure 7.3 120

Figure 8.8 Various notions of decision soundness anno-
tated with their respective conditions as de-
fined in Section 8.2 120

Figure 9.1 View of the tool after checking soundness of
the displayed decision-aware process model 127

Figure 9.2 View of the tool after uniqueifying the table
shown in Figure 9.1 128

Figure 9.3 Averaged execution times in seconds for a set
of 1000 multi-hit tables with up to 50 rows and
30 columns 129

Figure 9.4 Total number of overlaps found in the tables 130

Figure 9.5 Modeling exercise given to openHPI course par-
ticipants 131

Figure 9.6 Model for the billing process described in Fig-
ure 9.5 132

Figure 9.7 Decision table for the billing decision described
in Figure 9.5 132

Figure 9.8 Submission by a course participant for the mod-
eling task described in Figure 9.5 133

Figure 9.9 Decision table associated with the decision frag-
ment in Figure 9.8 133

Figure 9.10 Example of decision-aware process model found
in the analyzed Pega project 135

Figure 9.11 Decision table associated with the gateway in
Figure 9.10 135

Figure 9.12 Example for a Pega decision table taken from
the analyzed project 135

Figure 9.13 Number of decision tables of the Pega project
that are complete according to DMN (stateless)
and Pega (state-based) 136

Figure 9.14 The train ticket booking process model, repeated
for convenience 137

xvi

L I S T O F TA B L E S

Table 2.1 Comparison of the (in)consistency criteria de-
scribed in [103] and in this thesis (based on [77,
80]) 43

Table 3.1 Statistics on the usage of split gateways in the
analyzed model collections 56

Table 9.1 Number and percentage of sound and unsound
decision-aware process models designed by the
MOOC course participants 133

A C R O N Y M S

BPM Business process management

BPMN Business Process Model and Notation

BR Business rule

CMMN Case Management Model and Notation

CPN Colored Petri net

DBA Dead branch absence

DDF Decision deadlock freedom

DMN Decision Model and Notation

DPN Data Petri net

DRD Decision requirements diagram

FEEL Friendly Enough Expression Language

MOOC Massive open online course

OMG Object Management Group

PAIS Process-aware information system

SB-DBA State-based dead branch absence

SB-DDF State-based decision deadlock freedom

SBVR Semantics of Business Vocabulary and Rules

xvii

xviii acronyms

S-FEEL Simplified Friendly Enough Expression Language

SRML Simple Rule Markup Language

UML Unified Modeling Language

WFD net Workflow net with data

Part I

B A C K G R O U N D

1
I N T R O D U C T I O N

Business process management (BPM) has become a major topic, for
academia and industry alike [53]. BPM’s core artifacts are business
processes, which it aims to design, analyze, execute and improve.
Processes are everywhere and every organization has processes [100].
The fundamental components of a business process are its activities
that are executed to achieve a certain business objective [13]. At the
same time, most processes do not simply consist of a single stream
of activities. Activities may be executed concurrently and there may
be points in the process at which one of several alternative branches
must be chosen in order to continue. This choice is the outcome of
a decision, which is “the act of choosing among multiple possible
options” [114, p. 28].

The industry standard for designing business process models is
the Business Process Model and Notation (BPMN) [59]. This model-
ing language is, however, not suited to represent decision logic as it
focusses on the activities that need to be performed and not the de-
cisions to be made. Traditionally, decision logic could be maintained
in business rules—simple if-then statements [52]. Unfortunately, their
interplay with process models was mostly left unclear. In this regard,
the Decision Model and Notation (DMN) [114] offers an alternative
in that it is a decision modeling language explicitly designed to be
used complementary to BPMN to express a process’ decision logic.
This conjunctive use of process and decision models led to the notion
of decision-aware business processes [35].

The prime focus of a process model, however, has always been the
control-flow perspective, its documentation, implementation and au-
tomation. In particular with respect to implementation and automa-
tion, special attention has to be given to the correctness of the process
model. Therefore, the notion of soundness of workflow nets was de-
veloped, that can be applied to process models in order to verify their
correctness [16]. The fact that this notion only considers the control-
flow perspective poses a problem considering the rising interest in
and use of decision-aware process models. This is because decision
models have an influence on the control-flow of the process and as
a result also on its soundness or correctness. For example, a decision
model can cause a process to deadlock, making it impossible to ter-
minate the process properly. Also, it may lead to dead branches in
the process, so that the activities that are intended for those branches
can never be executed.

3

4 introduction

Hence, the existing soundness notion has to be lifted to the setting
of decision-aware process models to allow for a sound integration
of process and decision models. Existing approaches such as [103]
tackling a consistent integration of the two kinds of models fail to
cover the entire spectrum of soundness and do not provide a formal
verification method, whereas the work described in [107] is limited to
a certain type of DMN decision tables.

1.1 research objective

The objective of this thesis is to provide a formal basis and a method
for the verification of the soundness of a process model that is as-
sociated with one or more decision models. This requires the defi-
nition of a corresponding notion of soundness of a decision-aware
process model, also called decision soundness, and a formalization of
decision-aware process models such that decision soundness can be
formally verified.

This thesis also acknowledges the fact that decision models tend
to be reused by multiple process models of an organization, making
the same or similar decisions during execution. Therefore, a decision
model will not perfectly fit with every process model it is associated
with. In other words, it may contain logic that is relevant for some
processes but not for others. Accordingly, besides the basic notion
of decision soundness, it is necessary to formulate various relaxed
notions of decision soundness, such that a decision-aware process
model can be denoted decision sound for various situations in which
it does not perfectly fit with the decision model.

1.2 contributions

In reference to the research objective delineated above, this section
explains the contributions of this thesis. Overall, the contribution is a
set of soundness notions of decision-aware business process models
in conjunction with a method to verify those notions for a given pro-
cess model. This main contribution entails several more fine-grained
contributions which are described in the following along Figure 1.1.

• The need for a separation of processes and decisions: Based on the
analysis of nearly 1000 real world process models, it is revealed
that decision logic is often hard-coded in process models via
three frequently occurring control-flow-based decision patterns.
We argue that this violates the separation of concerns paradigm,
substantiating the need to express a process’ decision logic in a
dedicated decision model. This is illustrated at the top of Fig-
ure 1.1, where a process with decisions should be modeled as a
process and decision model, rather than a process model alone.

1.2 contributions 5

decision-aware
(classical) soundness

decision-aware
relaxed soundness

decision-aware
weak soundness

decision-aware
easy soundness

decision-aware
lazy soundness

UNIQUE

Figure 1.1: Overview of the contributions of this thesis

6 introduction

• Uniqueification of DMN decision tables: In accordance with the
recognition that decision tables are the standard means of ex-
pressing decision logic and the fact that a process communi-
cates with decisions via their inputs and outputs, we conduct
an analysis of the input/output behavior of DMN decision ta-
bles. As a result, we describe an algorithm that transforms any
DMN table into a standardized (or “uniqueified”) representa-
tion that not only increases understandability of the table but
also sets the foundations for analyzing that table in association
with a process model in regard to soundness. Moreover, we dis-
cuss the maximum number of outputs of a DMN table. This
is illustrated in Figure 1.1 by the small arrow leading from the
decision model at the top to the table labeled unique.

• Formalization of decision-aware process models: In order to verify
the soundness of a process model associated with a decision
model, an appropriate formalization is presented. This also in-
cludes an abstraction technique to deal with the fact that includ-
ing decisions in the verification leads to infinitely many possible
states of the process. This is illustrated in Figure 1.1 by the two
arrows leading from the process model and the decision table
to the colored Petri net.

• Basic decision soundness criteria: We define basic structural and
behavioral criteria that can actually be checked directly on the
process model, without the need to analyze the formal repre-
sentation of the model as a colored Petri net.

• Various notions of decision soundness: Different variations and com-
binations of the decision soundness criteria are defined. This
leads to different notions of decision soundness. Their relation-
ship is shown and we demonstrate how to verify them based on
the colored Petri net representation of the decision-aware pro-
cess model. This is illustrated in Figure 1.1 by the arrow leading
from the colored Petri net to the graph that shows the different
decision soundness notions and their relationships.

1.3 structure of the thesis

This thesis is divided into four parts, whose contents will be de-
scribed in the following:

part i. After having described the research objective and contribu-
tions, the first part of this thesis continues with laying the foun-
dations of the presented work in Chapter 2. This includes the de-
scription of business process management and business decision
management and their relationship. Additionally, process and de-
cision modeling languages are introduced alongside the running

1.3 structure of the thesis 7

example of this thesis. Moreover, process and decision analysis
techniques are described, and the part concludes with a detailed
discussion of related work.

part ii. The first main part of this work builds a formal framework
for processes and decisions and their analysis. It starts off by pre-
senting the empirical analysis of a large collection of real world
process models in Chapter 3. The analysis shows that process
models tend to violate the separation of concerns by encoding de-
cision logic using three frequently occurring control-flow-based
decision patterns.
Chapter 4 deals with the input/output behavior of DMN decision
tables. It presents an algorithm that transforms any DMN table
into a standardized/uniqueified table, which is a prerequisite for
decision soundness analysis in general and for the formalization
of a decision-aware process model in particular. Moreover, it dis-
cusses how decision tables can be interpreted as functions and
proves what the maximum number of outputs of a table with
one input column is.
Finally, Chapter 5 shows how a decision-aware process model
can be formalized as a colored Petri net, employing an abstrac-
tion technique to deal with the infinity introduced by including
decisions. Additionally, colored workflow nets and their sound-
ness are defined.

part iii. The second main part of this thesis introduces the soundness
notions for decision-aware process models. In Chapter 6 basic cri-
teria for structural and behavioral consistency between a process
and a decision model are defined. The basic behavioral criteria
have certain limitations, especially in the light of the reusability
of decision models.
Therefore, in Chapter 7 those criteria are refined to take the con-
text of the process model into account with which a decision
model is associated. Moreover it is shown how the refined cri-
teria can be verified formally.
Lastly, in Chapter 8 different variations and combinations of the
decision soundness criteria are defined and organized into a tax-
onomy that also specifies their relationships.

part iv. The last part of this work is mainly concerned with the eval-
uation of the concepts and ideas presented in this thesis in Chap-
ter 9. First, a prototypical implementation for checking the basic
behavioral decision soundness criteria is described and its per-
formance is evaluated. Afterwards, the decision soundness cri-
teria are empirically evaluated based on two real world sets of
decision-aware process models. Finally, we show that the formal-
ization of decision-aware process models can also be applied to

8 introduction

another kind of verification, namely compliance checking.
Chapter 10 concludes the thesis with a summary and a discussion
of limitations and potential directions for future work.

2
F O U N D AT I O N S A N D R E L AT E D W O R K

This chapter provides the background of this thesis and establishes
the formal concepts required for this work. The topic of Section 2.1
is business process management, including the description of various
process modeling languages and the verification of the correspond-
ing process models. Afterwards, business decision management is
addressed in Section 2.2, introducing decision models, their formal-
ization and the analysis of decision tables. Section 2.3 discusses the
integration of process and decision management, while Section 2.4
concludes this chapter with a discourse on related work.

2.1 business process management

Business process management (BPM) is an instrument to achieve a
process oriented view of an organization’s operations. Since organi-
zations run a business, BPM aims to arrange these operations into
business processes. Business processes are defined in many different
ways [20, 46, 53, 90, 100]. Their common denominator is the concept
of a set of activities performed to achieve a business goal. Therefore,
the definition given in [53, p. 5] by Weske provides a good summary
by stating that a business process “consists of a set of activities that
are performed in coordination in an organizational and technical en-
vironment” to “jointly realize a business goal”.

2.1.1 Business Process Lifecycle

Since business processes are executed in and interact with the real
world which is subject to continuous change, the business processes
themselves also need to be adapted continuously. This constant adap-
tation can be described by a cyclic process called business process
lifecycle which is illustrated in Figure 2.1. According to this life cycle
each business process repeatedly traverses four phases, each of which
consists of different activities conducted regarding the process.

The first phase is the design and analysis phase. The key activity in
this phase is the scoping of business processes, since usually an or-
ganization is already conducting many activities but the correlation
of these activities to well defined business processes is not clear. The
identified business processes can then be represented in correspond-
ing process models. This enables the documentation, verification and
validation of the processes and their models. Since process models
are primarily graphical models, they are the basis to exchange infor-

9

10 foundations and related work

Evaluation

Design &
Analysis

Configuration

Enactment

Figure 2.1: Business process life cycle (cf. [53, p. 12])

mation and knowledge about them. Furthermore, process models can
be verified for certain correctness properties using formal techniques.
For example, it can be asserted that the model and therefore the un-
derlying process is free of deadlocks. Finally, the model should be
designed in such a way that the process achieves the intended objec-
tive. Hence, validation techniques such as simulation can be applied
to find out how the process would behave in the real world.

Having completed the design and analysis phase the business pro-
cess enters the configuration phase. In this phase the business process
is implemented in the organization. The implementation may or may
not be realized in an IT system. In a simple case the process may just
be implemented by assigning personnel to carry out the necessary
steps in the intended order. More advanced implementations may
have IT systems in place that support the execution of the business
process. Even a so called process-aware information system (PAIS)
may be used. These are systems that are more oriented towards pro-
cesses than towards data, the latter having been the common case tra-
ditionally [53]. A typical PAIS supports the execution of the process
based on its model. For this purpose, the graphical model must be
enhanced with additional technical information such as a mechanism
to allocate resources to activities and the handling of data operations
and service calls.

In the enactment phase the business process is finally executed in its
environment. In the course of this, execution data will be produced.
This data may be used to provide monitoring information on the cur-
rent state of the process during its enactment. For example, the pro-
cess model can be enhanced to visualize which activity is currently
being executed or how much time each activity took so far. Also, the
collected data can be utilized in the next phase of the life cycle.

The last phase is concerned with the evaluation of the business pro-
cess. Since there is always a gap between the process designed as a
model and the process executed in the real world, analysts can use
the collected execution data to examine if the model and the data
are properly aligned or if there were any deviations. Moreover, bot-

2.1 business process management 11

tlenecks can be identified and eliminated, for example by assigning
more resources to certain tasks or by introducing concurrency.

2.1.2 Business Process Models

According to Stachowiak [3] any model is characterized by three fea-
tures. The mapping feature is given by the fact that every model is
accompanied by an original—the entity being modeled—that may al-
ready exist, be in planning, or just be fictive. The abstraction feature
expresses that the model does not represent every detail of the orig-
inal but simplifies and abstracts in some aspects. Finally, the prag-
matic feature says that the model can replace the original in certain
situations, namely those that the model is made for.

Business process models are no different. They represent business
processes that may or may not be in operation already. They also ab-
stract from the original by not specifying everything in full detail. For
example, they may omit the exact type of document that is updated
during the process (e.g., an Excel sheet). Finally, they can be used for
different purposes such as the documentation of an existing business
process or as a blueprint for the implementation of a planned process.

Over the years, many languages have been designed or used for the
purpose of modeling business processes. A good overview of them is
given in [40]. In the following two sections more detailed descriptions
of Petri nets and BPMN are given.

2.1.2.1 Petri Nets

Petri nets, invented by Carl Adam Petri and fully specified in [1],
are simple yet powerful graphs originally designed to describe chem-
ical processes. However, they are also well suited to model business
processes because of their ability to represent concurrency. Moreover,
they have a precise mathematical formalization making them avail-
able for correctness verification [15] and other analysis techniques [42,
45].

A Petri net is a bipartite graph composed of places, transitions, and
directed edges between the two. Places are represented as circles and
transitions as rectangles. From this, the simple definition of a Petri
net follows (based on [72]):

Definition 1 (Petri net). A Petri net is a triplet N = (P, T, F) where

• P is a finite set of places,

• T is a finite set of transitions, with T ∩ P = ∅, and

• F ⊆ (P× T) ∪ (T × P) is a flow relation.

�

12 foundations and related work

For any transition t ∈ T, the input places of t are denoted by
•t = {p | (p, t) ∈ F}, whereas its output places are given by t• =

{p | (t, p) ∈ F}. Places can passively hold tokens, while transitions
actively consume tokens from their input places and produce tokens
on their output places. Such tokens are represented by black circles.

p1
t1

t3

p2

p3

t2

t4

p4

Figure 2.2: Petri net consisting of four places and four transitions

Figure 2.2 shows a Petri net with four places and four transitions.
Place p1 holds a token and is the input place of transition t1, whereas
places p2 and p3 are the output places of t1.

Petri nets can represent the states and state transitions of a sys-
tem. The state is given by the distribution of tokens across the places,
called the marking of the Petri net. State transitions are achieved by
the firing of transitions. A transition can fire as soon as it is enabled,
which requires that there is a token in every input place of that tran-
sition. Therefore, the input places of a transition can be interpreted
as conditions that are fulfilled as soon as the places contain a token.
Upon firing, the transition consumes (i.e., removes) one token from
each of its input places and produces one token on each output place.
Given that the transition’s set of input places is not equal to its set of
output places, the marking of the Petri net then changes. With that, a
state transition of the underlying system is represented.

Formally, the marking of a Petri net is given by the function M :
P→ N0, assigning a natural number including 0 to each place of the
Petri net. For example, the marking of the Petri net in Figure 2.2 is
given by

∀p ∈ P : M(p) =

1 if p = p1

0 otherwise

This can be abbreviated by simply listing all places that hold at least
one token and indicating the number of tokens of each place as a
corresponding superscript. Therefore, in the example the marking can
be expressed as [p11].

With the help of the marking function M, it is possible to clearly
define the enablement and firing of transitions (based on [72]):

Definition 2 (Petri net transition firing rule). Let N = (P, T, F) be a
Petri net and M a marking. A transition t ∈ T is enabled if and only
if ∀p ∈ •t : M(p) ≥ 1. The firing of t changes the marking M to M′,
denoted as M t−→ M′, where ∀p ∈ •t : M′(p) = M(p)− 1 ∧ ∀p ∈ t• :

2.1 business process management 13

M′(p) = M(p) + 1. Furthermore, M1
∗−→ Mn indicates that there is a

firing sequence of transitions t1, t2, . . . , tn−1 such that Mi
ti−→ Mi+1, for

1 ≤ i < n. The marking M′ is called reachable from M if and only if
M ∗−→ M′. �

Given a Petri net and some initial marking for that net, one can con-
struct a graph consisting of all of its reachable markings, called the
reachability graph. This graph visualizes the possible reachable mark-
ings starting from the initial marking, and which transition of the
Petri net is responsible for changing from one marking to another.
Formally, it is defined as follows (based on [53]):

Definition 3 (Petri net reachability graph). Let N = (P, T, F) be a
Petri net, M a marking, and MI the initial marking. A directed graph
G = (V, E, l) is the reachability graph of N if:

• V = {M | MI
∗−→ M} is the set of vertices corresponding to the

reachable markings of the Petri net,

• E = {(M, t, M′) ∈ V × T × V | M t−→ M′}, is the set of edges
such that there is an edge for each transition leading from one
marking to another, and

• l : E → T, e 7→ e2, where ei, i ∈ N>0 refers to the ith element
of the tuple e, is the labeling function assigning a label to each
edge corresponding to the transition of that edge.

�

Figure 2.3 shows the reachability graph corresponding to the Petri
net in Figure 2.2. For example, it shows that starting from the initial
marking holding a token in p1 it is possible to reach the marking
[p2, p3] by firing transition t1, and that after firing t4 from that mark-
ing, no other marking can be reached.

[p1]

[p2,p3]

[p3]

[p4]

[p2,p4]

t1

t3 t4

t2

t4

Figure 2.3: Reachability graph for the Petri net shown in Figure 2.2

Petri nets can be used as a modeling language for business pro-
cesses. The activities of the process are represented as transitions
in the Petri net and the current state of the process is reflected by

14 foundations and related work

the net’s marking. However, business processes usually have a dis-
tinguished start and end state. To impose this property on the corre-
sponding Petri net, the notion of a workflow net was proposed [15]:

Definition 4 (Workflow net). Let N = (P, T, F) be a Petri net. N is a
workflow net if and only if:

• (∃i ∈ P,¬∃t ∈ T : i ∈ t•) ∧ ∀p ∈ P : (¬∃t ∈ T : p ∈ t•) =⇒
(p = i),

• (∃o ∈ P,¬∃t ∈ T : o ∈ •t) ∧ ∀p ∈ P : (¬∃t ∈ T : p ∈ •t) =⇒
(p = o), and

• the Petri net N′ = (P, T ∪ {t′}, F ∪ {(o, t′), (t′, i)}) is strongly
connected, i. e., every pair of nodes (places and transitions) of
N′ is connected via a directed path.

�

The first two conditions require that the Petri net contains a single
input place and a single output place respectively. This reflects the
fact that the execution of a business process has a distinguished start
condition and a distinguished end result. The third condition makes
sure that the modeled process does not contain conditions or tasks
that are not connected to the rest of the process.

2.1.2.2 Colored Petri Nets

While Petri nets serve as a simple and precise way to express business
processes, they have a major drawback. The tokens that are consumed
and produced by the net’s transitions are not associated with any
types and values, i. e., tokens are indistinguishable from each other.
This can lead to problems if several process instances are represented
in the same Petri net. Also, representing data associated with a pro-
cess instance, such as information about a customer applying for a
credit, is not possible using traditional Petri nets.

Colored Petri nets (CPNs) [11] provide a means to solve these prob-
lems. In colored Petri nets tokens are associated with data types,
called color sets, and they can take on values (or colors) of that color
set. Hence, the enablement of a transition does not only depend on
the presence of tokens in the transition’s input places but also on the
values of those tokens. To specify the values that are required for the
enablement of a transition, a CPN also defines arc expressions for arcs
and guard expressions for transitions. Arc and guard expressions are
associated with variables that have a certain type (or color set) and
that can be bound to the values (or colors) of the tokens in the in-
put places. In this way, only tokens with certain values can enable
and hence be consumed by a transition. Similarly, also the outgoing
arcs of a transition are associated with arc expressions, such that the
values of the tokens produced by the transition can be determined.

2.1 business process management 15

In the following, the concept of a multiset is used. They are defined
as follows (based on [36]):

Definition 5 (Multiset). A multiset is the generalization of a set in
which elements can appear more than once. Given a non-empty set
S, a multiset over S is a function m : S → N0 mapping each element
s ∈ S into a natural number including 0. Then, ∀s ∈ S : m(s) ∈ N0

denotes the multiplicity of s in m. Note that S can be interpreted as a
multiset as well, where each element’s multiplicity is equal to 1. �

Multisets can be written in various ways. For example, given the
set {a, b, c}, a possible multiset is given by m = {(a, 1), (b, 2), (c, 0)},
corresponding to the relational definition of the function m. m can
also be written as {a1, b2, c0}, where the superscript of each element
denotes its multiplicity, or as {a, b, b}.

The usual set operations as well as addition can be defined for
multisets:

Definition 6 (Operations on multisets). Let m1 and m2 be multisets
over the set S.

• m1 ⊆ m2 ⇐⇒ ∀s ∈ S : m1(s) ≤ m2(s),

• m1 ∩m2 = {(s, min(m1(s), m2(s)) | s ∈ S},

• m1 ∪m2 = {(s, max(m1(s), m2(s)) | s ∈ S},

• m1 \m2 = {(s, max(0, m1(s)−m2(s)) | s ∈ S},

• m1 + m2 = {(s, m1(s) + m2(s)) | s ∈ S}.

Note that since sets can be interpreted as multisets, these operations
can also be applied to two sets, or on a set and a multiset. �

Finally, given a set S, the set of all possible multisets over S is de-
noted SMS. Based on [36], colored Petri nets are then formally defined
as follows:

Definition 7 (Colored Petri net). A colored Petri net is a nine-tuple
CPN = (P, T, A, Σ, V, col, grd, ex, init) where

• P is a finite set of places,

• T is a finite set of transitions, with T ∩ P = ∅,

• A ⊆ (P× T) ∪ (T × P) is a set of directed arcs,

• Σ is a finite set of non-empty color sets,

• V is a finite set of typed variables such that the type of each
v ∈ V is given by some color set in Σ,

• col : P → Σ is a color set function assigning a color set to each
place,

16 foundations and related work

• grd : T → Expr is a guard function assigning a guard expres-
sion to each transition t ∈ T, such that the codomain of grd(t)
is the Boolean values,

• ex : A → Expr is an arc expression function assigning an arc
expression to each arc a ∈ A, such that the codomain of ex(a) is
equal to col(p)MS, where p ∈ P is the place connected to a, and

• init : P → Expr is an initialization function that assigns a mul-
tiset of colors to each place p ∈ P, such that the codomain of
init(p) is equal to col(p)MS.

�

Check
gender

p1

p2

p3

(n,g)

[g=male 
g=female]

If g=male
then (n,g)

else empty

If g=female
then (n,g)

else empty

("Helena", female)

("Alex", male)

Figure 2.4: A simple colored Petri net checking the gender of a person

Figure 2.4 shows a very simple colored Petri net that checks the
gender of a person. In this example:

• Σ = {Person, Gender, String}, where Person = String × Gender
and Gender = {male, female},

• V = {n : String, g : Gender},

• ∀p ∈ P : col(p) = Person,

• ∀t ∈ T : grd(t) = g=male∨ g=female,

• ex(a) =



(n, g) if a = (p1, Check gender)

if g=male

then (n,g)

else empty if a = (Check gender, p2)

if g=female

then (n,g)

else empty if a = (Check gender, p3)

2.1 business process management 17

• init(p) =

{(“Helena”, female), (“Alex”, male)} if p = p1

∅ otherwise

To define the enablement and firing of a transition, additional con-
cepts are required, which are the following (based on [36]):

Definition 8 (CPN concepts). Let CPN = (P, T, A, Σ, col, grd, ex, init)
be a colored Petri net.

• M is a marking function assigning a multiset of tokens to each
place p ∈ P, where each token is of type col(p). Therefore, ∀p ∈
P : M(p) ∈ col(p)MS,

• The initial marking MI is given by the initialization function
init(p), for all p ∈ P,

• for all t ∈ T, the variables of transition t are given by Var(t) ⊆
V, consisting of the variables of the guard of t and the variables
of the arc expressions of the arcs connected to t,

• a binding of a transition t is a function b assigning a value b(v)
to each v ∈ Var(t), where b(v) is in the domain of v. The set of
all bindings for a transition t is given by B(t),

• a binding element is a pair (t, b), where t ∈ T and b ∈ B(t). The
set of all binding elements BE(t) for a transition t is defined by
BE(t) = {(t, b) | b ∈ B(t)}. The set of all binding elements in a
CPN is denoted BE.

�

For a given binding element (t, b), grd(t)(b) denotes the result of
evaluating grd(t) for the binding b, yielding either true or false. More-
over, ex(a)(b) is the result of evaluating ex(a) for the binding b, yield-
ing the tokens required to be on place p to satisfy the arc expression
of a under binding b. This leads to the definition of the firing rule of
a CPN transition [36]:

Definition 9 (CPN transition firing rule). Let CPN = (P, T, A, Σ, col,
grd, ex, init) be a colored Petri net and M a marking. A transition
t ∈ T is enabled if there exists a binding b such that the binding
element (t, b) is enabled in a marking M. This is the case if and only
if:

(i) grd(t)(b) = true, and

(ii) ∀p ∈ •t : ex((p, t))(b) ⊆ M(p).

�

18 foundations and related work

Given that the binding element (t, b) is enabled in marking M, tran-

sition t can fire, leading to marking M′, denoted by M
(t,b)−−→ M′. The

new marking M′ is defined as follows:

∀p ∈ P : M′(p) = (M(p) \ ex((p, t))(b)) + ex((t, p))(b).

Therefore, the tokens required by the expressions of the incoming
arcs of the firing transition are consumed from the transition’s input
places, and the tokens specified by the expressions on the outgoing
arcs of the firing transition are produced on the transition’s output
places.

Similar to the reachability graph of Petri nets defined in Defini-
tion 3, the reachability graph of a colored Petri net is defined as fol-
lows (based on [36]):

Definition 10 (CPN reachability graph). Let CPN = (P, T, A, Σ, col,
grd, ex, init) be a colored Petri net with binding elements BE, and M
a marking. A directed graph G = (V, E, l) is the reachability graph of
CPN if:

• V = {M | MI
∗−→ M} is the set of vertices corresponding to the

reachable markings of the colored Petri net,

• E = {(M, (t, b), M′) ∈ V × BE × V | M
(t,b)−−→ M′}, is the set

of edges such that there is an edge for each binding element
leading from one marking to another,

• l : E → BE, e 7→ e2, where ei, i ∈ N>0 refers to the ith element
of the tuple e, is the labeling function assigning a label to each
edge corresponding to the binding element of that edge.

�

2.1.2.3 Business Process Model and Notation

The Business Process Model and Notation (BPMN) standard is a spec-
ification published by the Object Management Group (OMG)1. Its
latest version was released in December 2013 as BPMN 2.0.2 [59].
BPMN is the de facto industry standard for modeling business pro-
cesses [67]. It consists of notational elements as well as a meta model
that describes how these elements can be combined to design busi-
ness process models. Moreover, additional non-graphical attributes
can be defined for such models, specifying additional information up
to the point of making the model executable. These models can be of
different types, e. g., describing the orchestration of single business
processes or the collaboration of processes of multiple organizations.
In this thesis, we focus on so called business process diagrams mod-
eling the process of a single organization.

1 https://www.omg.org

https://www.omg.org

2.1 business process management 19

Business process diagrams can be made up of numerous different
notational elements than can be categorized according to Figure 2.5.
This figure shows three different categories: flow objects, connecting

v

Events

Start Interme-
diate

End

Gateway

Activity

Flow Objects

Connecting
Objects

Data
Association

Sequence
Flow

Artifacts

Data Object

Figure 2.5: BPMN notational elements for business process diagrams con-
sidered in this thesis

objects and artifacts. Flow objects are nodes that can be part of a
sequence flow. Thereby, they are the elements that drive the process
execution from start to finish.

The activity is the most important flow object of BPMN [32]. It rep-
resents an item of work whose execution requires a certain amount of
time and is represented by a rectangle with rounded corners. Activi-
ties can be atomic or decomposable. Atomic activities are called tasks.
Decomposable activities represent sub-processes and thus encapsu-
late another process that is again made up of the elements in Fig-
ure 2.5. As already mentioned, activities are connected via sequence
flows that describe causal dependencies between the activities. There-
fore, activities and sequence flows already satisfy the basic definition
of a business process given in the beginning of Section 2.1 stating that
a business process “consists of a set of activities that are performed
in coordination”.

Tasks (or atomic activities) can have different task types, represented
by a corresponding symbol in the upper left corner of the task rectan-
gle. Prominent examples are user tasks that are executed by persons
interacting with a software system, service tasks that are executed auto-
matically by a web service or some other automated application, send
and receive tasks for sending and receiving messages, and business rule
tasks, that provide input to some sort of decision system and produce
a corresponding decision output. In this thesis, the business rule task

20 foundations and related work

will be of particular importance, and will henceforth be called decision
task.

Usually, a business process does not only consist of a linear execu-
tion of activities. In many cases, alternative paths of execution can be
chosen or a set of paths can be followed concurrently. Such behavior
is realized using a gateway, represented by a diamond symbol. Inside
the diamond, a marker specifies the behavior of the gateway. A gate-
way that is followed by alternative execution paths contains an x and
is called exclusive gateway, and a gateway that is followed by one or
more execution paths contains an o and is called inclusive gateway.
To specify which execution path(s) should be chosen in a given situa-
tion, each outgoing flow of the gateway is annotated with a condition
that evaluates to true or false. A gateway that is succeeded by con-
current execution paths contains a + and is called parallel gateway.
Moreover, gateways can in general be split or join gateways. Split
gateways have exactly one incoming sequence flow and at least two
outgoing sequence flows, whereas join gateways have at least two
incoming sequence flows and exactly one outgoing sequence flow.

The third type of flow objects in Figure 2.5 are the events. Unlike
activities that need time to be carried out, events simply occur and
as a result do not take time. They essentially enable the process to
communicate with its environment. Hence, there are two categories
of events, catching and throwing. A catching event enables the pro-
cess to receive events (or information) from its environment, while a
throwing event expresses that the process supplies information to its
environment.

Along a different dimension, events can further be distinguished
into start, intermediate, and end events as shown in Figure 2.5. Pro-
cesses are triggered by start events from the environment. Therefore,
they are always of catching nature. Intermediate events can occur
during process execution. They are either caught or thrown by the
process. Finally, the process terminates with an end event. Therefore,
end events are always of throwing nature. Events can be of a particu-
lar type. For example, a catching event that represents the reception of
a message contains a letter symbol. For more information, the reader
is referred to the BPMN standard [59].

The next category of elements in Figure 2.5 are artifacts. Since the
execution of activities in business processes usually consume and pro-
duce data, the most important artifact is the data object. Data objects
can be connected to an activity to represent that this activity reads
and/or writes such an object. Moreover, catching events can write
data objects, and throwing events can read data objects. In BPMN the
data object will simply be identified by a name such as Order and
can also have a state that changes after the object was read and writ-
ten. The exact definition and structure of the data object, however,
is outside of the scope of BPMN. For this purpose, other modeling

2.1 business process management 21

languages such as the Unified Modeling Language (UML) can be em-
ployed. At the same time, we assume that such a definition exists,
so that the process model can refer to the various attributes of the
data object, e. g., in the conditions that the outgoing flows of an ex-
clusive/inclusive gateway are annotated with.

Finally, the connecting objects connect flow objects and artifacts with
each other. The sequence flow connects all flow objects with each other,
while the data association connects activities with data objects, where
the direction of the edge indicates whether that data object is read or
written.

The following definition describes the above mentioned elements
and how they are related more formally:

Definition 11 (Process model). A process model m is a tuple (N, DO, C,
CF, DF, α, ξ, δ) where:

• N = A ∪ G ∪ E is a finite non-empty set of flow objects, with
set A of activities, set G of gateways, set E of events, and set
AD ⊆ A of decision tasks,

• E = CT∪ TH, where CT is the set of catching events, TH the set
of throwing events, and es ∈ CT the process’ (only) start event,

• DO is a finite set of data object nodes,

• C is a finite set of conditions. Each condition cond ∈ C is a
Boolean expression over an attribute attr of some data object in
DO, such that cond(attr) ∈ {true, false},

• CF ⊆ N × N is the control flow relation such that each edge
connects two control flow nodes,

• DF ⊆ (DO × (A ∪ TH)) ∪ ((A ∪ CT) × DO) is the data flow
relation indicating read or write operations of an activity or
event with respect to a data node,

• function α : G → {and, xor, ior} assigns to each gateway a type
in terms of a control flow construct, where and represents the
parallel, xor the exclusive and ior the inclusive gateway,

• ξ : (G× N) ∩ CF 9 C is a function that assigns exclusive (i. e.,
non-overlapping) conditions to control flow edges originating
from gateways of type xor and ior with multiple outgoing edges,
and

• δ : AD → DM is a function assigning a decision model to each
decision task. Decision models are defined in Definition 19.

�

22 foundations and related work

For any node n ∈ N, the predecessors of n are denoted by •n =

{n′ | (n′, n) ∈ CF}, whereas its successors are given by n• = {n′ |
(n, n′) ∈ CF′}.

Definition 12 (Process fragment). Let m = (N, DO, C, CF, DF, α, ξ, δ)

be a process model. A process fragment pf = (N′, DO′, C′, CF′, DF′, γ,
β, σ) is a connected subgraph of process model m such that N′ = A′ ∪
G′ ∪ E′ ⊆ N, A′ ⊆ A, A′D ⊆ AD, G′ ⊆ G, E′ ⊆ E, DO′ ⊆ DO, C′ ⊆ C,
CF′ ⊆ CF, and DF′ ⊆ DF. Functions γ, β and σ are restrictions of
functions α, ξ, and δ respectively with corresponding new domains. �

2.1.2.4 Running Example

Booking
received

Manage
discount

Discount?

25%
Apply 25%
discount

50%
Apply 50%
discount

100%
Apply 100%

discount

Manage
special offer

upgrade
Offer

upgrade

special
Offer

special deal

Booking
completed

Booking Discount Booking
Special
Offer

Booking Booking

Special
offer?

BookingDiscount

Figure 2.6: Train ticket booking process derived from booking tickets with
Deutsche Bahn, modeled as a BPMN process diagram

Figure 2.6 shows a business process diagram consisting of most of
the elements described in the previous section. The process was de-
rived from booking train tickets with Deutsche Bahn, a German rail-
way company2, and handles the discounting of tickets for customers
that own a discount card. The process begins when the customer sub-
mitted their booking request. The contents of this message are then
written into a Booking data object. The internal structure of this object
is detailed in a UML class diagram depicted in Figure 2.7.

Booking

-from : String

-BahnCardType : enum
{25,50,100}
-points : Integer

-to : String
-roundTrip : boolean
-dates : Date[1..2]

Figure 2.7: UML class diagram for the Booking data object in Figure 2.6

On the one hand, the booking object contains information about
the trip, such as start and destination, an indication whether or not it
is a round trip, and corresponding dates. On the other hand, it holds
data that is important for the discounting. Customers can own a dis-
count card, called BahnCard, which exists in three different types: 25,

2 https://www.bahn.com/en/view/index.shtml

https://www.bahn.com/en/view/index.shtml

2.1 business process management 23

50, and 100. Each of these types correspond to a respective discount
in percent. For example, a BahnCard of type 25 provides the customer
with a discount of 25% on ticket prices. Moreover, customers can col-
lect points on this card by purchasing tickets.

Thus, the Manage discount task reads the Booking data object and
based on that information writes a Discount data object. Note that this
task is a decision task, meaning that some decision system is invoked
to take the decision. The details of this will described in Section 2.3.
The value of the discount will then be used by the succeeding gateway
to route the process in the appropriate direction, such that a discount
can be applied to the booking. Given that the discount does not equal
100%, another decision is invoked to determine a potential deal or
upgrade. After this has been handled, the booking is completed.

2.1.3 Verification of Business Process Models

An important step in the lifecycle in Figure 2.1 is the analysis of the
(re)designed process models. This step can roughly be divided into
verification and validation. Verification is an important act to make
sure that the process model is free of errors. This can include differ-
ent aspects of the model. For example, one may consider only the
control flow or also include the handling of data objects. The most
important property in this regard is soundness, defined by van der
Aalst in 1998 [16], but also compliance checking has become a topic
of interest [31].

Soundness is defined for workflow nets (cf. Definition 4) and also
compliance checking requires a formal model, so that a business pro-
cess model that is modeled in BPMN first needs to be translated to
a workflow net (or Petri net) to be able to perform the verification.
This translation will be described in the following, while the section
thereafter explains how to check the soundness of a workflow net.

2.1.3.1 Mapping BPMN Models to Petri Nets

Dijkman et al. propose a mapping from BPMN to Petri nets that can
be employed for this purpose [30]. Figure 2.8 shows an excerpt of the
mapping rules, which are required for the elements in Figure 2.5.

The left part of the figure shows how to translate BPMN events and
activities to Petri net fragments, whereas the right part illustrates the
mapping for parallel and exclusive gateways. A start event s that is
followed by a flow object y is mapped to the initial place in the Petri
net connected to a transition. This transition fires when the start event
occurs and is therefore also labeled s. Transition s is then connected
to the input place of the succeeding flow object y.

An intermediate event e (second row) is mapped similarly to a tran-
sition e which is connected to the input and output places of the pre-
ceding and succeeding objects respectively. Note that in many cases

24 foundations and related work

s

y s
yi

e

x y e
yx

f

x f
x o

x

y1

y2

A A y1

x

y2

y

x1

x2

A’ A’
y

x1

x2

x

y1

y2

X

X1

y1

x
y2

X2

y

x1

x2

X ’

X’1

yX’2

x1

x2

Tx y T
yx

BPMN Petri net BPMN Petri net

Figure 2.8: Mapping of BPMN task, events and gateways to Petri nets
(cf. [30])

the output place of the preceding object can be merged with the in-
put place of the succeeding object. For example, in a process model
in which a start event is followed by some intermediate event, the
output place y of the start transition is merged with the input place x
of the intermediate event transition.

An end event f is mapped—analogously to the start event—to a
transition f that receives a token from its preceding object x and upon
firing produces a token on the final place o. Note that the initial and
final places cannot be merged with any other places and are therefore
represented with a solid line instead of a dashed line.

An activity T in BPMN is mapped in the same way as an interme-
diate event consuming a token from its input place and producing a
token on its output place.

The mapping of gateways, illustrated in the right part of Figure 2.8,
nicely illustrates their semantics, especially the difference between
split and join gateways. A parallel split gateway A (first row) is trans-
lated to a corresponding transition in the Petri net. As mentioned in
Section 2.1 this gateway has exactly one incoming edge and at least
two outgoing edges. Hence, the Petri net translation consumes a to-
ken from its preceding object and produces a token for each input
place of its succeeding objects. On the contrary, a parallel join gate-
way has at least two incoming edges and exactly one outgoing edge.
Therefore, it must consume a token from each of its preceding objects
in order to fire and produce a token for its succeeding object.

An exclusive split gateway has the same connection constraints as
the parallel split gateway. However, it will take a decision. It will
only enable exactly one of its succeeding objects. This behavior is

2.1 business process management 25

represented in the Petri net by connecting the input place x with
as many transitions X1, X2, . . . , Xn as there are outgoing edges of
gateway X. Hence, exactly one of these transitions will be able to
consume a token from place x, such that only for the output place
of that transition a token will be produced. In contrast, an exclusive
join gateway X′ (last row) signals its outgoing edge each time one of
its incoming edges is signaled. Accordingly, for each incoming edge
a transition X′i is created and each X′i can independently produce a
token on the only output place y.

Note that Figure 2.8 does not mention how to map inclusive gate-
ways, although they are allowed in Definition 11. Such gateways must
therefore first be mapped to a combination of exclusive and parallel
gateways, as discussed in [34, 51].

2.1.3.2 Soundness Verification

Having translated a business process model to a workflow net one
can verify its soundness. There exist various notions of soundness
that differ with respect to the requirements they pose on the investi-
gated workflow net. These notions have been summarized in [44]. In
the following, each notion is defined and exemplary workflow nets
are shown.

All notions of soundness are based on the original classical sound-
ness that has three (seemingly) simple requirements [16]:

(i) Each process instance eventually terminates;

(ii) when an instance terminates, there is exactly one token in the
net and it is in the final place;

(iii) each task can participate in at least one process instance.

More formally, classical soundness of a workflow net is defined as
follows (cf. [53]):

Definition 13 (Classical soundness). Let N = (P, T, F) be a workflow
net with initial place i ∈ P and final place o ∈ P, and M a marking.
N is sound if and only if:

(i) ∀M : ([i] ∗−→ M) =⇒ (M ∗−→ [o]),

(ii) ∀M : ([i] ∗−→ M ∧M ≥ [o]) =⇒ (M = [o]),

(iii) ∀t ∈ T, ∃M, M′ : [i] ∗−→ M t−→ M′.

�

Consider the workflow net in Figure 2.9, which is the same as in
Figure 2.2, repeated for convenience. This workflow net is not sound
because after firing transition t1 and t4 the net’s marking will be
[p2, p4]. Hence, condition (ii) of Definition 13 will be violated because

26 foundations and related work

p1
t1

t3

p2

p3

t2

t4

p4

Figure 2.9: A workflow net that is not sound, but relaxed sound

it is a marking in which there is a token in the final place (p4) but also
in another place.

The workflow net in Figure 2.9, however, is relaxed sound. Relaxed
soundness allows unsound firing sequences to occur. Unsound firing
sequences violate conditions (i) or (ii) in Definition 13. However, ev-
ery transition must be able to participate in at least one sound firing
sequence [19].

Definition 14 (Relaxed soundness). Let N = (P, T, F) be a workflow
net with initial place i ∈ P and final place o ∈ P, and M a marking.
N is relaxed sound if and only if:

(i) ∀t ∈ T, ∃M, M′ : [i] ∗−→ M t−→ M′ ∗−→ [o].

�

As mentioned before, firing t1 and t4 will not lead to a sound firing
sequence. Still, t1 can be part of a sound firing sequence by firing t2
after t1. Similarly, firing t3 before t4 will lead to a sound sequence in
which t4 is involved.

Another notion that is slightly less restrictive than classical sound-
ness is that of weak soundness. This notion allows dead transitions,
which are transitions that cannot participate in any process instance,
thereby violating condition (iii) in Definition 13 [24].

Definition 15 (Weak soundness). Let N = (P, T, F) be a workflow net
with initial place i ∈ P and final place o ∈ P, and M a marking. N is
weak sound if and only if:

(i) ∀M : ([i] ∗−→ M) =⇒ (M ∗−→ [o]),

(ii) ∀M : ([i] ∗−→ M ∧M ≥ [o]) =⇒ (M = [o]).

�

p1
t1

p2

t2

t3

p3

Figure 2.10: A weak sound workflow net

2.1 business process management 27

Figure 2.10 shows a workflow net that is neither classically sound
nor relaxed sound, because of the dead transition t2. Since the net
without t2 fulfills all conditions (i)–(iii) in Definition 13, however,
the net is weak sound.

Even more permissive than weak soundness is the notion of lazy
soundness. In addition to the possible soundness violations of weak
soundness, lazy soundness allows the net to be lazy in the sense that
there can be tokens left in the net after a token appeared on the final
place. Still, the remaining tokens are not allowed to appear on the
final place later on, i. e., they have to remain somewhere else in the
net [25]. Therefore, in addition to allowing violations of condition (iii)
in Definition 13, conditions (i) and (ii) are weakened:

Definition 16 (Lazy soundness). Let N = (P, T, F) be a workflow net
with initial place i ∈ P and final place o ∈ P, and M a marking. N is
lazy sound if and only if:

(i) ∀M, ∃M′ : ([i] ∗−→ M) =⇒ (M ∗−→ M′ ∧M′(o) = 1),

(ii) ∀M : ([i] ∗−→ M) =⇒ (M(o) ≤ 1).

�

p1

p2

t1
p3

t2

t3

p4

p5
t4

p6

Figure 2.11: A workflow net that is neither sound, nor weak sound, nor re-
laxed sound, but lazy sound

Figure 2.11 shows a workflow net that is neither sound, nor weak
sound, nor relaxed sound. This is because this net does not allow a
single sound firing sequence. There will always be a token left on
place p4. However, every firing sequence will lead to a token on place
p6 and the remaining token on place p4 will always stay there. There-
fore, the net is lazy sound.

Finally, the notion of easy soundness is more permissive than both
weak and relaxed soundness. Its only simple requirement is that it
contains a single sound firing sequence [23]. Therefore, it is defined
as follows:

Definition 17 (Easy soundness). Let N = (P, T, F) be a workflow net
with initial place i ∈ P and final place o ∈ P, and M a marking. N is
easy sound if and only if:

(i) ∃M : ([i] ∗−→ M) =⇒ (M ∗−→ [o]).

�

28 foundations and related work

p1

t1

t2
p2

p3

t3

Figure 2.12: A workflow net that is only easy sound

Figure 2.12 illustrates a workflow net that has one sound firing se-
quence and another firing sequence that will lead to a livelock. Hence,
it is only easy sound.

Besides the soundness notions discussed above, [44] additionally
considers generalized, up-to-k and k-soundness. All of these notions an-
alyze the behavior of workflow nets when there are multiple tokens
in the initial place i. Yet, this thesis only considers workflow nets that
are the result of translating business process models to Petri nets us-
ing the mapping rules displayed in Figure 2.8. Therefore, the initial
place will only contain a single token, such that the remaining sound-
ness notions are irrelevant.

(classical) soundness

relaxed soundness weak soundness

easy soundness lazy soundness

Figure 2.13: Various notions of soundness and their relationships [44]

Figure 2.13 gives an overview of the different notions of soundness
defined above and also shows their relationships, where an arrow
from source to target can be interpreted as an implication, giving rise
to a tree structure. For example, classical soundness represents the
root node of that tree because it is the most restrictive notion. It im-
plies relaxed and weak soundness, i. e., every workflow net that is
classically sound is also relaxed and weak sound. Regarding weak
soundness this implication is obvious because it simply omits con-
dition (iii) of classical soundness. Relaxed soundness in a way com-
bines conditions (i) and (iii) of Definition 13 because it requires that
every transition can fire in some marking and that through the fol-
lowing marking the final state can be reached. However, it does not
require that from every marking the final state can be reached, e. g.,
deadlocks are allowed.

2.2 business decision management 29

Weak soundness in turn implies lazy soundness. Both conditions
of lazy soundness are more permissive than the conditions of weak
soundness because they only require that from every marking a mark-
ing can be reached that contains a token in the final place, and that the
final place will never contain more than one token. Weak soundness
on the other hand requires a token on the final place and nowhere
else.

Lazy soundness, however, is not implied by relaxed soundness be-
cause the latter does not require that from every marking a marking
with a token in the final place can be reached. Of course, there is also
no implication in the other direction because relaxed soundness re-
quires that every transition is part of a sound firing sequence, which
is not required by lazy soundness. Both, weak and relaxed soundness
do imply easy soundness because the latter only requires at least one
sound firing sequence, which is guaranteed by the former two (but
not by lazy soundness).

For a given workflow net the various soundness notions defined
above can be easily checked on the basis of the reachability graph
introduced in Section 2.1.2.1. Figure 2.14 shows the reachability graph
corresponding to the Petri net in Figure 2.9.

[p1]

[p2,p3]

[p3]

[p4]

[p2,p4]

t1

t3 t4

t2

t4

Figure 2.14: Reachability graph for the Petri net shown in Figure 2.9

For example, it is obvious that the net is neither classically sound
nor weak sound, since not from every marking there is a continuation
to the final marking [p4], thereby violating condition (i). However,
the net is relaxed sound because every transition t1–t4 is part of a
firing sequence in Figure 2.14 leading to the final marking. Hence, by
implication, the net is also easy sound. In addition, the net is also
lazy sound as every transition sequence will lead to a marking that
contains exactly one token in the final place.

2.2 business decision management

Business process modeling is an effective means for the documenta-
tion and implementation of business operations. Moreover, the fre-
quent use of the exclusive split gateway in process models [32] shows

30 foundations and related work

that there are also many decisions that need to be taken during pro-
cess execution. However, although this gateway is only intended to
route the process flow based on the final result of some decision-
making procedure, it is often misused to represent the decision logic
itself. This results in a sequence of gateways with many branches,
leading to incomprehensible models that are hard to maintain. This
issue will be discussed in more detail in Chapter 3.

To adequately model the decisions that need to be taken in the con-
text of a business process, the OMG developed the Decision Model
and Notation (DMN) standard. Its first version was published in
2015 [61] and version 1.1 shortly after in 2016 [76]. Moreover, version
1.2 was released in January 2019 [114]. This demonstrates the strong
interest in this standard, leading to feedback in the form of feature
requests as well as based on the analysis of DMN models designed
since the standard’s release.

2.2.1 DMN Decision Models

Decision models in DMN consist of two artifacts. As a high-level
overview, decision requirements diagrams (DRDs) specify the inputs that
are necessary to make the decision. Such inputs can be actual input
data that may come from a process associated with the decision. But
also decisions itself may be used as inputs to other decisions. This
gives rise to a tree-like structure for DRDs. Figure 2.15 gives an ex-
ample of an abstract DRD. It consists of two decisions represented as
rectangles and two input data elements, represented as ellipses. The
arrows between those elements are called information requirement edges
since they carry information from their source to their target.

Decision 1 is the top-level decision of this decision model. Therefore,
its output will be returned to the caller of the decision model. The
other decisions are called sub-decisions whose outputs are used as
inputs for the top-level decision or other sub-decisions. Analogous to
the fact that the output of the top-level decision will be returned to
the caller, the caller must also provide the values for the input data
elements. These values are then used for the various decisions in the
DRD.

Besides decisions and input data, DRDs may contain two other
types of nodes: business knowledge models and knowledge sources. Busi-
ness knowledge models are similar to decision elements, since they
also encapsulate decision logic. However, the focus here is on reusable
business know-how of the organization that can be applied to multi-
ple decision models. Knowledge sources, on the other hand, are solely
used for documentation purposes. Hence, they can be connected to
decision nodes to explain what the decision logic is based on, such as
a legal requirement or an organizational policy. Still, this thesis will
only consider decision and input data nodes, since these are the main

2.2 business decision management 31

Decision 1

Decision 2Input data 1

Decision table 1

Input data 2

Decision table 2

Figure 2.15: An abstract DMN decision requirements diagram

ingredients of a DRD while the other elements do not provide any
additions relevant for the considerations in this thesis.

In order for a decision to transform the inputs it receives to an out-
put, it needs to be associated with some decision logic. Therefore, the
other artifact of DMN, besides DRDs, is the decision logic level. On this
level, decisions can be made executable by specifying the details of
how inputs are mapped to outputs. Decision logic can be represented
in many ways, e. g., by plain text, a computer program, an analytical
model, or a decision table. Decision tables are standardized in DMN.
They are easy to create, understand and change, and are suited for
both business users who have knowledge about the business logic
and software developers that implement the decision models.

F input1
Number

input2
{a,b }

output
{w,x,y,z }

1 1 a w

2 [1..2] a x

3 < 1 b y

4 > 2 - z

Figure 2.16: An example of a DMN decision table

Figure 2.16 shows an example of a DMN decision table. By de-
fault, tables consist of rows corresponding to rules and columns cor-
responding to inputs or outputs. Each input/output column is associ-
ated with a data type, such as string or integer, and can be optionally
restricted to a subset of possible values from that domain, which is
displayed directly below the input’s/output’s name. A decision table
then describes a relation between the set of input values and the set
of output values. In this regard, the rules of the table play the most
important role. A rule specifies a logical expression for each input
(i. e., a condition), that tests the input for a certain value or range of
values. The result of that test will be either true or false. Additionally,
a rule can declare a certain input as irrelevant using a dash symbol
(“−”). This means that any value for that input will lead to true. At
runtime, given a value for each input, a rule is said to match if the

32 foundations and related work

conjunction of all logical expressions of that rule evaluates to true,
and the corresponding output value can be determined. Hence, a de-
cision table is considered complete if for all possible input values at
least one rule matches.

However, it may be the case that for some input values more than
one rules matches. This happens when the table contains overlapping
rules. Two rules are overlapping if all of their corresponding input
conditions overlap, i. e., they share a common value or range of values.
Since these overlapping rules do not necessarily map to the same
output value, a DMN table can define a hit policy that determines
how the final output value should be determined.

Consider, for example, rules 1 and 2 of the table in Figure 2.16. Both
of these rules match for the input input1 = 1 and input2 = a, or (1, a)
for short. Yet, they lead to different outputs, w and x respectively.
Therefore, the table specifies a first hit policy, indicated by the letter
F in the table’s upper left corner. This policy dictates that if multiple
rules match for an input, the rule that comes first in the decision table
is chosen to return the output. Consequently, since rule 1 comes first
in the example table, the input (1, a) will lead to the output w. In the
following, we will describe the various DMN hit policies in detail.

2.2.2 DMN Decision Table Hit Policies

As already mentioned above, DMN decision tables are allowed to
have overlapping rules. This leads to conflicts when a given input
matches more than one rule. Such conflicts are settled based on a
variety of hit policies. In principle, DMN divides these policies into
single- and multi-hit policies. For a given input, the former always
returns the output of a single rule—even if multiple rules match—
while the latter returns the outputs of all matching rules, potentially
aggregated in some way.

There are four single-hit policies, only one of which guarantees that
only one rule matches for a given input:

• unique: all rules of the table are exclusive, such that at most one
rule matches for a given input.

• any: multiple rules can match for a given input, but they all have
the same output such that there are no ambiguities.

• first: if multiple rules match for a given input, the rule that
comes first in the decision table is chosen to return the output.

• priority: similar to first-hit, but in this case the rule with the
highest priority is chosen, where the priority is given by the
ordered set of allowable values displayed below the output’s
name (cf. Figure 2.16).

The multi-hit policies are specified as follows:

2.2 business decision management 33

• rule order: all matching rules’ outputs are returned in a list or-
dered by the appearance of the rules in the table.

• output order: all matching rules’ outputs are returned in a list
ordered by the priority of the rules.

• collect: the outputs of all matching rules are collected and then
aggregated in a predefined way, for example by summing up
the output values or taking the maximum.

In this thesis, all of those hit policies are covered.

2.2.3 Formalization of DMN Decision Models

In this section, formal definitions of decision tables and decision re-
quirements diagrams are given. The following definition of a DMN
decision table is based on the definitions given in [12] and [97].

Definition 18 (DMN decision table). A decision table dt is a tuple
(I, O, dom, R, prio, p, c) where:

• I = {i1, i2, . . . , in} is a set of n > 0 input variables,

• ∀i ∈ I, dom(i) is the domain of input variable i, where dom is a
function mapping a variable to its domain,

• o is an output variable with domain dom(o),

• given the input value combinations IV = ∏n
j=1 dom(ij) and the

set of output values OV = dom(o), the finite set of q > 0 rules
is defined as R = {r1, r2, . . . , rq}, where |R| = q, q ∈ N and
∀r ∈ R : r ⊆ IV ×OV,

• prio : R → {1, . . . , |R|} assigns each rule a priority visualized
by its rule number in the leftmost column of the table. If no
priority is explicitly given, it is implicitly given by the graphical
ordering of the rules in the table,

• p ∈ {unique, any, priority, first, output order, rule order, collect} in-
dicates the decision table’s hit policy,

• c ∈ Bool indicates whether or not the decision table is complete.

�

Example. Consider the decision table depicted in Figure 2.16. This
table can be formally defined as follows.

• I = {input1, input2}, o = output,

• dom(input1) = R, dom(input2) = {a, b},
dom(output) = {w, x, y, z},

34 foundations and related work

• R = {r1, r2, r3, r4}, where ∀r ∈ R : r ⊆ (N×{a, b})×{w, x, y, z}.
For example, r4 = ({n | n ∈ N∧ n > 2}×{a, b})×{z}, because
the expression “−” allows any value for the variable input2,

• prio = {(r1, 1), (r2, 2), (r3, 3), (r4, 4)},

• p = first (denoted by F in the upper left corner),

• c = false. For example, no rule matches for the input (0, a).

Decision models made up of a decision requirements diagram and
decision logic based on decision tables can then be defined as follows.

Definition 19 (Decision model). A decision model dm is a tuple (D,
InD, IR, tab) where:

• D is the set of decision nodes,

• dtop ∈ D is the top-level decision, determining the output of dm,

• InD is the set of input data nodes,

• IR ⊆ {D, InD} × D is the set of directed information require-
ment edges,

• tab : D → DT assigns each decision d ∈ D a decision table.

�

2.2.4 Decision Table Analysis

Similar to the fact that business process models can be analyzed re-
garding certain correctness criteria, also decision tables have desirable
properties that can be verified. For example, [8] and [9] describe po-
tential problems of rule sets in knowledge bases and how to check
those. The problems analyzed include consistency issues such as re-
dundant and conflicting rules and completeness of the rule set. Based
on these problems, [14] derives “major modelling issues of decision
table construction”.

An efficient way to detect overlapping and missing rules in a DMN
decision table is described in [64, 97]. This approach is based on a ge-
ometric interpretation of DMN tables. Under this interpretation, the
rules of a table are represented as hyperrectangles with n dimensions,
where n corresponds to the number of inputs of the table.

Consider, for example, the DMN table displayed in Figure 2.17. The
geometric interpretation of that table is given in Figure 2.18 as a set
of 2-dimensional hyperrectangles (i. e., rectangles).

Each rectangle corresponds to a rule of the table and is labeled with
a corresponding identifier. For instance, the rectangle r2 represents
the second rule of the table. This rule states that the credit rating will

2.3 integration of process and decision management 35

R Income (k)
Number ≥ 0

Assets (k)
Number ≥ 0

Credit Rating
{A, B, C, D, E}

1 ≤ 30 ≤ 30 A

2 [10..60] [10..25] B

3  [20..95]  [40..90] C

4 ≥ 80 - D

5 ≥ 40 ≥ 85 E

Figure 2.17: DMN decision table to determine a credit rating

 r1

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

r2

r5

 r4

Income (k)

A
ss

et
s

(k
)

r3

Figure 2.18: Decision table as a set of hyperrectangles corresponding to the
rules in the table in Figure 2.17

be B, if the Income is between 10 and 60 and the Assets between 10
and 25, which coincides with the area covered by rectangle r2.

The problem of finding overlapping rules is now translated into the
problem of finding intersecting rectangles. Similarly, finding missing
rules is equivalent to locating the “white” areas that are not covered
by any of the rectangles. These problems can be solved by the sweep
line approach [5–7], which analyzes dimensions one by one by sweep-
ing a line through each dimension. For example, Figure 2.18 shows a
line being swept through the Income dimension, from left to right. The
problem of finding overlapping rules, for instance, is then solved as
follows: Sweep a line through the first dimension, collecting as many
rules as possible that overlap in this dimension. Then, check which of
the collected rules also overlap in the other dimensions, by sweeping
a line through those dimensions.

2.3 integration of process and decision management

Having established a suitable way to express decisions in a dedicated
model, they can be integrated with process models. The integration
of process models and decision models leads to the notion of decision-
aware business process models [35]. Such models are based on the recog-

36 foundations and related work

nition that there is a substantial difference between tasks that perform
work and tasks that make decisions based on data and logic, and that
the details of the latter should be outsourced to decision models. The
link between process models and decision models is established via
decision tasks in the process model.

For example, the business process model in Figure 2.6 contains two
decision tasks, Manage discount and Manage special offer, each linking
to a decision model that makes a decision about the value that is
used at the respective succeeding gateways. Such process fragments—
consisting of a decision task followed by a split gateway with at least
two outgoing edges where each edge is annotated with a condition
corresponding to an output of the decision model associated with the
preceding decision task—will be called decision fragments. They are
defined as follows:

Definition 20 (Decision fragment). Let pf be a process fragment of a
process model. Fragment pf represents a decision fragment if it starts
with exactly one decision task t, that is directly followed by a split
gateway g, where γ(g) = xor. g has at least two outgoing branches,
and each outgoing branch of g is annotated with a condition. More-
over, t reads one or more data objects and writes exactly one data
object. The data objects read by t correspond to the input data of the
referenced decision model, and the conditions of the gateway refer to
an attribute of the data object written by t. �

An abstract decision fragment is illustrated in Figure 2.19.

D

Out?

=out1

=out2

In Out

Figure 2.19: An abstract decision fragment conforming to Definition 20

The process model in Figure 2.6 includes two decision fragments.
The decision task of the first is associated with the decision model
displayed in Figure 2.20. Its decision requirements diagram shows
that it consists of one decision that receives one input, namely the
attribute BahnCardType of the Booking data object (cf. Figure 2.7). The
decision is associated with a decision table that maps each possible
type to a respective discount. Note that if the decision model consists
of one decision only, as is the case in this example, it is sufficient
to only show its decision table and omit the decision requirements
diagram, since the latter does not contain any additional information.

2.3 integration of process and decision management 37

Manage
discount

Booking.
BahnCardType

Manage discount table

(a) Decision requirements diagram

U
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

1 25 25%

2 50 50%

3 100 100%

(b) Manage discount decision table

Figure 2.20: Decision model referenced by the task Manage discount in Fig-
ure 2.6

The other decision task in Figure 2.6 references another decision
model which is shown in Figure 2.21. This model also contains one de-
cision which reads the type of the card and the discount determined
by the previous decision. Based on this information, it determines the
possibility for some kind of offer. Note that the table contains over-
lapping rules, namely rules two and three. They both match for the
input (50, 100%). Therefore, this table has a first hit policy, such that
in this situation the output of rule two will be returned.

Manage
special
offer

Discount

Manage special offer
table

Booking.
BahnCardType

(a) Decision requirements diagram

F
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

Special offer
{none, upgrade, special}

1 25 25% special

2 50 - upgrade

3 - 100% none

(b) Manage special offer decision table

Figure 2.21: Decision model referenced by the task Manage special offer in
Figure 2.6

It should be noted that a decision task does not need to be followed
by a split gateway as required by decision fragments. For example, it
may also be integrated into the process model as illustrated in Fig-
ure 2.22. In this case, the outputs of the decision are processed im-

D

In Out

A

Figure 2.22: Decision task directly followed by another task reading the out-
put of the decision

plicitly by the succeeding task such that it is not possible to conclude
from the model how the process reacts to different results of the de-

38 foundations and related work

cision. Hence, a decision-aware business process model is defined as
follows:

Definition 21 (Decision-aware process model). A process model m =

(N, DO, V, C, CF, DF, α, ξ, δ) with set A ⊆ N of activities and set
AD ⊆ A of decision tasks is decision-aware if and only if AD 6= ∅,
i. e., m contains at least one decision task. �

2.4 related work

Related Work

Integration Analysis

Decision Table
Analysis

Process
Verification
with Data

BPMN + BR BPMN + DMN

Figure 2.23: Classification of related work

This section discusses literature that is related to the work described
in this thesis. The overall classification of related work is shown in Fig-
ure 2.23. Since the work of this thesis is about the analysis and verifi-
cation of the integration of process and decision models, the related
work is divided into two categories. On the one hand, approaches
for the integration of models or standards for the expression of deci-
sion logic and BPMN are described, where decision logic is either ex-
pressed through business rules (BRs) or DMN models. On the other
hand, analysis and verification methods are investigated, which fo-
cus either mainly on decision model analysis, or on processes with
explicit consideration of data or decisions.

2.4.1 Integration of Processes and Rules

It is a long and well known fact that business processes involve deci-
sion-making. Such decisions have traditionally been made based on
business rules, which is a “statement of the action to be taken when a
specific set of conditions are true” [58, p. 7], or a “logical statement
that allows a conclusion to be drawn from a set of conditions” [52,
p. 43]. In that sense a business rule can be understood as one row/rule
of a decision table in DMN. Indeed, DMN decision models can be un-
derstood as models that organize, structure and illustrate business
rules [58]. Nonetheless, the proper definition and maintenance (e.g.,
involving ontologies) of business rules can become quite complex,

2.4 related work 39

such that the OMG developed a corresponding standard, the Seman-
tics of Business Vocabulary and Rules (SBVR) specification [93]. SBVR
considers a business rule as a “rule that is practicable and that is un-
der business jurisdiction” [93, p. 98], where being under business
jurisdiction means that the organization that the rule belongs to has
the freedom to change it. Certainly, there can also be rules that are
imposed by the organization’s environment. However, for those rules
the organization would then have to formulate corresponding inter-
nal rules, in order for them to count as business rules.

On the one hand, separating processes and decisions, for example
via BPMN and DMN (or SBVR) satisfies the principle of the sepa-
ration of concerns, recommending to divide a problem into small
modules and to apply specialized problem solving methods for each
module [2]. On the other hand, this requires the correct integration of
the two types of concepts.

A literature survey by Imgrund et al. [89] found that there are 78
relevant research contributions between 2004 and 2016 that deal with
the integration of business rules and business process management.
Moreover, the lion’s share of papers focusses on the development of
methods for the design and modeling of business rules as part of
BPM. This is mostly due to the fact that in order to “integrate” busi-
ness rules, organizations used to supplement their BPMN process
models with simple textual annotations of such rules [26], such that
the importance of the combination and alignment of business rules
and BPM is emphasized [28, 50]. In this regard, zur Muehlen et al. [41]
investigated the most suitable combination of a set of process mod-
eling and a set of rule modeling languages based on representation
theory, measuring how well they can represent a real-world domain.
They come to the conclusion that the combination of BPMN and
Simple Rule Markup Language (SRML) [18] is most suitable.

In [41] it is also noted, however, that rule and process modeling
languages have a conceptual overlap, such that it might not always
be clear in which situation to apply which language. With respect
to this, [116] proposes a methodology for the integrated modeling of
business processes and business rules, while [48] suggests best prac-
tices for a proper integration. Both contributions take a rather high-
level perspective, however, focussing on steps such as process and
rule identification and elicitation. [91] even proposes an automated
approach for the generation of business process models with busi-
ness rules from entity-relationship diagrams [4], and [71] presents
an algorithm which specifies how to translate the SBVR vocabulary,
structural and operational rules into BPMN and DMN elements.

All of those approaches do not focus on concrete consistency issues
that might arise due to the integration. [47] describes a preliminary
framework for the consolidation of existing business process models
and business rule descriptions as well as mapping methods based on

40 foundations and related work

BPMN and SBVR that assist in identifying inconsistencies between
the two. However, the approach is rather preliminary and high-level
and no concrete inconsistency issues are mentioned.

The only work that describes a formal integration of business pro-
cesses with business rules was presented by Kluza et al. in [105].
The approach aims at ensuring data type consistency, meaning that
the data types employed in rules must also be available in the pro-
cesses that apply these rules. The authors assume that rules can be
integrated with processes via conditional flows, events, and decision
tasks. For that, certain integration rules are formally specified. Espe-
cially the integration rules formulated for decision tasks succeeded
by a split gateway are related to this thesis. Given that the decision
task calls a rules engine for execution, on the one hand, the authors re-
quire that all input attributes needed by the rules engine are available
in the process model. On the other hand, all outgoing sequence flows
of the succeeding split gateway should use the same attributes that
are output attributes of the decision task. These two requirements
are very similar to the definition of structural consistency between
decision fragments and decision models that will be discussed in Sec-
tion 6.2. However, [105] does not specify any behavioral rules that
would ensure that the process model can actually handle the various
outputs of the rules engine.

2.4.2 Integration of Processes and Decisions

Suchenia et al. [115] identified 13 papers that deal with the “inter-
operability” of BPMN and DMN models. Most of those papers are
concerned with the exemplary integration of the two kinds of models
and its benefits. Fewer deal with concrete inconsistency issues that
may arise due to the integration. Both will be discussed in the follow-
ing.

In [68] a proof of concept design of a combination of BPMN, DMN
and Case Management Model and Notation (CMMN) models is de-
scribed, while [65] and [83] present a framework that supports the in-
tegrated modeling of healthcare processes and decisions. This frame-
work deals with high-level steps such as design, implementation and
enactment. [86] proposes a Decision as a Service design for decision-
aware information systems, that is supposed to improve the separa-
tion of concerns of processes and decisions. With a service-oriented
design the processes only know about the interface and are agnostic
of the concrete structure and implementation of the decisions.

De Smedt et al. [84, 85] argue for the use of holistic decision mod-
els in association with process models. Holistic decision models are
supposed to be reused throughout the process by different decision
tasks. Therefore, one decision model includes all the decisions made
within a process. This differs from the use of decision fragments as

2.4 related work 41

described in Section 2.3, which allows independent decision models
to be referenced by the different decision tasks of the same process.

[104] discusses three different process and decision modeling ap-
proaches. A process-centric approach understands decisions as local con-
cerns that are taken at exclusive split gateways. In that way, they cor-
respond to the decision fragments of decision-aware process models
described in Section 2.3. This approach requires the process to ensure
that the decision is supplied with all the necessary inputs, and that all
of the decision’s outputs are dealt with by the outgoing branches of
the split gateway. This corresponds to the decision deadlock freedom
criterion that will be discussed in Section 6.3. However, it is stated
that “the approach convolutes decision logic with routing logic and
the distinction between the two is not always clear” [104, p. 248].
This statement is not fully comprehensible since through the use of
decision models the decision logic is not part of the process model
anymore, only the routing logic of the split gateway is used to pro-
cess the decision outputs. Also, the authors state that this is the most
prevalent approach in literature, with publications such as [66, 68, 75,
77, 80, 94].

The second approach for process and decision modeling discussed
by [104] is the process-extraction approach. Here, decision logic and
structure are identified in the process model and logs so as to ex-
ternalize them and redesign the process model accordingly. This may
lead to a convolution of process and decision logic. Examples are
given in [60, 62, 63, 110].

The last approach mentioned in [104] takes a different perspective
compared to the other two. It is called decision-centric approach that
designs holistic decision models, which were already described above
in the context of discussing the work by De Smedt et al. [84, 85].
Here, the “decisions are put above the process” [104, p. 249], and the
process model is designed around the decision model. The authors
emphasize that any process can call the decision model and all of its
sub-decisions, instead of just coupling a single process and decision
model. Furthermore, this approach will make the process model au-
tomatically consistent with the provided decision model. This will be
further elaborated in the following.

In [69, 88, 102, 103] inconsistency issues are identified that can arise
in situations where a decision model is called from a single point in
the process or when a decision model is called multiple times in the
process to obtain results from its various sub-decisions. The authors
define seven inconsistencies that will be summarized and discussed
in the following.

The first is exclusion of decision outcomes, which arises if not all out-
comes of the decision are represented by the control flow of the pro-
cess, given that the process redirects its control flow based on the
decision outputs. Therefore, this incompatibility corresponds to the

42 foundations and related work

output coverage condition of the decision deadlock freedom criterion
that was already described in [77, 80], and which will be presented in
Section 6.3 of this thesis.

Next, the inconsistency inclusion of decision logic in the process de-
scribes situations in which decision logic is modeled in the process
model as opposed to the decision model. While this is not an inconsis-
tency per se anyway, it is in any case excluded by the understanding
of decision-aware process models in this thesis.

The exclusion of intermediate results inconsistency occurs for pro-
cesses that rely on intermediary results of the decision model, i.e.,
results from its sub-decisions, without explicitly invoking those sub-
decisions. Since in this thesis it is assumed that the process model
only relies on results from the decision model’s top level decision,
this inconsistency cannot occur by definition in the context of this
thesis.

An inconsistency due to the inclusion of process-unrelated sub-decisions
arises in the opposite situation: a sub-decision is invoked from the
process although its result is never needed. Again, since in the con-
text of this thesis only top-level decisions can be invoked this issue
cannot occur.

The unsound ordering of decision hierarchy inconsistency occurs when
the order of the (sub-)decisions is not matched by the order of call-
ing them in the process. For example, a sub-decision may be called
after the top-level decision by the process model, so that the process
model does not respect the decision hierarchy of the decision model.
Again, since in the context of this thesis only top-level decisions can
be invoked this issue cannot occur.

The exclusion of sub-decisions affecting control flow inconsistency is
very similar to the exclusion of intermediate results. The only difference
is that here the process’ control flow (not a data object) relies on the
sub-decision’s results without invoking it. Again, since in the context
of this thesis only top-level decisions can be invoked this issue cannot
occur.

Finally, an absence of input data inconsistency arises when the pro-
cess model does not supply all the required input data to the decision
model when calling it. This inconsistency is prevented by structural
consistency described in [80] and also in Section 6.2 of this thesis.

A comparison of the (in)consistency criteria described in [103] and
in this thesis (based on [77, 80]) is shown in Table 2.1. This table
lists the consistency criteria of both approaches and demonstrates
equivalences if possible. Note that only the basic consistency criteria
described in Chapter 6 of this thesis are listed there, but not the ones
described in Chapter 7 and Chapter 8, since those can be considered
as variations or specializations of the basic criteria. The last two rows
of the table mention consistency criteria that are established in [77,

2.4 related work 43

80] (and also in this thesis), but for which there are no corresponding
equivalent criteria in [103].

Table 2.1: Comparison of the (in)consistency criteria described in [103] and
in this thesis (based on [77, 80])

Hasić et al. [103] Batoulis et al. [77, 80]

Exclusion of decision outcomes
Decision deadlock freedom
(output coverage)

Inclusion of decision logic in the
process

Excluded by the requirement of
decision-aware process models
to outsource their decision logic
to decision models

Exclusion of intermediate re-
sults

Excluded by definition

Inclusion of process-unrelated
sub-decisions

Excluded by definition

Unsound ordering of decision
hierarchy

Excluded by definition

Exclusion of sub-decisions af-
fecting control flow

Excluded by definition

Absence of input data Structural consistency

-
Decision deadlock freedom (ta-
ble completeness)

- Dead branch absence

Finally, Posenato et al. [109] describe scenarios in the healthcare
domain where process execution is subject to temporal constraints. If
a currently running process instance is at risk of violating such con-
straints given that it selects some long running activities or branches
for execution, those branches must be forbidden, by forbidding the
respective outcomes of the (manual) decision that would lead to the
execution of those branches.

2.4.3 DMN Decision Model Analysis

The first formal considerations regarding DMN decision tables were
published by Calvanese et al. in [64, 97]. The authors present for-
mal semantics of DMN decision tables including rule semantics and
hit policies. Also, algorithms for detecting missing and overlapping

44 foundations and related work

rules, and an algorithm for merging rules to simplify the table were
described. The basic idea of those algorithms of using a geometric
interpretation of decision tables has been reused by Batoulis and
Weske [96] and also in this thesis for determining the input/output
behavior of DMN decision tables, described in Chapter 4.

Missing rules can be detected by looking at the data types of the
input variables and then checking if there are values in the domain of
those data types that are not covered by any decision table rule. How-
ever, sometimes some of those values may never occur in reality. For
example, the data type of an input variable representing the weight
of an object would probably be integer or double. And for most ap-
plication domains the possible weights have a certain limit. Therefore,
in [82], Calvanese et al. propose a formalization of decision require-
ments diagrams and of their integration with background knowledge
in the form of ontologies. In that way, the table completeness check
can be restricted to values that are possible according to the ontology.

In [98, 99, 113] analysis efforts to check for inconsistencies in DMN
decision table rules are described. The approach is based on building
a rule base from decision table rules and domain knowledge. Then,
algorithms for finding inconsistencies such as contradictions between
the rules of the decision table and the rules derived from the domain
knowledge can be applied.

Hasić et al. [87, 111, 112] define complexity metrics for decision
requirements diagrams (DRDs) and decision tables. Examples of met-
rics for DRDs include the number of decisions and the number of
elements in total. For decision tables, metrics such as the number
of possible input value combinations, the number of possible out-
put values and the hit policy are mentioned, where tables with over-
lapping rules are considered more complex, and multi-hit policies
are more complex than single-hit policies. Furthermore, Bossuyt and
Gailly [81] measure a complexity decrease of the process model when
outsourcing decision logic to a decision model.

Finally, also optimizations of decision-making during process run-
time are discussed. In [70] the authors argue that sometimes a de-
cision can be made with only a partial set of inputs available, for
example, when the outcome would not change given the complete
set of inputs. This can save costs if acquiring the missing inputs is
expensive.

2.4.4 Process Verification with Data

Calvanese el al. give an overview of research on data-aware business
processes in [55] and Montali et al. [74] emphasize that most analy-
sis methods for business process models only consider their control
flow according to the classical notion of soundness (cf. Definition 13).
Therefore, they introduce a notion of data-aware soundness that in-

2.4 related work 45

cludes the interaction of the process with a relational database. How-
ever, no effective method for the verification of this notion is offered.

Also Sadiq et al. [22] argue that including the data of the process in
the analysis and verification is critical. They classify the data used in
processes into different types such as operational data used by activi-
ties and decision data used to make choices at split points. Moreover,
they describe data flow validation issues such as missing and redun-
dant or unused data.

Sidorova et al. describe so called conceptual workflow nets with
data (WFD nets) [43, 49]. A WFD net is a workflow net extended
with transition guards in the form of logical predicates, and read/
write/delete operations for the transitions. Therefore, WFD nets dif-
fer from workflow nets through the extension of transitions with the
following four aspects. When firing, transitions can: read from a finite
set of data elements; write a finite set of data elements; and delete
a finite set of data elements; lastly, a transition can only fire if its
guard—being a predicate depending on the data elements read by
the transition—evaluates to true.

Moreover, the WFD net is called conceptual because it does not op-
erate on concrete values for the data elements. Rather, data elements
can be defined or undefined, and they are undefined by default. If a
transition writes a data element, it will be defined, and if it deletes it,
it will again be undefined. The guard of a transition is undefined as
long as at least one of the data elements it depends on is undefined.
When all of its data elements are defined, the guard will evaluate to
both true and false.

In that way, the authors are able to check the may- and must-sound-
ness of a workflow net with data without considering concrete data
values. A net is may-sound if it is sound for certain evaluations of
the guards (either true or false) and unsound for others. If the net is
sound for all possible evaluations of the guards, it is must-sound. If
no evaluation of the guards can make the net sound, it is unsound.
Hence, the authors are able to determine if a concretization of the
conceptual WFD net with concrete data values can lead to a sound
workflow net or not.

Therefore, the approach may give an initial idea about the sound-
ness of the workflow or process that is investigated, but cannot yield
definite results. Also, it cannot express how different data variables
depend on each other, which is important for analyzing processes
with decision logic. For example, it cannot express that a discount is
only 25% if the BahnCard is of type 25. Moreover, they assume data
elements with finite domains.

Allowing the data value of the process to come from infinite do-
mains will lead to problems regarding the soundness verification of
that process. This is because the process can take on infinitely many
states, one for each different assignment of values to its data vari-

46 foundations and related work

ables. Knuplesch et al. [37] propose an approach to deal with “large
domains”, which can actually also be applied to infinite domains.

The authors aim to verify data-aware compliance rules that the pro-
cess must adhere to, such as “After confirming an order of a non-
premium customer with piece number of at least 125, 000, premium
status should be offered to the customer” [37, p. 333]. Here, the vari-
able representing the piece number is of type integer and is therefore
infinite, and checking if the process complies to the rule for every
possible piece number is impossible.

For this reason, the authors do not check the rule for every possible
value but only for representative values. A value is representative of
other values, if the process behaves in the exact same way for all
of those values. The representative values are inferred from gateway
conditions and compliance rule conditions. For example, if a split
gateway selects two different branches if the piece number is greater
or less than a certain value, and then behaves the same for those two
sets of values, it is sufficient to check the process for one value of each
set. While this is a useful step towards incorporating infinite data
domains in the analysis, the authors do not mention how to support
data update operations, and also decision logic is not considered.

[106, 107] employ the same idea of using representative values, in
this case to check the soundness of decision-aware process models.
The approach starts from the process being modeled as a data Petri
net (DPN) [108], which is similar to a WFD net described above. Note,
however, that in [106, 107] concrete data values are considered. To
check the soundness of decision-aware process models, the authors
translate DMN decision tables referenced by decision tasks in the
process models to transitions in the DPN. For each rule in the table
a transition in the DPN is created that implements that rule, i. e., the
transition’s guard has the same conditions as the rule, and writes the
rule’s output into a corresponding variable.

To check the soundness of the DPN it is translated into a colored
Petri net, which allows the authors to conduct a reachability graph
analysis using representative values that are derived similar to [37].
They also describe how they can verify the various notions of sound-
ness defined in [77] and also in Chapter 8 of this thesis. However, they
restrict themselves to DMN decision tables with a unique hit policy,
and do not offer an efficient method to deal with tables containing
overlapping rules.

Part II

F O R M A L F R A M E W O R K F O R P R O C E S S E S A N D
D E C I S I O N S

3
O N T H E S E PA R AT I O N O F C O N C E R N S O F
P R O C E S S E S A N D D E C I S I O N S

This chapter argues in Section 3.1 that BPMN is not suited for the
specification of decision logic, violating the principle of the separa-
tion of concerns. This claim is backed by an analysis of nearly 1000

real world process models, revealing that decision logic is often hard-
coded in process models via three frequently occurring control-flow-
based decision patterns, defined in Section 3.2. Finally, in Section 3.3
statistics about the usage of split gateways and the frequency of the
decision patterns are reported. The work presented in this chapter
has partly been published in [60].

3.1 process and decision modeling in the real world

Nowadays, business process management and modeling is a widely
used means for companies to document, control, automate, measure,
and improve their processes effectively. During process execution, of-
ten decisions have to be made that impact the correctness, perfor-
mance and compliance of these processes [57]. Based on an analysis
of industry process models it was shown that these decisions handle
choices such as the assignment of resources to activities, i. e., which
knowledge worker should work on a particular activity, or determine
which one of several alternative branches should be selected in order
to continue the process. Especially, in the insurance and banking do-
mains, regulatory compliance highly influences process execution by
specifying which guidelines must be followed.

The analysis of 956 real world process models from the insurance,
banking and health care domains revealed that the logic that deci-
sions are composed of is frequently encoded in process models. This
leads to models that are hard to read, implement and maintain. While
BPMN has the means to describe how the outcome of a decision
should be handled, it is not meant to represent the details of the
decision logic leading to such outcome. This becomes obvious when
looking at the abstract example in Figure 3.1, where decision logic is
encoded through a series of exclusive split gateways, resulting in a
spaghetti-like model.

Thus, decision logic modeling is out of scope for BPMN. Rather,
dedicated decision modeling concepts such as decision tables [35]
and other methods [39, 54] should be employed to represent complex
decisions in an appropriate manner. For instance, the Decision Model
and Notation (DMN) standard [61] resulted from an effort undertook

49

50 on the separation of concerns of processes and decisions

Figure 3.1: Misuse of BPMN for decision logic modeling

by the OMG to provide a standardized way of expressing decisions.
DMN is designed to complement BPMN to achieve a “separation of
concerns” [2] between process and decision logic modeling based on
the actual scope of both modeling techniques.

On the one hand, BPMN provides extensive means to represent
process logic. This includes primarily the activities that need to be
performed during the process, their order and the data that is con-
sumed and produced by them. On the other hand, DMN represents
the decisions made during the process. Obviously, this includes the
logic of these decisions, but also the data that is required to make
the decision and documentation on what knowledge or guidelines
the decision is based on. Due to a lack of proper integration between
these two worlds, organizations misused BPMN constructs to express
decision logic in process models.

A separation, however, provides multiple advantages. Already in
1972, Parnas argued about the benefits of a “separation of concerns”
in system and software design [2]. This separation is mainly achieved
by dividing a problem into smaller modules and to use for each mod-
ule a specialized problem solving concept. Thereby, easier mainte-
nance, less complex systems, reusability, flexibility, shortened devel-
opment time, comprehensibility, and reduced inter-dependencies are
achieved. With regard to process and decision modeling, a separa-
tion of the two worlds can provide the same benefits. Outsourcing
the decision logic to a dedicated decision model reduces the com-
plexity of the process model and increases the precision, readability,
and maintainability of both process and decision models. Moreover,
process and decision logic can be changed independently from each
other leading to lower changing times and costs. This is especially im-
portant because process models are considered stable in general and

3.2 control-flow-based decision patterns 51

only need to be adapted if the business changes. Decision models, on
the other hand, are required to be dynamic to react fast and flexibly
to temporary situations.

For instance, consider the time after natural disasters like hurri-
canes in the United States. Within two to three weeks after the disas-
ter, insurance companies have the highest increase in new customers.
Usually, the companies check each applicant whether they are eligi-
ble to be accepted as a new customer based on a set of decisions.
Since the time-frame after a disaster is very short and not each ap-
plicant can be checked properly without loss of applicants, insurance
companies often change their policies such that a certain number of
applicants are accepted without a detailed check. Therefore, in these
situations, a fast reaction is required and changing a process model
comprising the decision logic is not an option since it is too time-
consuming. Having the decision logic separated from the business
logic allows the change of rules indicating when to accept a new cus-
tomer and therefore accept most or even all of the applicants. To do so,
for instance in decision tables, only the values of some fields need to
be adapted. Compared to complete process model structure changes,
the difference in complexity and waiting time is significant. After the
end of the customer rush, the decisions are changed back to normality.
Finally, separating the decision logic from process model logic allows
reusability of the decision model in multiple decisions occurring in
the same as well as different process models.

3.2 control-flow-based decision patterns

This section describes the results of the analysis of the 956 process
models mentioned in the previous section in detail. The models were
extracted from process model collections of various domains: health
care, banking, insurance, energy and information technology. Each
collection contains between 14 and 334 models, leading to a total num-
ber of 956 process models. These models were analyzed for structures
such as the one in Figure 3.1. Therefore, the focus of the investigation
was on fragments of process models that contain control-flow-based de-
cisions, i. e., decisions that are encoded through a combination of activ-
ities and gateways with conditions attached to the gateways’ outgoing
edges. 63% of the analyzed models contain such control-flow-based
decisions. Some process models even contain multiple occurrences.

The analysis revealed three types of frequently used patterns used
to encode decision logic based on BPMN modeling elements. These
identified patterns are described and formally defined in the follow-
ing. Each pattern is represented as a process fragment (cf. Defini-
tion 12). Thereby, we utilize an example fragment of a process model
from the insurance domain dealing with assigning the correct dis-
count for a customer. In the examples, for clarity reasons, we some-

52 on the separation of concerns of processes and decisions

times visualize only two outgoing edges of a split gateway. Yet, in
practice, there can be any number of edges as covered by the cor-
responding formalisms. These patterns have already been formally
defined in [60]. However, in the following we provide more complete
and accurate definitions.

3.2.1 P1—Single Split Gateway

A process model fragment matching pattern P1 contains a decision
structure of an activity followed by a single exclusive or inclusive
split gateway with at least two outgoing edges. Each outgoing edge
of the gateway is connected to an activity. Moreover, pattern P1 in-
cludes “optionality decisions” as a special case. These are structures
in which one of the outgoing edges of the gateway is not followed
by an activity. Rather, it is, for instance, directly followed by a join
gateway that joins all the exclusive paths of the split gateway. There-
fore, executing an activity after the split gateway is optional. In order
to also consider these cases as instances of pattern P1, such “empty”
edges are extended by τ-transitions (or activites), i. e., empty activities
that do not have an influence on process execution and data.

manage
discount

Loyalty?

assign 5%
discount

partly

assign 12%
discount

fully

assign no
discount

no

Figure 3.2: Process fragment representing a split gateway with more than 2

outgoing edges

Figure 3.2 presents a corresponding process fragment with three al-
ternative paths at the split gateway. Depending on the modeling style,
the bottom activity assign no discount might not have been modeled
such that it would have been added as a τ-transition instead. Since
the gateway is of type XOR, only one alternative can be chosen. Based
on the result of activity manage discount, i. e., the taken decision about
the customer’s loyalty, the discount assigned to the customer is set to
12%, 5%, or 0% respectively. Possible results of the decision are fixed
by the annotations on the edges originating from the split gateway.

Formally, we specify pattern P1 as follows.

Definition 22 (Pattern P1). Let pf = (N′, DO′, V ′, C′, CF′, DF′, γ, β, σ)

be a process fragment of process model m. Then, pf represents P1 if

• N′ = A′ ∪G′ ∪ E′, where E′ = ∅ (pf only contains activities and
gateways),

3.2 control-flow-based decision patterns 53

• |G′| = 1 ∧ G′ = {g} ∧ | • g| = 1 ∧ |g • | ≥ 2 (the fragment
contains exactly one split gateway),

• |A′| = |g • |+ 1 (the number of activities of pf equals the num-
ber of outgoing edges1 of the split gateway g plus 1),

• ∃as ∈ A′ : | • as| = 0 ∧ ∀a ∈ A′ \ {as} : | • a| = 1 (as is the start
node of pf),

• |as • | = 1 ∧ ∀a ∈ A′ \ {as} : |a • | = 0 (activities other than the
start node as are end nodes of pf),

• ∀a ∈ A′ \ {as}, ∃c ∈ C′ : (g, a) ∈ CF′ =⇒ β(g, a) = c (all outgo-
ing edges of the split gateway are annotated with a condition).

�

3.2.2 P2—Sequence of Split Gateways (Decision Tree)

A process model fragment that corresponds to pattern P2 begins with
an activity followed by a split gateway that has at least two outgoing
edges. Each of those outgoing edges is connected to an activity or
another split gateway, with the requirement that at least one of the
outgoing edges must be connected to another split gateway. In case
the edge is connected to an activity, this activity is an end node of
the fragment. However, if the edge is connected to another split gate-
way, it can again be followed by a split gateway or an activity. This
proceeds iteratively until all paths reach an activity, i. e., on each path
from the first split gateway to some end node of the fragment, there
exists exactly one activity. This gives rise to a decision tree structure.

Figure 3.3 presents a corresponding process fragment with a total
of four alternative paths after the first split gateway. Since all gate-
ways are of type XOR, only one alternative can be chosen.

manage
discount

Longevity?
yes

Age?

no

assign 12%
discount

≥5 years

assign 6%
discount<5 years

assign 5%
discount

≥65 years

assign 3%
discount<65 years

Loyalty?

Figure 3.3: Process fragment representing a sequence of split gateways that
represents a decision tree

The actual routing based on the taken decisions is distributed over
two split gateways. Based on the result for the customer loyalty, the

1 the number of outgoing (incoming) edges directly translates to the number of direct
successors (predecessors) and vice versa

54 on the separation of concerns of processes and decisions

second routing decision is either taken based on the longevity of the
customer relationship (loyal customer) or the age of the customer
(non-loyal customer). Due to the dependency of a routing decision
on the ones taken before, this pattern represents a decision tree. Anal-
ogous to pattern P1, the possible results of the decision are fixed by
the annotations on the edges originating from some split gateway.

Formally, we specify pattern P2 as follows.

Definition 23 (Pattern P2). Let pf = (N′, DO′, V ′, C′, CF′, DF′, γ, β, σ)

be a process fragment of process model m. Then, pf represents P2 if

• N′ = A′ ∪G′ ∪ E′, where E′ = ∅ (pf only contains activities and
gateways),

• |G′| ≥ 2 ∧ ∀g ∈ G′ : | • g| = 1 ∧ |g • | ≥ 2 (all gateways of the
fragment are split gateways),

• |A′| = (∑g∈G′ |g • |)− (|G′| − 1) + 1 (the number of activities of
pf equals the number of outgoing edges of the split gateways
not connected to other split gateways, plus 1),

• ∃as ∈ A′ : | • as| = 0 ∧ ∀a ∈ A \ {as} : | • a| = 1 (as is the start
node of pf),

• |as • | = 1 ∧ ∀a ∈ A′ \ {as} : |a • | = 0 (activities other than the
start node as are end nodes of pf),

• ∀g ∈ G′, ∀n ∈ g• : n ∈ A′ ∪G′ \ {g} (all successors of a gateway
are an activity or a gateway), and

• ∀a ∈ A′ \ {as}, ∀g, g′ ∈ G′, ∃c ∈ C′ : ((g, g′) ∈ CF′ =⇒
β(g, g′) = c) ∧ ((g, a) ∈ CF′ =⇒ β(g, a) = c) (all outgoing
edges of the split gateways are annotated with a condition).

�

3.2.3 P3—Sequence of Split Gateways Separated by an Activity

A process model fragment that matches pattern P3 contains a deci-
sion structure of an activity succeeded by a split gateway with at least
two outgoing edges. Each of those outgoing edges is connected to an
activity or another split gateway with at least two outgoing edges. In
both cases, the successor node may be another split gateway with at
least two outgoing edges. Therefore, there can be activities in between
gateways. Iteratively, this proceeds until all paths reach an activity
that is not succeeded by a split gateway. This means, this pattern can
be composed of a combination of decision trees as well as single split
gateways.

Figure 3.4 presents a corresponding process fragment with a to-
tal of three alternative paths after the first split gateway. Since all

3.3 statistics about the decision patterns 55

manage
discount

Loyalty?

Longevity?yes

assign 12%
discount

≥5 years

assign 6%
discount<5 years

assign 5%
discount

no

check
longevity

Figure 3.4: Process fragment representing a sequence of split gateways sep-
arated by an activity

gateways are of type XOR only one alternative can be chosen. In the
example, the choice between 12% and 6% discount is taken based on
two decisions (loyalty and longevity) while granting 5% discount is
clear after the first decision for non-loyal customers.

Formally, we specify pattern P3 as follows.

Definition 24 (Pattern P3). Let pf = (N′, DO′, V ′, C′, CF′, DF′, γ, β, σ)

be a process fragment of process model m. Then, pf represents P3 if

• N′ = A′ ∪G′ ∪ E′, where E′ = ∅ (pf only contains activities and
gateways),

• |G′| ≥ 2 ∧ ∀g ∈ G′ : | • g| = 1 ∧ |g • | ≥ 2 (all gateways of the
fragment are split gateways),

• |A′| ∈ [(∑g∈G′ |g • |)− (|G′| − 1) + 1 + 1, (∑g∈G′ |g • |)− (|G′| −
1) + (|G′| − 1) + 1] (the number of activities of pf equals the
number of outgoing edges of the split gateways not connected
to other split gateways, plus at least 1, and at most plus the
number of gateways connecting to other split gateways, plus 1),

• ∃as ∈ A′ : | • as| = 0 ∧ ∀a ∈ A′ \ {as} : | • a| = 1 (as is the start
node of pf),

• ∃g ∈ G′ : •g = {as} (activity as is followed by a gateway),

• ∀n ∈ N′ : |n • | = 0 =⇒ n ∈ A′ (all end nodes are activities),

• ∀g ∈ G′, ∀n ∈ g• : n ∈ A′ ∪G′ \ {g} (all successors of a gateway
are an activity or a gateway), and

• ∀a ∈ A′ \ {as}, ∀g, g′ ∈ G′, ∃c ∈ C′ : ((g, g′) ∈ CF′ =⇒
β(g, g′) = c) ∧ ((g, a) ∈ CF′ =⇒ β(g, a) = c) (all outgoing
edges of the split gateways are annotated with a condition).

�

3.3 statistics about the decision patterns

As mentioned above, we analyzed 956 process models from various
real world process model collections. This section first presents some

56 on the separation of concerns of processes and decisions

Table 3.1: Statistics on the usage of split gateways in the analyzed model
collections

XOR gateway IOR gateway Binary split Multi split

Freq 80.83% 8.24% 79.3% 19.27%

Avg 3.7 0.15 2.74 0.23

general statistics on the usage of split gateways in these models and
then shows the results of a frequency analysis of patterns P1–P3.

Table 3.1 demonstrates that the exclusive gateway is used very fre-
quently, in more than 80% of all models, with an average of 3.7 usages
per model. This is a ten times higher frequency than that of the in-
clusive gateway. Moreover, most split gateways are binary, i. e., they
have only two outgoing edges, while one out of five gateways has
more than two outgoing edges. Altogether, this demonstrates that in
most process models several decisions are taken, and that most deci-
sions have binary outcomes.

In addition to the split gateway statistics, the process model col-
lections were also analyzed regarding the frequency of the patterns
described in the previous section. The analysis was conducted auto-
matically and therefore required syntactically correct process models.
This is the case for 566 of the 956 models. The results are presented in

Figure 3.5: Frequencies of patterns P1–P3 in real world process models

Figure 3.5 and show that pattern P1 occurs in 59%, pattern P2 in 16%,
and pattern P3 in 32% of all process models. In total, we observed
680 occurrences of P1 fragments, 113 occurrences of P2 fragments,
and 362 occurrences of P3 fragments in our set of 566 models.

These numbers show that the identified patterns are frequently
used in practice. Therefore, BPMN is often misused to represent deci-
sions and their logic. As discussed in the beginning of this chapter, a
separation of concerns provides many benefits and the specification
of decisions using the DMN standard complementary to BPMN can
achieve such a separation. However, the integration and interplay of
the two kinds of models requires extended correctness checks to en-

3.3 statistics about the decision patterns 57

sure an overall sound execution of the business process. This is the
topic of Part iii of this thesis.

4
I N P U T- O U T P U T B E H AV I O R O F D M N D E C I S I O N
TA B L E S

This chapter is concerned with the behavior of DMN decision tables,
discussing how it maps a set of input values to a set of output values.
In Section 4.1, it is argued that the behavior of decision tables with
overlapping rules is hard to understand, making them unsuitable for
certain analysis tasks. Therefore, Section 4.2 presents an algorithm
to transform a table with overlapping rules into an equivalent table
with exclusive rules. Afterwards, we show how decision tables can be
interpreted as functions in Section 4.3, and give a least upper bound
for the number of possible outputs of a table with one input column
in Section 4.4. The work presented in Section 4.1 and Section 4.2 has
partly been published in [96].

4.1 problem statement

Decision tables are standardized in DMN because they proved to be
a suitable representation for decision logic [76]. Their understandabil-
ity is based on the tabular representation of rules that map inputs
to outputs. In simple cases, every given input matches not more than
one rule such that this rule’s output can be returned. Yet, it is also pos-
sible to design more intricate tables that contain overlapping rules. In
this case, more than one rule can apply for a given input. For such
circumstances, DMN offers hit policies as discussed in Section 2.2.2,
which provide various conflict resolution options. For example, the
rule order hit policy just returns the outputs of all matching rules in
a list ordered by the order of the rules. However, the problem with
tables containing overlapping rules is that their input-output behav-
ior is not clearly visible anymore, thereby increasing their complex-
ity [112]. This is because each input could match any number of rules,
whose outputs are then aggregated in some way.

R Income (k)
Number ≥ 0

Assets (k)
Number ≥ 0

Credit Rating
{A, B, C, D, E}

1 ≤ 30 ≤ 30 A

2 [10..60] [10..25] B

3  [20..95]  [40..90] C

4 ≥ 80 - D

5 ≥ 40 ≥ 85 E

Figure 4.1: DMN decision table to determine a credit rating

For example, consider the table in Figure 4.1. The table has five
rules, each of which matches for certain inputs and relates them to an

59

60 input-output behavior of dmn decision tables

output. For instance, rule 1 matches for the input (15, 10) and relates
it to the output A. However, the same input is also matched by rule
2, which relates it to a different value, namely B. This means that
rules 1 and 2 are overlapping, leading to ambiguities regarding the
input values for which they both match: Which output value should
be chosen for these input values? For this reason, the table employs
a rule order hit policy, represented by the letter R in its upper left
corner. Therefore, the table would actually relate the input (15, 10) to
the output [A, B].

This example illustrates that the input-output behavior of tables
with overlapping rules may not be immediately clear. More precisely,
it is not obvious what the possible output values of the table are,
and which input values generate which of these output values. For
example, the possible output values for the table in Figure 4.1 are the
following:

A, B, C, D, E, [A, B], [C, D], [C, E], [D, E], [C, D, E],

which is a far from obvious by just looking at the table. Similarly, it is
not obvious which output value is generated by which input value(s).
For example, given the input (50, 85), one can see that it matches
rule 3, but since this is a table with overlapping rules, this may not
be the only matching rule. One has to keep scanning the rules until
all matches are found—an error-prone process. In fact, also rule 5

matches for this input and the final output is [C, E].
Altogether, decision tables containing overlapping rules have sev-

eral disadvantages. On the one hand, they can be unintuitive and
hard to understand for humans. On the other hand, they are also
not suited for automated analysis tasks that are based on the input-
output behavior of the table, such as checking their correct integra-
tion with business process models [77, 80, 88], a topic that will be
discussed in Part iii. Hence, in the following section, an algorithm
is described that transforms any type of DMN decision table into
one that has only exclusive rules—a process called uniqueification.
Since the rules of the resulting table are exclusive, the possible out-
put values of the table are simply given by the outputs of the individ-
ual rules—no complicated combination of multiple matching rules is
required—leading to a clear input-output behavior of that table.

4.2 decision table uniqueification

The foundations for the uniqueification of DMN decision tables were
laid in Section 2.2.4 by introducing the geometric interpretation of
such tables. For example, the geometric interpretation of the table in
Figure 4.1 is shown in Figure 4.2.

Given this representation, it is quite easy to see which rules match
for which input. For example, for all inputs where Income ∈ [10, 30]

4.2 decision table uniqueification 61

 r1

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

r2

r5

 r4

Income (k)

A
ss

et
s

(k
)

r3

Figure 4.2: Decision table as a set of hyperrectangles corresponding to the
rules of the table in Figure 4.1

and Assets ∈ [10, 25] rules 1 and 2 match. For Income ∈ (30, 60] and
Assets ∈ [10, 25], on the other hand, only rule 2 will match. Clearly,
there can also be allowable inputs for which none of the rules match.
In the geometric interpretation, these unmatched inputs are all the
white “gaps” between the rectangles. This means that the table is
incomplete.

Similar to the techniques of finding overlapping and missing rules
in a decision table, the geometric interpretation together with the line
sweeping technique (cf. Section 2.2.4) can be applied to efficiently
uniqueify tables. The idea is to use the line sweeping technique to
find out for which inputs which rules match. In case the table is not a
unique hit table, it can afterwards be translated to one that is unique.
This means that the rules are then exclusive, making the table not
only more understandable, but also more suitable for certain analysis
tasks.

Algorithm 1 shows the pseudocode of the algorithm. Initially, the
algorithm is called as follows: findMatchingRules(R, [], 0, N, []), where
R is the set of rules of the table, matchingIntervals is an initially empty
list, i is an index initially set to 0, N is the number of inputs of the
table, and matchingRules is an initially empty list.

Given these parameters the sweep line procedure can start, which
analyzes the rules of the table one dimension at a time This requires
sorting the endpoints of the intervals covered by each rule in the
current dimension in ascending order (line 2). Then, the endpoints are
iterated over (lines 4–12). If the current endpoint is a lower one (line 8),
the corresponding rule is considered active, and is therefore added to
the list of activeRules (line 9). Otherwise, if the current endpoint is an
upper one (line 10), the corresponding rule is considered dead, and
is therefore deleted from the list of activeRules (line 11).

62 input-output behavior of dmn decision tables

Algorithm 1: findMatchingRules
Data: rules, matchingIntervals, i, N, matchingRules

1 if i < N then
2 sortedEndpoints = rules.getSortedRulesEndpoints(i)
3 activeRules = []

4 foreach endpoint ∈ sortedEndpoints do
5 if !activeRules.isEmpty() then
6 matchingIntervals[i] = [lastEndpoint, endpoint]
7 findMatchingRules(activeRules, matchingIntervals, i + 1,

N, matchingRules)

8 if endpoint.isLowerBound() then
9 activeRules.add(endpoint.getRule())

10 else
11 activeRules.delete(endpoint.getRule())

12 lastEndpoint = endpoint

13 else
14 if matchingRules.canBeMergedWith({activeRules,

matchingIntervals}) then
15 matchingRules.mergeWith({activeRules, matchingIntervals})
16 else
17 matchingRules.add({activeRules, matchingIntervals})

18 return matchingRules /* contains sets of rules together with
matching input intervals */

For instance, at the beginning, when i = 0, sortedEndpoints = [r1(0),
r2(10), r3(20), r1(30), r5(40), r2(60), r4(80), r3(95), r4(∞), r5(∞)].
Therefore, in the first iteration of the for-loop r1 will be added to
matchingRules. Afterwards, the current endpoint is saved as the last-
Endpoint (line 12) and the line is swept until the next endpoint is
reached (cf. Figure 4.2).

During the iteration of the for-loop, if there is at least one active
rule (line 5), then the interval in which these rules are active is saved
(line 6). Therefore, matchingIntervals[i] = [0, 10). Note that the interval
does not include the upper endpoint because for the value 10 also r2
would be active. Next, there is a recursive call to findMatchingRules(),
to check the second dimension (i + 1 = 1), but only for the list of
activeRules = [r1], and only in the matchingIntervals = [[0, 10)]. In
general, if a line is being swept across a higher dimension, it only
considers rules that lie within the matching intervals of the lower
dimensions. This is visualized in Figure 4.3.

In the second dimension, sortedEndpoints = [r1(0), r1(30)], such
that in the first iteration of the loop r1 becomes active (line 9). In
the second iteration, the list of matching intervals is updated (line 6),

4.2 decision table uniqueification 63

 r1

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

r2

r5

 r4

Income (k)

A
ss

et
s

(k
)

r3

Figure 4.3: Line being swept through the second dimension in the interval
[0, 10)

such that matchingIntervals = [[0, 10), [0, 30]]. Then, the procedure is
recursively called again. At this point, i = N = 2. Hence, the else-part
of the algorithm is executed (line 13), meaning that the first matching
rule was found which is added to the corresponding list (line 17):
matchingRules = [{[r1], [[0, 10), [0, 30]]}].

 r1

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

r2

r5

 r4

Income (k)

A
ss

et
s

(k
)

r3

Figure 4.4: Line being swept through the second dimension in the interval
[10, 20)

The algorithm then returns from the recursive call and deletes r1
from activeRules because the current endpoint is r1(30) which is the up-
per bound of r1 in the second dimension. With that, all endpoints of
the second dimension have been processed and the algorithm returns
to the first dimension. This dimension was left when the current end-

64 input-output behavior of dmn decision tables

point was r2(10) (cf. Figure 4.2), such that the line sweeping continues
from there.

Consequently, r2(10) is added to activeRules, and in the next itera-
tion of the for-loop the line in Figure 4.2 is swept until it hits the end-
point r3(20). Again, a recursive call is made with activeRules = [r1, r2]
and matchingIntervals = [[10, 20)], and the line is swept across the
second dimension in that interval (cf. Figure 4.4). Accordingly, the
algorithm will detect that

• r1 matches for the intervals [[10, 20), [0, 10)];

• both r1 and r2 match for the intervals [[10, 20), [10, 25]];

• r1 also matches for the intervals [[10, 20), (25, 30]].

Coming back to the first dimension, the current endpoint r3(20) is
added to activeRules, and the line is swept to the upper bound r1(30).
Thus, in the second dimension the interval [20, 30] is analyzed. After
that, the current state of all matchingRules would be visualized as in
Figure 4.5a.

r1

r1

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Income (k)

A
ss

et
s

(k
)

r1,r2

r1

r3

r1,r2

r1

r1

(a) Before merge

A

A

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Income (k)

A
ss

et
s

(k
)

A,B

A

C

(b) After merge given
a rule order hit pol-
icy

A

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Income (k)

A
ss

et
s

(k
)

C

(c) After merge given a
first hit policy

Figure 4.5: Set of matchingRules found so far before and after merge

Like the previous figures, it consists of rectangles, but in this case,
they are labeled with the rules that match for the inputs making up
each rectangle. For example, rules 1 and 2 both match for the inputs
spanning the rectangle [[10, 20), [10, 25]] giving rise to the correspond-
ing label in Figure 4.5a.

This figure demonstrates that the rectangles can be optimized, since
many of them cover the same interval in one dimension, and cover
adjacent intervals in the other dimension. For example, the two rect-
angles that are labeled with r1, r2 are the same with respect to the

4.2 decision table uniqueification 65

Assets dimension, i.e., they both cover the interval [10, 25], while in
the Income dimension they are adjacent, i.e., one covers the interval
[10, 20) and the other one covers the interval [20, 30]. Therefore, these
pairs of rectangles can be merged into single rectangles.

As observed in [97], generally, a pair of hyperrectangles with n di-
mensions is eligible for merging if they overlap in n− 1 dimensions
and are adjacent in the remaining dimension, and if the correspond-
ing rules have the same output. However, [97] only deals with unique
hit tables. This means that each hyperrectangle only represents one
rule, such that the corresponding output is determined by that sin-
gle rule. In case of the algorithm described here, more than one rule
can belong to the same rectangle, so that the output of that rectangle
depends on the hit policy of the underlying decision table.

For instance, the table in Figure 4.1 has a rule order hit policy. Conse-
quently, the rectangles in Figure 4.5a labeled with r1, r2 will produce
the output [A, B]. Hence, they can be merged with each other, but
not with any of the other rectangles. The result of all possible merges
given a rule order hit policy is illustrated in Figure 4.5b. To illustrate
the effect that different hit policies have on these merges, assume that
the table has a first hit policy instead. In this case, all of the rectan-
gles in the lower left corner in Figure 4.5a will produce the same
output (A). Therefore, the result after merging would be as shown in
Figure 4.5c.

The merging of rectangles is reflected in the else part in Algorithm 1

(lines 13–17). As soon as a new rectangle (i.e., matching rule) is dis-
covered by the sweep line method, a check is conducted if it can be
merged with other rectangles found so far (line 14). As described in
the previous paragraph, this requires the computation of the output
that is produced by the newly found rectangle based on the table’s
hit policy. If rectangles can be merged, the result is put into the list of
matchingRules instead of its parts (line 17). Hence, after the line has
been swept across the second dimension in the interval [20, 30], the
list of matchingRules will actually look as visualized in Figure 4.5b,
because three rectangle pairs can be merged.

Ultimately, after all sortedEndpoints have been processed, the list of
matchingRules discovered by Algorithm 1 will contain 15 elements,
ending with the element {[r4, r5], [(95, inf), [85, inf)]}, as visualized
in Figure 4.6. This figure illustrates that the original set of five over-
lapping rectangles was now partitioned into a set of 15 exclusive (or
unique) rectangles, covering the same input space as before. These
unique rectangles can be translated back into a decision table. This
table is shown in Figure 4.7. It has 15 exclusive rules and is therefore
a unique hit table as indicated by the letter U in the upper left cor-
ner. It has the same input-output behavior as the table in Figure 4.1.
However, due to the fact that all of its rules are exclusive it is more
easily comprehensible and the set of possible outputs of the table is

66 input-output behavior of dmn decision tables

A

A

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Income (k)

A
ss

e
ts

 (
k)

A,B

A

C

B

C

C,E

E

D

C,D

C,D,E

D,E
D,E

D

Figure 4.6: Decision table as a set of hyperrectangles

U Income (k)
Number ≥ 0

Assets (k)
Number ≥ 0

Credit Rating
{A,B,C,D,E,[A,B],[C,D],[C,E],[D,E],

[C,D,E]}

1 < 10 ≤ 30 A

2 [10..30] < 10 A

3 [10..30] [10..25] A,B

4 [10..30] (25..30] A

5 [20..40)  [40..90] C

6 30..60] [10..25] B

7  [40..80)  [40..85) C

8  [40..80)  [85..90] C,E

9  [40..80) > 90 E

10  [80..95] < 40 D

11  [80..95]  [40..85) C,D

12  [80..95]  [85..90] C,D,E

13  [80..95] > 90 D,E

14 > 95 < 85 D

15 > 95 ≥ 85 D,E

Figure 4.7: Uniqueified table derived from the table in Figure 4.1

immediately visible. Furthermore, this representation of the table is
more suitable for certain analysis tasks as will be discussed in Part iii.

4.3 decision tables as functions

A DMN decision table, through its rules and its hit policy, defines a
(partial) function. The domain of this function is the Cartesian prod-
uct of the domains of the inputs of the table, and the function’s
codomain is based on the domain of the output of the table, i. e., it
can be derived from the output’s domain, as explained below. Fur-
thermore, the function defined by the decision table may be partial.
This is the case if the table is incomplete, meaning that there are al-
lowable input values for which no rule matches, such that this input
cannot be mapped to any output. For example, the table in Figure 4.7
defines a partial function since, for instance, there is no rule for the
input (10, 40).

4.3 decision tables as functions 67

The domain of this partial function is R≥0 ×R≥0 because both of
the table’s inputs are real numbers greater than or equal to zero.
Hence, in general, the domain of a decision table function is given
by the set IV, as defined in Definition 18.

The codomain of a decision table function is not so obvious, how-
ever. For single-hit decision tables the codomain could simply be
given by the set of output values OV of the decision table (cf. Def-
inition 18). In case of multi-hit tables, the situation is more complex
because combinations of values in OV can be returned. Furthermore,
they may be ordered in a certain way, depending on the concrete
multi-hit policy of the table. Therefore, the codomain can be com-
posed of several multisets1 from the set OV, where each multiset has
a total ordering determined by the hit policy. As a result, the function
characterized by a decision table is defined as follows:

Definition 25 (Decision table function). Given a decision table dt with
a set of input values IV and a set of output values OV, let OVMS be
the set of multisets of OV. Also, given the set of rules R of dt, let
output(r) be the output value of rule r, where output(r) ∈ OV, for
r ∈ R. Then, let OV ′ = +r∈R{output(r)} be the multiset composed of
the output values of all rules.2 Note that OV ′ ∈ OVMS. Consequently,
the function t underlying dt is given by

t : IV 9 2OV′ \∅,

where each ov′ ∈ OV ′ may be totally ordered according to the hit
policy p of dt if p ∈ {output order, rule order}. Note that this function
characterizes both single- and multi-hit tables because in both cases
the table’s image (i. e., the elements of the codomain it actually maps
to) will be some subset of the codomain given above. �

R Input1
Number ≥ 0

Input 2
Number ≥ 0

Output
{A, B, C}

1 [0..6] [2..8] A

2 [1..5] [1..7] B

3  [2..8]  [0..6] B

Figure 4.8: Decision table with three rules and two different output values

For example, consider the table in Figure 4.8. In this instance, OV ′ =
{A1, B2}, where the superscript of each element denotes its multi-
plicity. The powerset (excluding the empty set) of OV ′ is given by
{{A1}, {B1}, {A1, B1}, {B2}, {A1, B2}}, which is this table’s codomain.
All the subsets of this codomain that contain more than one element
are totally ordered according to the order of the rules, since the table
has a rule order hit policy. For example, consider the input (1, 2). This

1 Multisets are necessary because different matching rules can have the same output
value.

2 The + symbol represents multiset addition as defined in Definition 6.

68 input-output behavior of dmn decision tables

input will match rules 1 and 2, such that the totally ordered subset
{A, B} is returned, where A < B, meaning that A precedes B in the
ordering. But it could also be B < A, if the rules were reversed. Note,
however, that the codomain cannot contain the same subset with dif-
ferent orderings. This also makes sense from the point of view of the
underlying decision table, since if a set of rules overlap, the hit policy
will ensure a certain ordering of the returned output.3

4.4 maximum number of outputs of a decision table

The considerations in the preceding section give rise to an interest-
ing question: given a DMN decision table with r rows and c input
columns, what is the maximum possible number of distinct outputs
for this table? The upper bound of the number of distinct outputs can
be easily inferred from the decision table function in Definition 25 by
computing the cardinality of its codomain.

Lemma 4.4.1. Given a DMN decision table dt whose underlying func-
tion is t : IV 9 2OV′ \ ∅, the upper bound of the number of distinct
outputs of dt is the following:

∏
ov′∈OV′

(m(ov′) + 1)− 1,

where m(ov′) is the multiplicity of element ov′. This formula yields
the cardinality of the powerset of the multiset OV ′, excluding the
empty set.

Proof. According to Definition 25, 2OV′ \ ∅ is the codomain of the
function underlying a decision table. Since a table can only produce
outputs that are in this codomain, the upper bound of the number
of distinct outputs of the table is given by the cardinality of the
codomain.

For example, given a decision table with rules R = {r1, r2, r3}, such
that output(r1) = A and output(r2) = output(r3) = B (cf. Figure 4.8),
the multiset OV ′ composed of the output values of all rules is OV ′ =
{A1, B2}. The powerset (excluding the empty set) of OV ′ is given
by {{A1}, {B1}, {A1, B1}, {B2}, {A1, B2}}, and its cardinality equals
(1 + 1)× (2 + 1)− 1 = 5 as determined by the formula above.

As another example, assume the rules in R all have different out-
puts such that OV ′ = {A1, B1, C1}. In this case, OV ′ is a regular set,
whose powerset (excluding the empty set) contains 2|OV′| − 1 = 7 ele-
ments. Note that this number can also be determined by the formula
of Lemma 4.4.1. Therefore, this formula provides a general way of de-
termining the maximum possible number of distinct outputs of any
DMN decision table.

3 The collect policy “returns all hits in arbitrary order” [76]. We assume that this order
will always be the same for a particular table.

4.4 maximum number of outputs of a decision table 69

While Lemma 4.4.1 provides an upper bound of the number of
outputs, it is not necessarily the least upper bound. For example, con-
sider the decision table in Figure 4.9a. This table has three rules, one
input column and a rule order hit policy, and each rule has a different
output. In Figure 4.9b the table’s geometric interpretation is shown,

R Input1
Number ≥ 0

Output
{A, B, C}

1 [0..6] A

2 [1..5] B

3  [2..8] C

(a) Decision table with five possible
outputs

0 1 2 3 4 5 6 7 8

Input1

A
B
C

A A,B A,B,C A,C C

(b) Geometric interpretation of the table
on the left

Figure 4.9: Example of a decision table with one input column, and its geo-
metric interpretation

which consists of three overlapping one-dimensional hyperrectangles
(i. e., lines). The vertical lines in this figure partition those hyperrectan-
gles into five unique segments. They are unique in terms of the lines
(or rules) that lie within that segment, and the output correspond-
ing to each segment is displayed above. Hence, this table falls short
of achieving the upper bound of the number of outputs of a table
with three different output values, which would be (1 + 1)3 − 1 = 7
according to Lemma 4.4.1.

As another example, consider the table in Figure 4.10. It is very
similar to the previous table, except that it contains an additional
rule with an additional output value. Its geometric interpretation in
Figure 4.10b shows that the hyperrectangles can be partitioned into
seven unique segments, where each segment has a different output.
Again, this number is lower than (1 + 1)3 − 1 = 15, which would be
the maximum number of distinct outputs according to Lemma 4.4.1.

R Input1
Number ≥ 0

Output
{A, B, C, D}

1 [0..5] A

2 [1..6] B

3  [2..7] C

4  [3..8] D

(a) Decision table with seven possi-
ble outputs

B,C,D

0 1 2 3 4 5 6 7 8

A
B
C

A A,B A,B,C C,D

D

A,B,C,D D

Input1

(b) Geometric interpretation of the table
on the left

Figure 4.10: Another example of a decision table with one input column,
and its geometric interpretation

These two examples suggest that in case of only one input column,
the upper bound cannot always be reached due to the fact that the
input space can only be partitioned into a certain number of unique
segments, namely five segments in case of three rules, and seven seg-

70 input-output behavior of dmn decision tables

ments in case of four rules. This observation can be generalized in the
following Lemma:

Lemma 4.4.2. Given a DMN decision table dt with one input column
and r rules, let seg(dt) be the number of unique segments that its
hyperrectangle representation can be partitioned into. It holds that
seg(dt) ≤ 2r− 1.

Proof. The proof is carried out by induction. As the base case, assume
that r = 1, so that the decision table has one rule. The hyperrect-
angle representation of any such table will look like illustrated in
Figure 4.11. Since the table has only one input column, the hyperrect-

Figure 4.11: Induction base case

angle is a line that is displayed at the bottom of the figure. At the left
and right edges of that line, two vertical lines show the borders of the
unique segment that this line creates, and the segment is colored in a
certain pattern. Obviously, there is only one segment (or pattern) that
can be created with a single rule, such that seg(dt) = 1 ≤ 2r− 1 = 1.

For the inductive step, we can assume that for a decision table with
r = n rules it holds that seg(dt) ≤ 2n − 1. The segmentations of
the hyperrectangle interpretation are shown in Figure 4.12. The lines

Figure 4.12: Induction hypothesis

representing the n rules of the table are omitted intentionally because
their exact configuration is unknown. But what can be assumed for
the inductive step is that these rules cannot be partitioned into more
than 2n− 1 unique segments. These segments are shown as different
patterns in the figure.

We assume that the segments do not contain any gaps between
them, i. e., the dots in Figure 4.12 must represent actual patterns and
no white space. Otherwise, a dummy pattern will be added to fill the
gap. This is possible because if there are gaps there will be less than
2n− 1 segments. For example, assume that there is indeed a gap in
Figure 4.12. This would mean that the n rules could be divided into p
rules left of the gap and q rules right of the gap, where n = p+ q, such
that those two sets would not contain any gaps. Consequently, based
on the induction hypothesis, there would be at most 2p− 1+ 2q− 1 =

2(p + q)− 2 = 2n− 2 patterns or segments, which is less than 2n− 1.

4.4 maximum number of outputs of a decision table 71

In such cases the gap can be filled with a dummy pattern, such that it
holds that there are at most 2n− 1 patterns, not containing any gaps.

For the inductive step, an n + 1-th rule needs to be added to the
table, such that r = n + 1. The following will demonstrate that no
matter how this n + 1-th rule is added, the resulting segmentation
will not contain more than 2(n + 1)− 1 = 2n + 1 unique segments.

As a first option consider the situation, where the new rule does not
overlap with any of the other rules. For example, assume without loss
of generality that the rule is added to the right of all the other rules
as depicted in Figure 4.13. This will only generate one additional
segment (or pattern) such that now there are at most 2n − 1 + 1 ≤
2n + 1 segments, so the formula is still valid.

Figure 4.13: Induction step—Option 1

Next, assume the new rule is added such that it covers all of the
existing segments and extends beyond them to the left and right.4 In
this case, the existing patterns stay the same, because the same change
is made to every one them, such that, if they were unique before
(which is the assumption), they will be unique afterwards. Therefore,
after adding the new rule, only one additional pattern is introduced,
namely to the left and right of the existing ones. This is illustrated in
Figure 4.14. Hence, there are now at most 2n− 1+ 1 ≤ 2n + 1 unique
segments, so the formula is still valid. Note as a special case of this
situation, that if the rule does not extend to at least one side of the
existing segments, not even a single new unique segment would be
added.

Figure 4.14: Induction step—Option 2

As a third option, the rule is added such that it cuts (i. e., overlaps
with but does not cover) one segment and covers the other segments
that lie on the way to that cut point. As in the previous situation, the
segments that are covered do not change their patterns. The segment
that is cut keeps its pattern where it does not overlap with the new
rule, and changes its pattern where it does overlap. An example is
shown in Figure 4.15. The added rule cuts the rightmost segment
and extends to the right of it, which leads to two new patterns. Note

4 For example, this could be a rule that simply matches any input.

72 input-output behavior of dmn decision tables

as a special case of this situation, that if the rule does not extend to
the right (or left) of the existing segments, only a single new unique
segment would be added. Therefore, in this situation there are at most
2n− 1 + 2 ≤ 2n + 1 unique segments, so the formula is still valid.

Figure 4.15: Induction step—Option 3

Lastly, the rule could be added so that it cuts two existing seg-
ments, one on each of its endpoints. Again, the segments that lie
between these endpoints are covered by the new rule so that they do
not change their patterns. Moreover, the segments that are cut will
each keep the existing pattern and add a unique new pattern, as was
the case in the previous situation when only one segment was cut.
This is illustrated in Figure 4.16. Therefore, for this option there are
at most 2n− 1 + 2 ≤ 2n + 1 unique segments, so the formula is still
valid.

Figure 4.16: Induction step—Option 4

Besides these four options (including their special cases), there is
no other way of adding another rule to a table with r = n rules.
Therefore, the hyperrectangles of the resulting table can only be par-
titioned into at most 2(n + 1) − 1 = 2n + 1 unique segments. This
completes the proof that the hyperrectangles of a decision table with
r rules and one input column can be partitioned into at most 2r − 1
unique segments.

Corollary 4.4.2.1. The least upper bound of the number of distinct
outputs of a multi-hit DMN decision table with r rules and one input
column is 2r− 1.

Note that this bound only holds for multi-hit tables with one input
column, since they have the ability to return combinations of output
values. If a decision table can only return a single value, i. e., if it is
a single-hit table, the least upper bound of the number of distinct
outputs a table table with any number of input columns is given by
the number of rules r.

Regarding the question that was raised in the beginning of this sec-
tion, Corollary 4.4.2.1 only provides an answer for the case of one

4.4 maximum number of outputs of a decision table 73

input column. It remains to determine the least upper bound of dis-
tinct outputs for tables with more than one input column. However,
solving this problem requires a very intricate analysis of the differ-
ent ways in which a set of n-dimensional hyperrectangles can overlap
and is beyond the scope of this thesis.

5
F O R M A L I Z I N G D E C I S I O N - AWA R E P R O C E S S
M O D E L S

Decision-aware business process models are characterized by their in-
tegration of two types of models, process models and decision mod-
els. Section 4.3 explained that decision models, whose behavior is
defined by decision tables, can be viewed as conventional functions,
mapping input values to output values. Consequently, decisions are
simply operations on process data [107]. As already mentioned in
Chapter 2, Petri nets can be used as a means to precisely express the
semantics of business process models, yet they do not consider data.
Therefore, colored Petri nets are required to incorporate the semantics
of decision models in the formalization of a decision-aware business
process model.

In Section 5.1 and Section 5.2 mappings from decision-aware pro-
cess models to colored Petri nets are defined. On the basis of such
a mapping, the concepts of colored workflow nets and their sound-
ness are defined in Section 5.3, while Section 5.4 explains how to deal
with certain cases of concurrent decision executions in the mapping.
Finally, Section 5.5 summarizes the chapter with a short discussion.

5.1 simple colored petri net mapping

Section 2.1.2.1 described a mapping of BPMN process models to Petri
nets, abstracting from data. This mapping can be used as a basis for
the mapping of decision-aware process models to colored Petri nets.
The major difference is the consideration of decision models and their
data operations in the mapping. Indeed, the mapping needs to be
extended to consider the behavior of the process’ decision fragments
(cf. Definition 20). This includes the representation of the decision
logic in the colored Petri net as well as the logic of the succeeding
gateway.

5.1.1 Merging Decision Tables

The mapping is based on the assumption that the logic of the deci-
sion models is expressed using decision tables. Furthermore, if the
model contains more than one decision, i. e., one top-level decision
(returning the final decision value), plus one or more sub-decisions,
the model first needs to be preprocessed to express the entire decision
logic in a single (top-level) decision table, whose logic can then be rep-
resented in the colored Petri net. Since structuring decision models

75

76 formalizing decision-aware process models

into sub-decisions can be seen as syntactic sugar, this preprocessing
step is straightforward and will be explained using an example.

D1

in1 D2

in2 in3

Figure 5.1: Decision requirements diagram with more than one decision

U in1
Number

D2
Boolean

D1
{10%, 5%, 0%}

1 5 T 10%

2 <5 T 5%

3 - F 0%

(a) Decision table for D1

U in2
{A, B, C}

in3
Number

D2
Boolean

1 A - T

2 B 0 T

3 C 0 F

(b) Decision table for D2

Figure 5.2: Decision tables associated with the decisions in Figure 5.1

Figure 5.1 shows a decision diagram of a decision model with two
decisions, D1 and D2, where the output of D2 serves as an input for
D1. The respective decision tables are depicted in Figure 5.2. To merge
the two tables into one, each condition of table D1 that corresponds to
an output value of D2 needs to be replaced by the input conditions of
D2 that lead to this output. The resulting table is shown in Figure 5.3b.
Instead of having D2 as an input, this table receives the inputs of
D2, namely in2 and in3. Moreover, the input conditions that were
previously imposed on the former input D2 are now replaced by the
input conditions on in2 and in3 that led to the respective values for
D2. For example, rule one of the table in Figure 5.2a requires D2 to be
true. So now, instead of having D2 as an input, this table receives the
inputs of D2, in2 and in3, and rule one is replaced by two new rules
because D2 can be true in two different situations (cf. Figure 5.2b).

D1

in1 in2 in3

(a) Merged DRD

U in1
Number

in2
{A, B, C}

in3
Number

D1
{10%, 5%, 0%}

1 5 A - 10%

2 5 B 0 10%

3 <5 A - 5%

4 <5 B 0 5%

5 - B 0 0%

(b) Merged decision table

Figure 5.3: Equivalent decision model with merged decision tables

5.1 simple colored petri net mapping 77

5.1.2 Mapping Decision Fragments to CPNs

As explained in the beginning of this section, to express the behav-
ior of a decision fragment in a colored Petri net, the decision logic
referenced by the decision task as well as the logic of the succeeding
gateway need to be mapped.

The mapping of the decision logic (expressed as decision tables)
requires all decision tables of the decision model to be merged (as
described in the previous section), and it requires the single merged
table to be uniqueified using the method described in Section 4.2.
This ensures that all rules are exclusive, such that each rule of the
table can simply be mapped to a transition in the colored Petri net.

The transition guard represents the conditions of the rule as a con-
junctive Boolean expression, and the transition’s outgoing arc expres-
sion represents the output of the rule. If a rule condition is empty
(“−”), the corresponding conjunct of the guard will simply be omit-
ted. Moreover, each input/output variable of the table is represented
by a place that is connected to each transition. To represent the execu-
tion of the decision task that references the decision table, two control
flow places are added, which the transitions read from and write to,
respectively.

Concerning the color sets, the places representing the input/output
variables of the table are assigned a color set that has the same do-
main as the corresponding table variable. The color set of the control
flow places is the default Unit color set containing the single value
“()”.1

For example, suppose that a decision task of a process references
the decision table in Figure 5.4a. Then, the decision task together
with the decision table can be mapped to the colored Petri net in
Figure 5.4b.

U in1
Number

in2
Boolean

out
{A, C, [A,B]}

1 0 = T A

2 = 1 = T C

3 2 = F A,B

(a) Decision table referenced by the
decision task

r1

p1

p3

in1

[in1  0 in2]

r2

r3

A

C

{A,B}

[in1 = 1 in2]

[in1 ≠2 in2]
p2

in2

in1

in1

in2

in2

cf1 cf2

out

out

out

(b) Corresponding colored Petri net

Figure 5.4: Example of a mapping of a decision task that references the de-
cision table in 5.4a to a colored Petri net

1 For this reason, the arc expressions of the incoming and outgoing arcs of a control
flow place will always be “()”, and will therefore be omitted.

78 formalizing decision-aware process models

In this net:

• Σ = {Int, Bool, {A, C, {A,B}} ∪∅, Unit}, where Unit = {()},

• V = {in1 : Int, in2 : Bool, out : {A, C, {A,B}} ∪∅},

• col(p1) = Int, col(p2) = Bool, col(p3) = {A, C, {A,B}} ∪∅,
col(cf1) = col(cf2) = Unit.

Note that each transition reads and writes from and to the places
representing the decision table variables. Regarding the places rep-
resenting the input variables, this is to not consume the contained
tokens “away”, as they may be needed again later on by other tran-
sitions using the same inputs. Regarding the places representing the
output variables, this is to ensure that the place is 1-bounded, which
would not be the case if the table was part of a loop and the read arc
was missing.

In addition to mapping the decision task and its associated decision
table, also the succeeding gateway must be mapped. This mapping
works similarly by representing each outgoing edge of the gateway
with a transition whose guard corresponds to the condition assigned
to the edge. In conclusion, the steps explained above provide a way
to map a decision fragment to a colored Petri net.

5.2 abstract colored petri net mapping

The mapping of the previous section faces a major problem that will
be described and overcome in this section.

5.2.1 Symbolic Abstraction

The problem with the mapping in Figure 5.4 is that it will lead to
a reachability graph with infinitely many states. This is due to the
fact that there are infinitely many initial markings for the net in Fig-
ure 5.4b, since the variable in1 can take on infinitely many values,
and if, for instance, soundness is to be checked, every possible value
needs to be checked.

A solution to this type of problem is given by the idea of sym-
bolic abstraction [17], where the general idea is to represent infinitely
many values by an abstract symbol. In our case, the idea is as follows:
Although there are infinitely many combinations of values for the to-
kens in p1 and p2 in Figure 5.4b, through the guard conditions of
the net, those values will be partitioned into finitely many sets of values.
And each partition will result in the same trace, i. e., its elements will
enable and fire the exact same transitions when flowing through the
net.

For example, for the net in Figure 5.4b there will be four partitions
of the infinite set Z×B:

5.2 abstract colored petri net mapping 79

• all the values in {z ∈ Z | z ≤ 0} × {>} can only enable and fire
transition r1;

• all the values in {1} × {>} can only enable and fire transition
r2;

• all the values in {z ∈ Z | z 6= 2} × {⊥} can only enable and fire
transition r3;

• all the remaining values in Z×B cannot enable any transition
(because the table in Figure 5.4a is incomplete).

Therefore, to conduct a reachability graph or soundness analysis,
instead of working with concrete values, we work with abstract sym-
bols given by the partitions of the originally infinite set of values.
Hence, rather than representing concrete values and operations on
those values in the colored Petri net, sets are used and the operations
like checking a condition of a decision table input, are changed to set
operations.

For example, the abstract symbol for all the values of the variable
in1 of type integer is given by the set Z. Similarly, the values of in2 of
type Boolean are represented by B. The variables and the transition
guards need to be updated accordingly. For example, the guard of
transition r1 then is

[in1∩ {z ∈ Z | z ≤ 0} 6= ∅ ∧ in2∩ {>} 6= ∅],

using the intersection operator to check the abstract symbols for val-
ues that satisfy the respective conditions.

Similarly, the transition guard of r3 is

[in1 \ {2} 6= ∅ ∧ in2∩ {⊥} 6= ∅],

where in the first conjunct the complement operator is used to check
the abstract symbol for values that satisfy the condition 6= 2.

Once a transition has fired, the symbols can be refined by the arc
expressions of the arcs leading from the transition back to the variable
places. For instance, if transition r1 fires, only the subset of values
that actually fulfill r1’s conditions are written back. This expresses
the fact that r1 creates the first partition of the list of partitions above.
For example, the arc expression of the arc from transition r1 to place
p1 is

in1∩ {z ∈ Z | z ≤ 0}.

Clearly, when starting with the sets Z and B in the beginning, all
transitions are enabled, and only after firing one of them, a subset of
each set is created. Therefore, in the reachability graph a split will be
encountered, where each outgoing edge corresponds to the firing of a

80 formalizing decision-aware process models

transition, and each path in the graph analyzes one of the partitions.
This will be illustrated in the following.

Figure 5.5 shows the mapping of a decision task that references the
table in Figure 5.4a, employing symbolic abstraction. It contains the
two control flow places cf1 and cf2, and three variable places. More-
over, each rule of the decision table is represented by a transition.

r1

p1

p3

[in1 ⋂ {z  ℤ | z  0} 
˄ in2 ⋂ {⏉} ]

r2

r3

C

[in1 ⋂ {1} 
˄ in2 ⋂ {⏉} ]

[in1 ∖ {2} 
˄ in2 ⋂ {⏊} ]

cf1 cf2

out

p2

{z  ℤ}

()

{b  𝔹}



Figure 5.5: Colored Petri net corresponding to the table in Figure 5.4a, em-
ploying symbolic abstraction

The further specifications of this net are as follows:

• Σ = {2Int, 2Bool, {A, C, {A,B}} ∪∅, Unit}, where Unit = {()},

• V = {in1 : 2Int, in2 : 2Bool, out : {A, C, {A,B}} ∪∅},

• col(p1) = 2Int, col(p2) = 2Bool, col(p3) = {A, C, {A,B}} ∪ ∅,
col(cf1) = col(cf2) = Unit.

The color sets in Σ were modified so that the input variable places
are now defined as powersets of the original domains to enable the
representation of sets of values instead of single values only. Accord-
ingly, also the variables in V and the color sets of the places were
adapted.

Comparing the nets in Figure 5.4b and Figure 5.5 it should be noted
that they do not differ structurally, i. e., they contain the same places,
transitions, and arcs between them. However, the color sets are de-
fined differently, and therefore also the operations on the tokens of
the respective color sets have been adapted, as can be seen from the
guards and arc expressions, which now work on sets.

Also, the net has been given an initial marking. The markings of
the places representing decision table inputs are given by the entire
domains of the respective variables, acting as the corresponding ab-
stract symbols as discussed above. The marking of the output variable
place is the empty set, and the marking of the first control flow place
is “()”.

5.2 abstract colored petri net mapping 81

r3
in1={z  ℤ}
in2={b  𝔹}

out=

r1
in1={z  ℤ}
in2={b  𝔹}

out=

[(p1,{z  ℤ}),
(p2,{b  𝔹}),

(p3,),
(cf1,())]

[(p1,{z  ℤ | z 2}),
(p2,{⏊}),

(p3,{A,B}),
(cf2,())]

[(p1,{z  ℤ | z  0}),
(p2,{⏉}),

(p3,A),
(cf2,())]

r2
in1={z  ℤ}
in2={b  𝔹}

out=

[(p1,{1}),
(p2,{⏉}),

(p3,C),
(cf2,())]

Figure 5.6: Reachability graph of the colored Petri net in Figure 5.5

Figure 5.6 shows the reachability graph of the colored Petri net
in Figure 5.5. This graph shows how the Cartesian product of the
input variable sets given by the initial marking is partitioned such
that each partition represents the execution of all elements contained
in that partition. Namely, three partitions reach a marking containing
a token in place cf2, while the remaining partition deadlocks at cf1
due to the incompleteness of the decision table.

Those partitions are exactly the ones that have been described in
the list above, and they are reached by the same transitions as above.
Therefore, the nets in Figure 5.4b and Figure 5.5 exhibit the same
behavior for the same data values. This in turn means that any behav-
ioral analysis that needs to be conducted for the net in Figure 5.4b
can be conducted on the net in Figure 5.5, and any property that is
true for the latter will be true for the former.

5.2.2 Mapping Decision Fragments to Abstract CPNs

This leads to the generic mapping of a decision fragment to a colored
Petri net. The generic decision fragment is shown in Figure 5.7. The
decision task is associated with a decision model implemented by the
decision table in Figure 5.7b. Without loss of generality, we assume
that this table has two rules, two inputs, and one output. The two
inputs are contained in the data object In read by the decision task,
and the output is written into the data object Out written by the task.
The input in1 is assumed to be an input variable of the process, while
in2 is a variable that was written by a previous decision of the process.

Furthermore, the rule conditions compare the input variables with
some value or list of values (such as an interval) of the variables’
domains. The allowed operators are equality (=) and containment
(∈), and their negations (6=, 6∈), all of which are used in the table in

82 formalizing decision-aware process models

D

Out?

= out1

∈ out2

In Out

(a) Generic decision fragment

U in1
dom(in1)

in2
dom(in2)

out
dom(out)

1 = cond11 ∈ cond21 o1

2 ∉ cond12 ≠ cond22 o2

(b) Generic decision table

Figure 5.7: A generic decision fragment with its associated decision table

Figure 5.7b. Note that comparison operators such as “≤” are special
cases of the containment operator.

Finally, the table must have a unique hit policy. If this is not the case,
it can be uniqueified using the procedure described in Section 4.2. For
this reason, dom(out) is assumed to be a set of multisets as defined in
Definition 25. For simplicity, multisets with a single element, such as
{A} are represented as the value A. Hence, the outputs o1 and o2 are
(totally ordered) multisets from dom(out), if they contain more than
one element. Otherwise, they are single values.

Without loss of generality, we assume that the split gateway suc-
ceeding the decision task has two outgoing edges. The edges are asso-
ciated with conditions, where the condition = out1 tests the decision
output for equality with the value out1, while the other condition
checks if the output is contained in the set out2.

In general, the allowed edge condition operators are equality (=),
containment (∈) and reverse containment (3), and their negations (6=,
6∈, 63).2 Equally to decision table outputs, the edge condition value is
always assumed to be a multiset, or a single value. For example, out1
could be the multiset {A, A, C}, but it could also be simply the value
A.

The mapping is shown in Figure 5.8. Those parts of the table rules
that refer to abstract symbols (i. e., in1) are mapped in such a way
that they check the abstract symbols (i. e., sets) of the input values
for an intersection with or a complement of the values corresponding
to the respective input conditions. The complement operator is used
in case of negated input conditions (through the operators 6= or 6∈),
while the intersection operator is used for the others.

For the other parts of the rules (referring to in2) the original oper-
ations are mapped—as it was done for the mapping in Figure 5.4b—
because outputs of previous decisions are concrete values. Therefore,
the guard of a decision table transition may implement symbolic and
non-symbolic operations at the same time.

In order to enable a transition, the intersection or complement must
not be the empty set in case of symbolic inputs, while for concrete

2 If the operator in a table or edge condition is omitted, it defaults to =.

5.2 abstract colored petri net mapping 83

r1

p1
p3

[in1 ⋂ {e  dom(in1) |
e = cond11} 
˄ in2 ∈ cond21]

r2

cf1 cf2

[in1 ∖ {e  dom(in1) |
e ∈ cond12} 
˄ in2  cond22]

g1

g2

[out = out1]

[out ∈ out2]

cf3
dom(in1)

∈ dom(in2)

p2

()

cf4



...

Figure 5.8: Colored Petri net corresponding to the decision fragment in Fig-
ure 5.7, employing symbolic abstraction

inputs the respective condition must simply be true. If a transition
fires, it not only produces the respective output, but also refines the
abstract symbols and writes them back to the input places.

Additionally, the gateway with its outgoing edges is mapped. For
each outgoing edge a transition is created and the edge’s condition is
mapped to the guard of the transition.

As can be seen in the figure, the guard conditions also implement
the original operations of the edge conditions in the process model
This is because they always read from an output variable place, which
contains a concrete decision table output. Therefore, the edge con-
dition operators can be mapped as they are, meaning the equality
operator is mapped to an equality operator in the CPN, while the
containment operators are mapped to containment operators in the
respective directions (∈, 3).

So, in general, the arc expressions and parts of the guards con-
cerned with bindings from input variable places will implement sym-
bolic operations and refinements of the symbols, whereas bindings
from output variable places are treated as in Figure 5.4b (and the
gateway transitions in Figure 5.5).

Note that a variable can be used by multiple decision tables in the
process, such as the variable represented by p2 in Figure 5.5. In that
case, this is because the output of one table is used as an input for
another table. Another possibility would be that two decision tables
share the same input variables. However, this will not lead to multiple
places for the same variable. Rather, for each variable exactly one
place is generated that any transition can read from and write to.

84 formalizing decision-aware process models

In the end, this all boils down to the fact that each data object
attribute referenced by the decision tables is mapped to exactly one
place in the colored Petri net.

The further specifications of this net are as follows:

• Σ = {2dom(in1), dom(in2)∪∅, dom(out)∪∅, Unit},
where Unit = {()},

• V = {in1 : 2dom(in1), in2 : dom(in2)∪∅, out : dom(out)∪∅},

• col(p1) = 2dom(in1), col(p2) = dom(in2)∪∅, col(p3) = dom(out)∪
∅, col(cf1) = col(cf2) = col(cf3) = col(cf4) = Unit.

This mapping can be embedded into the usual mapping of BPMN
process diagrams to Petri nets: whenever a decision fragment is en-
countered the mapping in Figure 5.8 is applied, otherwise the map-
ping rules in Figure 2.8 are used, and the Unit color set is assigned to
all control flow places.

5.2.3 Assumptions

The described mapping comes with the following assumptions:

• input variables of decision tables are written as data object attributes
by the start event or by a decision task: no other tasks can write
these attributes because their input-output behavior is unknown
—unlike that of decision tasks;

• input variables written by the start event cannot be overwritten: such
data represents input data to the process, and to properly verify
the soundness of a colored Petri net, this input data must not
be overwritten (cf. criterion (v) of Definition 28 below);

• all data objects read by the decision tasks are either written by the start
event or by a previously executed decision task: this is to guarantee
that when a data object is read, it was written before, so that it
contains a value;

• split and join gateways are either of type xor or and: inclusive gate-
ways are not allowed because of the difficulty of formalizing
them [72];

• xor split gateways only occur in decision fragments: xor split gate-
ways react on the outcome of decisions and should therefore be
preceded by decision tasks that explicitly implement the deci-
sion logic;

• decision tasks that are executed concurrently do not write the same
data object: this is to ensure the independence of the concurrent
branches and will be further discussed in Section 5.4;

5.3 colored workflow nets and their soundness 85

• the data types of the variables used in decision tables and edge
conditions are Boolean, String, number (i. e., real numbers and
all of their subsets such as integers), as well as enumerations of
any sort of objects;

• the decision table conditions and the edge conditions are always
of the form “attribute operator constant”, where attribute is the
variable name, operator is an admissible operator for the respec-
tive data type, and constant is a concrete value from the domain
of the data type. For example, in case of a number data type a
valid condition would be x < 5. At the same time the output of
a decision table is always a concrete value from its codomain.

5.3 colored workflow nets and their soundness

Having translated decision fragments to colored Petri nets, it is possi-
ble to define the notion of a colored workflow net, similar to the notion
of a workflow net introduced in Definition 4. This definition imposed
certain requirements on the structure of the Petri net. The same re-
quirements are imposed on colored Petri nets. However, in such nets
there are not only places representing the current state of the control
flow of the underlying business process, but also places representing
the current state of its variables. Therefore, these two sets of places
need to be treated differently.

Regarding the control flow places, there still must be exactly one
place with no incoming arc, and exactly one place with no outgoing
arc, and every place and transition must be on a path between these
two dedicated places. With respect to the variable places, they must
all be connected to at least one transition, and if they are connected
to a transition, that transition must both read from and write to the
variable place. This is to ensure that a variable place will hold exactly
one token at any point in time (given that it holds a token in the initial
marking). Also, there are requirements on the color sets of the control
flow and variable places.

For the data objects DO of a process model m and the places P
of the colored Petri net CPN representing m, we define the function
Pl : DO → 2P, such that for all do ∈ DO the places representing
the relevant attributes of do are given by Pl(do) ⊂ P.3 Furthermore,
let es be the start event of m and DF its data flow relation. Note
that the places P of CPN can be partitioned into the set of control
flow places Pcf and the set of variable places Pv. Then, DO′ = {do ∈
DO | (es, do) ∈ DF} is the set of data objects written by es, and
Pi = {p ∈ Pv | ∃do ∈ DO′ : p ∈ Pl(do)} is the set of variable places of
CPN, whose corresponding data object is written by the start event
of m—the input variable places. Therefore, Po = Pv \ Pi is the set

3 This function is obtainable from the mapping rules described in the previous section.

86 formalizing decision-aware process models

of remaining variable places—the output variable places. Note that
Pi ∩ Po = ∅. A colored workflow net is then defined as follows:

Definition 26 (Colored workflow net). Let CPN = (P, T, A, Σ, V, col,
grd, ex, init) be a colored Petri net. CPN is a colored workflow net if
and only if:

• P = Pcf] (Pi] Po) (P consists of disjunct sets Pcf of control flow
places and variable input and output places),

• ∀p ∈ Pcf : col(p) = Unit (control flow places can only hold the
value ()),

• ∀p ∈ Pi, ∃v ∈ V : col(p) = 2dom(v) (input variable places can
hold every subset of the domain of the process variable they
represent),

• ∀p ∈ Po, ∃v ∈ V : col(p) = dom(v) ∪ ∅ (output variable places
can hold every value of the domain of the process variable they
represent, plus ∅),

• (∃i ∈ Pcf ,¬∃t ∈ T : i ∈ t•) ∧ ∀p ∈ Pcf : (¬∃t ∈ T : p ∈ t•) =⇒
(p = i) (i is the initial place of CPN),

• (∃o ∈ Pcf ,¬∃t ∈ T : o ∈ •t) ∧ ∀p ∈ Pcf : (¬∃t ∈ T : p ∈ •t) =⇒
(p = o) (o is the final place of CPN),

• ∀p ∈ Pi ∪ Po : ∃t ∈ T : p ∈ •t ∧ p ∈ t• (every variable place is
connected to at least one transition that reads from and writes
to that place),

• the net CPN′ = (P, T ∪ {t′}, A ∪ {(o, t′), (t′, i)}) is strongly con-
nected, i. e., every pair of nodes (places and transitions) of CPN′

is connected via a directed path.

�

D

Out?

= A

∋ C

In Out

= C

Figure 5.9: Decision-aware process model that references the table in Fig-
ure 5.4a and that can be translated to a colored workflow net

Consider the decision-aware business process in Figure 5.9. Using
the mappings in Figure 2.8 and Figure 5.8, this model can be trans-
lated to a colored workflow net according to Definition 26.

5.3 colored workflow nets and their soundness 87

Similar to a soundness analysis conducted for workflow nets, a
soundness analysis for colored workflow nets can be performed. For
that an initial marking MI and possible final markings M f ∈ MF are
required that represent the initial state and possible final states of the
business process. Note that there is not only a single final state (as it
is the case for workflow nets), but potentially several. This is because
the marking of a colored Petri net is not only defined by the distribu-
tion of tokens across the net, but also by the values of those tokens.
And since a decision-aware business process may terminate with dif-
ferent values for its variables, there can be multiple final markings.
The initial marking is characterized as listed below:

• The initial place of the net contains a Unit token;

• if the attribute represented by a variable place is contained by a
data object written by the start event, the place contains a token
whose value is the entire domain of the attribute/variable;

• all other variable places contain a token whose value is the
empty set;

• all other places are empty.

Hence, we define the initial and the final markings as follows:

Definition 27 (Initial and final markings of a colored workflow net).
Let CPN = (Pcf] (Pi] Po), T, A, Σ, V, col, grd, ex, init) be a colored
workflow net. Let i ∈ Pcf be the initial place and o ∈ Pcf be the final
place of CPN. The initial marking MI and the set of final markings
MF of CPN are given by:

• MI(i) = {()} (the single element of the Unit color set),

• ∀p ∈ Pcf \ {i} : MI(p) = ∅,

• ∀p ∈ Pi, ∃c ∈ col(p) : (∀c′ ∈ col(p) : |c| ≤ |c′| =⇒ c =

c′) ∧ MI(p) = c (c is the largest element of the color set of p,
which contains the entire domain of the data object attribute
represented by p),

• ∀p ∈ Po : MI(p) = ∅,

• MF = {M f | M f (o) = {()} ∧
∀p ∈ Pcf \ {o} : M f (p) = ∅ ∧
∀p ∈ Pi ∪ Po : |M f (p)| = 1}.

�

Consequently, the soundness of a colored workflow net can be de-
fined:

88 formalizing decision-aware process models

Definition 28 (Colored workflow net soundness). Let CPN = (Pcf]
(Pi] Po), T, A, Σ, V, col, grd, ex, init) be a colored workflow net. Let i ∈
Pcf be the initial place and o ∈ Pcf be the final place of CPN and let
MI be its initial marking and MF its set of final markings. Finally, let
M be a marking and b a binding. CPN is sound if and only if:

(i) ∀M, ∃M f ∈ MF : (MI
∗−→ M) =⇒ (M ∗−→ M f),

(ii) ∀M, ∀M f ∈ MF : (MI
∗−→ M∧∀p ∈ Pcf : |M(p)| ≥ |M f (p)|) =⇒

(M ∈ MF),

(iii) ∀t ∈ T, ∃M, M′, b : MI
∗−→ M

(t,b)−−→ M′,

(iv) ∀M : (MI
∗−→ M) =⇒ (∀p ∈ Pi ∪ Po : |M(p)| = 1),

(v)
⋃

M f∈MF ∏p∈Pi
M f (p) = ∏p∈Pi

MI(p).

�

Criteria (i), (ii) and (iii) are similar to the three criteria in Defini-
tion 13. Note that, regarding the third criterion about the liveness of
transitions, in case of a colored workflow net, additionally a suitable
binding b is required under which transition t can fire to change the
marking M to another marking M′.

The fourth and fifth criterion in Definition 28, however, are new.
Criterion (iv) requires that in any reachable marking there is exactly
one token in each variable place. Criterion (v) requires that the union
of the Cartesian products of the final markings of all places in Pi
must be equal to the Cartesian product of the initial marking of all
those places. This is because every partition of the Cartesian product
of the abstract symbols held by the input variable places must end
up in some final marking. Otherwise, if a partition does not reach a
final marking, the values contained in that partition do not properly
terminate, such that the net is not sound.

As an example, consider the process model in Figure 5.9. Its trans-
lation to a colored workflow net—shown in Figure 5.10—is an exten-
sion of the one in Figure 5.8, in that it additionally contains the full
mapping of the decision fragment and also of the join gateway.

The net contains an initial marking according to Definition 27. This
marking consists of abstract symbols for the places p1 and p2, the
empty set for p3, and a Unit token for the initial place cf1. The mark-
ings of p1 and p2 are the entire domains of the respective variables,
since the start event of the corresponding process model only writes
those variables in the data object In. Consequently, the marking of p3
is simply the empty set.

Figure 5.11 depicts the net’s reachability graph, whose root node
is the initial marking. In this marking, the transitions r1, r2 and r3
are enabled under the same bindings, as illustrated by the outgoing
edges of the reachability graph’s first node. Assuming that in this

5.3 colored workflow nets and their soundness 89

r1

p
1

p
3

[i
n

1
⋂

 {
z


 ℤ
 |

 z
 

 0
}



˄
 in

2
⋂

 {
⏉

}



]

r2 r3

C

[i
n

1
⋂

 {
1}

 


˄
 in

2
⋂

 {
⏉

}



]

[i
n

1
∖

 {
2}

 


˄
 in

2
⋂

 {
⏊

}



]

cf
1

cf
2

o
u

t

p
2{z

 
 ℤ

}

()

{b
 

 𝔹
}



g1 g3

[o
u

t
=

 A
]

[C
 ∈

 o
u

t]

cf
3 cf
5

g4 g6

cf
6

g1
g5

o
u

t

[o
u

t
=

 C
]

cf
4

Fi
gu

re
5
.1

0
:C

ol
or

ed
Pe

tr
in

et
m

ap
pi

ng
of

th
e

de
ci

si
on

-a
w

ar
e

pr
oc

es
s

m
od

el
in

Fi
gu

re
5

.9

90 formalizing decision-aware process models

r3
in1={z  ℤ}
in2={b  𝔹}

out=

r1
in1={z  ℤ}
in2={b  𝔹}

out=

[(p1,{z  ℤ}),
(p2,{b  𝔹}),

(p3,),
(cf1,())]

[(p1,{z  ℤ | z 2}),
(p2,{⏊}),

(p3,{A,B}),
(cf2,())]

[(p1,{z  ℤ | z  0}),
(p2,{⏉}),

(p3,A),
(cf2,())]

r2
in1={z  ℤ}
in2={b  𝔹}

out=

[(p1,{1}),
(p2,{⏉}),

(p3,C),
(cf2,())]

[(p1,{z  ℤ | z  0}),
(p2,{⏉}),

(p3,A),
(cf3,())]

g1
out=A

[(p1{1}),
(p2,{⏉}),

(p3,C),
(cf4,())]

g2
out=C

[(p1,{z  ℤ | z  0}),
(p2,{⏉}),

(p3,A),
(cf6,())]

g4

[(p1{1}),
(p2,{⏉}),

(p3,C),
(cf6,())]

g5

Figure 5.11: Reachability graph of colored workflow net in Figure 5.10

situation r1 is fired, a new marking is reached in which the tokens in
places p1, p2 and p3 are updated according to the arc expressions of
r1, and in which there now is a token in cf2 instead of cf1.

After firing r1, only transition g1 is enabled, whose firing leads to
a marking in which the control flow token is moved from cf2 to cf3.
Next, the join gateway transition g4 can be executed leading to a final
marking.

The middle branch of the reachability graph behaves similarly. The
rightmost branch, however, does not lead to a final marking. This is
because no guard following the place cf2 is satisfied for the value
{A, B}, such that the token in cf2 cannot continue. Hence, the net
violates criterion (i) in Definition 28 and is not sound.

However, the net also violates criterion (v), because⋃
M f∈MF

∏
p∈Pi

M f (p) = ({z ∈ Z | z ≤ 0} × {>}) ∪ ({1} × {>})

= {z ∈ Z | z ≤ 1} × {>}
6= Z×B

= ∏
p∈Pi

MI(p).

5.4 concurrent execution of decision fragments 91

Apparently, not all possible input values of the process can prop-
erly terminate. The reachability graph shows that the values in {z ∈
Z | z 6= 2} × {⊥} are stuck in the state with a control flow token in
cf2, while all the remaining values are stuck in the initial state.

5.4 concurrent execution of decision fragments

Coming back to the sixth assumption that was listed in Section 5.2.3
above for the mapping of decision-aware process models to abstract
colored Petri nets—concerning the concurrent execution of decisions—
we justify it using the example in Figure 5.12, which also shows a
special case of that situation.

In1

Out1

D1

D2

D3

Out2

Out1

In2

... ...

...

Figure 5.12: Decision tasks being executed concurrently

This figure shows a process model in which decisions are not only
executed concurrently but also the concurrent decisions D1 and D2
reference the same decision model. Therefore, they read the same
data object In1. Note, however, that they write different data objects,
Out1 and Out2, as required by the assumption above. This may seem
unnecessary because they produce the same output value anyway,
since they read from the same data object and reference the same
decision logic.

The reason for this is clarified through the fact that on the upper
branch there is another decision D3, that references another decision
model but that has the same output variable as D1 and therefore
overwrites or updates Out1—which is admissible because D1 and
D3 are executed sequentially. Now, if all of the decisions were writing
the same data object, and D2 was executed after D3, then the update
made by D3 would get lost and would not be available anymore in the
upper branch. This certainly represents undesired behavior because
it violates the independence of the concurrent branches.

Note that the requirement of writing different data objects must
also be fulfilled if D1 and D2 reference different decision tables hav-
ing the same output variable. The reason for assuming that they refer-

92 formalizing decision-aware process models

ence the same table in this example is to draw attention to the special
treatment that this situation requires.

The fact that D1 and D2 are required to write different data objects
implies that in the CPN there will be different output variable places,
one representing Out1, the other Out2. This in turn means, however,
that the transitions representing the decision table rules of D1 and D2
must be duplicated—even though the duplicates implement the same
decision table rule. If both D1 and D2 were using the same transitions
in the CPN, there would be no way of distinguishing for which of the
two data object places the transitions should produce a token.

D1r1

p1 D1r2

p2

cf2

cf4

p3

D2r1

D2r2
cf3

cf5

p4

cf1

Figure 5.13: Partial mapping of the process model in Figure 5.12

The correct mapping of the two decisions D1 and D2 in Figure 5.12

is shown in Figure 5.13. In summary, decision fragments that are ex-
ecuted concurrently must write to different data objects, even if the
decision tables have the same output variables. If two concurrent de-
cision fragments reference the same decision table, each fragment
is mapped independently according to Figure 5.8, with the excep-
tion that they will share the same input variable places. Hence, even
though the tables are the same, for each of those tables another set of
transitions (representing the table rules) will be generated (e.g., D1r1
in the figure). Also, they will use different output variable places (p3
and p4). But, they will use the same input variable places (p1 and p2).
This represents the fact that they read from the same data objects of
the process, while writing to different data objects.

5.5 summary and discussion

This chapter demonstrated how decision-aware process models can
be formalized such that their state space can be analyzed via a reach-
ability graph. In principle, the reachability graph of a decision-aware
process model contains infinitely many states, making an analysis of
that graph—e. g., with respect to soundness—impossible.

5.5 summary and discussion 93

However, we showed how the idea of symbolic abstraction can be
used in this context to group the infinitely many states into finitely
many partitions, such that the states of each partition display the
same behavior regarding reachability.

It should be noted that this requires the decision logic of the DMN
decision models to be implemented in the Simplified Friendly Enough
Expression Language (S-FEEL) of the DMN standard [114], which is
a simplification of DMN’s FEEL language. S-FEEL only allows rule
conditions of the form “attribute operator constant”, such as x < 5,
and the rule outputs can only be constants. Therefore, outputs such
as x + 1 are not allowed in S-FEEL. This would lead to problems re-
garding symbolic abstraction.

For example, consider a decision table that updates its input x by
one, and that is part of a loop that is executed infinitely often (due
to a modeling flaw). If an abstract symbol such as {x ∈ Z | x ≤ 2}
enters this loop it will be updated on each repetition, so that the reach-
ability graph will contain infinitely many states—which is exactly the
problem we aimed to solve. Hence, only DMN S-FEEL decisions are
allowed. For a formalization of S-FEEL decisions the reader is referred
to [97].

Part III

S O U N D N E S S O F D E C I S I O N - AWA R E B U S I N E S S
P R O C E S S E S

6
S TAT E L E S S D E C I S I O N S O U N D N E S S

This chapter introduces the notion of (stateless) decision soundness.
The need for the definition of such a notion is motivated in Section 6.1.
Therefore, that section also outlines the structure of the rest of this
chapter. The work presented in this chapter has partly been published
in [80].

6.1 motivation and problem statement

Figure 6.1 shows a decision-aware BPMN process model that was
already introduced in Section 2.1.2.4. Its two decision tasks are associ-
ated with the two decision tables displayed in Figure 6.2. Depending
on the BahnCardType attribute of the Booking data object, the table in
Figure 6.2a determines a discount which is then processed by the sub-
sequent gateway and its outgoing branches. Next, a potential special
offer is decided upon based on the previously calculated Discount and
the BahnCardType (Figure 6.2b). Again, the result is processed by the
following gateway and the process ends. Hence, the process model
essentially consists of two decision fragments.

Booking
received

Manage
discount

Discount?

25%
Apply 25%
discount

50%
Apply 50%
discount

100%
Apply 100%

discount

Manage
special offer

upgrade
Offer

upgrade

special
Offer

special deal

Booking
completed

Booking Discount Booking
Special
Offer

Booking Booking

Special
offer?

BookingDiscount

Figure 6.1: Train ticket booking process derived from booking tickets with
Deutsche Bahn, modeled as a BPMN process diagram

U
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

1 25 25%

2 50 50%

3 100 100%

(a) Manage discount decision table

F
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

Special offer
{none, upgrade, special}

1 25 25% special

2 50 - upgrade

3 - 100% none

(b) Manage special offer decision table

Figure 6.2: Decision tables referenced by the decision tasks of the process
model in Figure 6.1

Analyzing this process model for classical soundness according
to Definition 13 would lead to the conclusion that this is actually
a sound process model. This is because it can be translated to a work-
flow net and the corresponding reachability graph would show that

97

98 stateless decision soundness

every execution will properly reach the final state and that every activ-
ity can participate in at least one execution. However, classical sound-
ness only looks at control flow information and does not consider the
data that determines under which conditions which branches and ac-
tivities of the process can be executed.

This, however, is an important aspect of decision-aware processes.
For example, the three outgoing branches of the first decision frag-
ment are associated with conditions whose values are set by the pre-
ceding decision task which in turn relies on the decision table in
Figure 6.2a. If this table can produce values that are different from
the values expected at the branches of the split gateway, the process
may deadlock. An example of this situation is given by the second
decision fragment. The third rule of the table associated with this
fragment produces the output value none. But this value does not
occur in any of the branch conditions of the corresponding decision
fragment. Hence, an execution in which the table returns none will
deadlock because none of the branches can be selected to continue
the process. Consequently, the process model cannot be considered
sound.

Therefore, in the remainder of Part iii of this thesis, criteria and
techniques are discussed that enable the correct verification of the
soundness of decision-aware process models such as the one in Fig-
ure 6.1. The remainder of this chapter focuses on criteria that provide
a simple way to ascertain the soundness of decision fragments in
isolation. That means that the criteria are checked locally for each de-
cision fragment of the process model. A structural check is described
in Section 6.2, while behavioral checks are defined in Section 6.3. Al-
together, this allows to define the notion of stateless decision sound-
ness in Section 6.4. This approach has some limitations which are
discussed at the end of this chapter in Section 6.5, and which are
overcome in Chapter 7.

6.2 structural consistency

A decision model, like a decision table, can be viewed as a function,
that maps input values to output values. The input values are sup-
plied by the process on which the decision performs some operations
to produce an output value which is returned to the process. The
interface between a process model (or decision fragment) and a deci-
sion model is therefore given by the process model’s data objects, and
the decision model’s input data nodes and the output variable of its
top-level decision. This interface must be consistent in the following
manner:

Definition 29 (Structural consistency between decision fragment and
decision model). A decision fragment is structurally consistent with
its associated decision model if and only if:

6.3 behavioral consistency 99

• For each input data element in the decision model there is a
data object in the decision fragment, such that

– the decision fragment’s decision task reads this data object,

– the input data element and the data object reference the
same data model or the attributes of the input data element
are contained in the attributes of the data object,

• the output produced by the decision model is written into a
corresponding data object by the decision task,

• the outgoing edges of the decision fragment’s split gateway eval-
uate the output of the decision model via Boolean expressions.

�

6.3 behavioral consistency

The notion of workflow soundness given in Definition 13 essentially
consists of two aspects: proper termination (which includes the ab-
sence of deadlocks) and the absence of dead transitions. Both of these
aspects can be affected by decision fragments, which is why in the
following two decision soundness criteria will be introduced: decision
deadlock freedom and dead branch absence. Since decision tables are stan-
dardized in DMN, we will illustrate the criteria using decision tables.
A generalization will be discussed in Section 6.5.

6.3.1 Decision Deadlock Freedom

Decision deadlock freedom (DDF), as the name suggests, ensures
that the integration of a process model with a decision model will
not cause any deadlocks. In this regard, decision-induced deadlocks
come in two flavors.

On the one hand, even if the process model and the decision model
reference the same data model, the rules of the decision table reading
the data object might not cover its entire domain. In this case, the pro-
cess can supply inputs to the decision for which there is no matching
rule in the responsible decision table. Hence, the decision table cannot
be evaluated and will not return any output, causing the process to
deadlock, thereby violating soundness criterion (i) (cf. Definition 13).
Consequently, one aspect of DDF is the completeness of all decision
tables of the decision model.

On the other hand, it must be ensured that the branch conditions
of the decision fragment can handle all of the possible outputs of the
decision model. If there is an output value for which there is not at
least one matching branch condition, the process will again deadlock.

What does it mean for a table to be complete? The DMN standard
states that a decision table is complete “if its rules cover all combina-

100 stateless decision soundness

tions of expected input values“. These input value combinations are
given by IV = ∏n

j=1 dom(ij) in Definition 18, where IV contains all
combinations of values from the domains of the input variables.

According to Definition 19, a decision table is associated with a
decision node in a decision model. A decision node, in turn, is con-
nected to other decision nodes or to input data nodes, via information
requirement edges. Therefore, a table’s input variable may be associ-
ated with the output value of another decision table or with the value
of an input data element. Regarding the former case it is important to
note that the set of possible outputs of a table may be a subset of the
domain of the output variable of that table, as was discussed in detail
in Chapter 4. This set of possible outputs can be easily determined
based on the uniqueification method described in Section 4.2.

Table completeness as required for decision deadlock freedom is
then defined as follows:

Definition 30 (Table completeness). A DMN decision table is com-
plete if and only if

∀iv ∈ IV, ∃ov ∈ OV, ∃r ∈ R : iv× ov ∈ r.

�

Consequently, for every possible input value combination iv, there
must be an output value ov, and at least one rule r of the table covers
this input-output relation.

Although having no incomplete decision tables in the decision mo-
del is a necessary condition to ensure decision deadlock freedom, it
is not a sufficient one. It must additionally be ensured that all of the
outputs of the decision model can be processed by the calling process.
Since the outputs of a decision model are determined by its top-level
decision, it follows that all possible outputs of the corresponding deci-
sion table must be covered by the process. "Covered" in this case means
that for each output a branch condition associated with an outgoing
edge of the decision fragment’s gateway evaluates to true.

As an example, consider the decision fragment in Figure 6.3a. Given
that the associated decision model produces, for instance, the out-
put {x, y}, the upper branch condition—output = {x, y}—evaluates
to true for this output. The same is true for the upper branch con-
dition in Figure 6.3b, which only requires the single element x to be
present in the output.

This leads to the definition of the decision deadlock freedom (DDF) cri-
terion, which is formulated for a decision fragment df with decision
task aD and edge conditions Cdf . Furthermore, dm = δ(aD) is the de-
cision model associated with aD, containing a set of decisions D and
a corresponding set of decision tables DT. The top-level decision is
called dtop, and dttop = tab(dtop) is the decision table of the top-level
decision.

6.3 behavioral consistency 101

DT

= {x,y}
T1

...
T3

T2
...

output?

(a) Decision fragment with edge
condition output = {x, y}

DT

∋ x
T1

...
T3

T2
...

output?

(b) Decision fragment with edge con-
dition x ∈ output

Figure 6.3: Different possibilities of covering table outputs by edge condi-
tions

Definition 31 (Decision deadlock freedom). A decision fragment df
satisfies the decision deadlock freedom criterion if and only if

(i) ∀dt ∈ DT : c(dt) = true, (table completeness)

(ii) ∀out ∈ output(dttop), ∃cond ∈ Cdf : cond(out) = true.
(output coverage)

�

Consider the first decision fragment in Figure 6.1, whose associated
table is shown in Figure 6.2a. Since the table is complete and all of
its outputs (25%, 50%, 100%) have matching conditions in the process
model, this decision fragment is indeed decision deadlock free.

This, however, is not the case for the second decision fragment, ref-
erencing the decision table in Figure 6.2b. First, the table is incomplete
because it does not contain a rule for the input (25, 50%). Should the
process provide such a value combination as an input to the table, it
would get stuck. Second, the third rule of the table produces an out-
put value (none) that does not have any matching branch condition
in the process model. Therefore, the output coverage part of the DDF
criterion is violated as well and the second decision fragment of the
process model is not decision deadlock free.

6.3.2 Dead Branch Absence

The second requirement for behavioral consistency between process
and decision models is the absence of dead branches. This means that
every branch condition of the decision fragment can be fulfilled by at
least one output of the associated decision model, in order to follow
that branch during execution. Otherwise, the branch whose condition
can never be met will never be followed, and is therefore dead, which
violates soundness criterion (iii) (cf. Definition 13). Hence, the dead
branch absence (DBA) criterion is defined as follows:

102 stateless decision soundness

Definition 32 (Dead branch absence). A decision fragment df satisfies
the dead branch absence criterion if and only if

(i) ∀cond ∈ Cdf , ∃out ∈ output(dttop) : cond(out) = true.

�

Both decision fragments in Figure 6.1 satisfy the DBA criterion. In-
stead, consider the fragment in Figure 6.4a associated with the table
in Figure 6.4b. The exclusive gateway of the process fragment has

D

Out?

o1

o3

In Out

o2

(a) Decision fragment with three
branches

U in1
dom(in1)

in2
dom(in2)

out
dom(out)

1 = cond11 ∈ cond21 o1

2 ∉ cond12 ≠ cond22 o2

(b) Decision table with two outputs

Figure 6.4: A decision fragment that violates the dead branch absence criterion

three outgoing branches with different conditions, one of which (o3)
will never be satisfied by the decision table because that table will
never produce such an output. Therefore, the corresponding branch
is dead and the DBA criterion is violated.

6.4 stateless decision-aware soundness

Having specified the structural and behavioral consistency between
process models and decision models, it is possible to define the sound-
ness of decision-aware process models. Note that the criteria described
in Section 6.3 consider decision fragments in isolation. That is, they
do not take into account the overall process into which they are em-
bedded. This may be important because the process calls the decision
model with some input data. For example, in Figure 6.4a the process
calls the decision table with the current values of the data object In.
These values determine which rule is matched in the table and which
output will be produced correspondingly. Contrarily, the criteria for-
mulated in Definitions 31 and 32 simply consider all possible outputs
of the decision model (or table). This issue will be further discussed
in Section 6.5 and dealt with in Chapter 7.

Hence, the following soundness definition is stateless because it
does not consider the state of the process determining the possible
inputs to the decision model call.

6.5 discussion and shortcomings 103

Definition 33 (Stateless decision-aware soundness). A decision-aware
process model is stateless sound if and only if all of its decision frag-
ments are

(i) structurally consistent (Definition 29),

(ii) decision deadlock free (Definition 31), and

(iii) dead branch free (Definition 32).

�

6.5 discussion and shortcomings

The definition of stateless decision-aware soundness assumes that the
decision model that is embedded in the process model is called from
within a decision fragment. Such fragments process the outcome of
the decision via the branch conditions of a split gateway. However,
this is not the only way a decision can be embedded in a process. As
already described in Section 2.3 the situation could also be such as
in Figure 6.5. In that case, the output of the decision (Out) is imme-

D

In Out

A

Figure 6.5: Decision task directly followed by another task reading the out-
put of the decision

diately consumed by a task so that on model-level it never becomes
observable if the process can actually respond properly to the de-
cision outputs. The implementation of task A may or may not be
able to handle all outputs. This is not observable on model-level and
therefore the definition of decision-aware soundness is only suited for
processes containing decision fragments as defined in Definition 20.

Finally, the shortcomings of Definition 33 are clearly given by the
fact that it only considers decision fragments in isolation when check-
ing soundness. This is especially worrisome given that decision mod-
els are supposed to be reusable [76]. Reusability entails that not every
rule of the decision table may be relevant for a particular process
model it is called from. Therefore, checking if every possible output
of the decision table is met by a branch condition in the decision frag-
ment is too strict and could designate decision-aware process models
as unsound that do indeed not contain any unsound firing sequences.
Hence, a definition that takes into account the context of the deci-
sion fragment would be based on considerations of which inputs can

104 stateless decision soundness

be supplied to the decision model by the process model in question.
Those inputs can be determined by analyzing the possible states of
the business process at the time the decision called. Accordingly, in
the next chapter state-based decision-aware soundness is examined.

7
S TAT E - B A S E D D E C I S I O N S O U N D N E S S

This chapter builds on the notion of decision-aware soundness intro-
duced in the preceding chapter. By recognizing the limitations de-
scribed in Section 6.5, it explains how state space information can be
used for a more sophisticated definition of decision soundness in Sec-
tion 7.1. Subsequently, corresponding notions of state-based decision
deadlock freedom and state-based dead branch absence are defined
(Section 7.2 and Section 7.3). The work presented in this chapter has
partly been published in [77].

7.1 using state information for soundness checking

Following up on the line of argumentation in Section 6.5, this sec-
tion shows why state information is relevant when checking decision
fragments for soundness. Consider again the decision-aware process
model from the last chapter, repeated here for convenience together
with its decision tables in Figure 7.1 and Figure 7.2.

Booking
received

Manage
discount

Discount?

25%
Apply 25%
discount

50%
Apply 50%
discount

100%
Apply 100%

discount

Manage
special offer

upgrade
Offer

upgrade

special
Offer

special deal

Booking
completed

Booking Discount Booking
Special
Offer

Booking Booking

Special
offer?

BookingDiscount

Figure 7.1: Train ticket booking process derived from booking tickets with
Deutsche Bahn, repeated for convenience

U
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

1 25 25%

2 50 50%

3 100 100%

(a) Manage discount decision table

F
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

Special offer
{none, upgrade, special}

1 25 25% special

2 50 - upgrade

3 - 100% none

(b) Manage special offer decision table

Figure 7.2: Decision tables referenced by the decision tasks of the process
model in Figure 7.1, repeated for convenience

While the first decision table is complete and its outputs perfectly
match the branch conditions of the corresponding decision fragment,
there seem to be some problems concerning the second decision frag-
ment, as was already argued in Section 6.3.1: There is no rule for
the input (25, 50%) and the output none is not covered by the branch
conditions. However, looking at the context of the decision fragment,

105

106 state-based decision soundness

it is noticeable that the task Manage special offer can only be reached
if Discount ∈ {25%, 50%}, because those are the branch conditions
of the preceding split gateway. From this, in turn, it can be deduced
that the variable BahnCardType must either contain the value 25 or
50, since Discount = 25% ⇐⇒ BahnCardType = 25 and Discount =
50% ⇐⇒ BahnCardType = 50. This is apparent from the first two
rules of the decision table in Figure 7.2a, and the fact that the values
are not changed afterwards. Hence, the presumed problems of the
second decision fragment regarding completeness and output cover-
age can never occur in this process.

Those considerations can be made more explicit by employing the
formalization of decision-aware process models as colored Petri nets
(CPNs) introduced in Chapter 5. This is because the CPN represen-
tation enables a state space (or reachability graph) analysis of the
process at the point in time a decision is made.

Figure 7.3 shows a simplified version of the process model in Fig-
ure 7.1, omitting non-decision tasks in order to focus on the decision
fragments. Using the mappings in Figure 2.8 and Figure 5.8 this pro-

Manage
discount

Discount?

25%

50%

100%

Manage
special offer

special
offer?

upgrade

special

Booking Discount Booking
Special
Offer

Discount

Figure 7.3: Simplified version of the process model in Figure 7.1

cess model is translated to the colored workflow net shown in Fig-
ure 7.4. The initial place of this colored workflow net is cf1 in the top
left corner of the figure, holding a token with value ().1 Additionally,
there are three variable places—p1, p2, p3—for the three variables
used by the decision tables in Figure 7.1. p1 initially holds a token
with the entire domain of the respective variable since that variable
is written in the Booking data object by the process’ start event, while
the other variable places hold empty set tokens, as explained in Chap-
ter 5.

Given this initial marking the net’s reachability graph can be con-
structed, shown in Figure 7.5. The root node of that graph is given
by the initial marking. In that state, the decision task Manage discount
with its three rules is enabled. All three transitions can fire under the
same binding, namely bct = {25, 50, 100} (representing the variable
BahnCardType) and disc = ∅ (representing Discount). This is shown
by the labels of the outgoing edges of the root node.

Inspecting the reachability graph further, it should be noted that
only two of the three branches progress to states in which there is a

1 Note that “()” was omitted from the arc expressions of the control flow places, for
better readability.

7.1 using state information for soundness checking 107

m
d

_r
1

p
1

p
2

[b
ct

 ⋂
 {

25
}



]

m
d

_r
3

cf
1

cf
2

d
is

c1

d
is

c3

[d
is

c
=

25
%

]

cf
3 cf
4

[b
ct

 ⋂
 {

10
0}

 


]

m
d

_r
2

[b
ct

 ⋂
 {

50
}



]

d
is

c

50
%

d
is

c2

[d
is

c
=

50
%

]

[d
is

c
=

10
0%

]

d
is

c
b

ct

b
ct

 ⋂
 {

50
}

cf
5

m
so

_r
1

m
so

_r
2

m
so

_r
3

cf
6

[b
ct

 ⋂
 {

50
}



]

[b
ct

 ⋂
 {

25
}



 ˄

d
is

c
=

25
%

]

b
ct

b
ct

 ⋂
 {

25
}

b
ct

 ⋂
 {

50
}

b
ct

b
ct

b
ct

d
is

c

d
is

c

d
is

c

[d
is

c
=

10
0%

]

cf
7

p
3

o
ff

r

o
ff

r

o
ff

r

sp
ec

ia
l

u
p

gr
ad

e

n
o

ne

o
ff

r1

o
ff

r2

[o
ff

r
=

sp
ec

ia
l]

[o
ff

r
=

u
p

gr
ad

e]

cf
8

cf
9

cf
10

{2
5

,5
0

,1
00

}

()





Fi
gu

re
7

.4
:C

ol
or

ed
Pe

tr
in

et
m

ap
pi

ng
of

th
e

de
ci

si
on

-a
w

ar
e

pr
oc

es
s

m
od

el
in

Fi
gu

re
7

.3

108 state-based decision soundness

md_r3
bct={25,50,100}

disc=

md_r1
bct={25,50,100}

disc=

[(p1,{25,50,100}),
(p2,),
(p3,),
cf1]

[(p1,{100}),
(p2,100%),
(p3,),
cf2]

[(p1,{25}),
(p2,25%),
(p3,),
cf2]

disc3
disc=100%

[(p1,{25}),
(p2,25%),
(p3,),
cf3]

disc1
disc=25%

[(p1,{50}),
(p2,50%),
(p3,),
cf2]

md_r2
bct={25,50,100}

disc=

[(p1,{100}),
(p2,100%),
(p3,),
cf5]

[(p1,{50}),
(p2,50%),
(p3,),
cf4]

disc2
disc=50%

[(p1,{25}),
(p2,25%),
(p3,),
cf6]

[(p1,{100}),
(p2,100%),
(p3,),
cf10]

[(p1,{50}),
(p2,50%),
(p3,),
cf6]

[(p1,{25}),
(p2,25%),

(p3,special),
cf7]

mso_r1
bct={25}
disc=25%

offr=

[(p1,{50}),
(p2,50%),

(p3,upgrade),
cf7]

mso_r2
bct={50}
disc=50%

offr=

[(p1,{25}),
(p2,25%),

(p3,special),
cf8]

offr1
offr=special

[(p1,{50}),
(p2,50%),

(p3,upgrade),
cf9]

offr2
offr=upgrade

[(p1,{25}),
(p2,25%),

(p3,special),
cf10]

[(p1,{50}),
(p2,50%),

(p3,upgrade),
cf10]

Figure 7.5: Reachability graph of the colored Petri net in Figure 7.4

7.2 state-based decision deadlock freedom 109

control flow token in place cf6. In these states only the first two rules
of the decision table Manage special offer can be executed, represented
by the transitions mso_r1 and mso_r2, with two different bindings.
In case the process is currently in the state where bct = {25} and
disc = 25%, mso_r1 can fire. This will set the offr (representing the
Special offer variable) to special, and put a control flow token in cf7.
Analogously, progressing from the other state containing a token in
cf6, offr will be set to upgrade, and a token will appear in cf7.

Hence, there is no reachable marking that holds a token in cf7 and in
which offr is equal to none. Subsequently, all three branches correctly
reach a final marking containing a token in the final place cf10 and in
no other control flow place. Those considerations enable a state-based
definition of the decision deadlock freedom and dead branch absence
criteria.

7.2 state-based decision deadlock freedom

The first condition of decision deadlock freedom as specified in Defi-
nition 31 is that the decision tables of the decision model are complete,
meaning that they cover all possible combinations of input values
from the domains of the input variables. According to this require-
ment, the second decision fragment in Figure 7.3 would be unsound,
because the table is missing the input combination (25, 50%). How-
ever, from state space analysis it becomes apparent that this input
can never occur in this decision fragment. Therefore, the decision ta-
ble is conditionally complete—conditioned on the possible states of the
process at the point when the decision is made.

Similarly, the second condition of decision deadlock freedom is out-
put coverage, which is violated by the decision fragment at hand be-
cause there is no branch condition matching the output none. Yet,
the possible states after the decision was made do not include one in
which the variable Special offer equals none. Hence, all outputs of the
decision table are conditionally covered.

This leads to the definition of the state-based decision deadlock freedom
(SB-DDF) criterion, which is formulated for a decision fragment df ,
that is part of a decision-aware process model. The decision fragment
is represented by a colored Petri net fragment CPNdf , embedded into
a colored workflow net CPN, representing the decision-aware process
model. For convenience, let the initial place of CPNdf be given by idf
and its set of transitions by Tdf = Tdt] Tg, where Tdt = {t ∈ Tdf |
idf ∈ •t} is the set of transitions representing the decision table rules
of df , and Tg = {t ∈ Tdf | ∀t′ ∈ Tdt : •t \ Pv = t′ • \Pv} is the set of
transitions representing the gateway branch conditions. That is, Tdt
are all the transitions that read from the first control flow place of df ,
and Tg are all the transitions that read from the second control flow
place.

110 state-based decision soundness

Definition 34 (State-based decision deadlock freedom). Let CPNdf be
a colored Petri net fragment representing the decision fragment df ,
which is embedded into a colored workflow net CPN. Let idf be the
initial place of CPNdf and MI be the initial marking of CPN. Further,
let M be a marking and b a binding. The decision fragment df satisfies
the state-based decision deadlock freedom criterion if and only if:

(i) ∀M : (MI
∗−→ M ∧ |M(idf)| > 0) =⇒ ∃t ∈ Tdt, M′, b : M

(t,b)−−→
M′ (conditional completeness),

(ii) ∀M, M′, t ∈ Tdt, b : (MI
∗−→ M ∧ |M(idf)| > 0 ∧M

(t,b)−−→ M′) =⇒

∃t′ ∈ Tg, b′, M′′ : M′
(t′,b′)−−−→ M′′ (conditional output coverage).

�

The first condition of SB-DDF says that, in any reachable marking
in which there is a token in the initial place of CPNdf , there must be
a decision table transition of CPNdf that can fire from that marking.

The second condition says that, in any marking that is reachable by
firing any of the decision table transitions of CPNdf , there must be a
gateway transition of CPNdf that can fire from that marking.

Figure 7.6 shows a sketch of a CPN decision fragment CPNdf to
visualize those conditions. In this example, Tdt = {Tdt1, Tdt2} and
Tg = {Tg1, Tg2} The net is in a state in which the initial place of
CPNdf contains a token, such that |M(idf)| > 0. Now, there must be a
binding based on the tokens in the variable places p1, p2 and p3 so
that one of the transitions in Tdt can fire. Otherwise, the net is stuck
(because the table is not conditionally complete).

The second condition of Definition 34 assumes that given that there
is a token in idf , indeed one of the transitions in Tdt can fire. This leads
to the marking M′, which contains a token in cf1 in the example. Then,
there must be a binding based on the token in the variable place p3
so that one of the transitions in Tg can fire. Otherwise, the net is stuck
(because the table outputs are not conditionally covered).

Tdt1

p1

p3

Tdt2

cf1
cf2

Tg1

Tg2p2

cf3

idf

...

i

Figure 7.6: Sketch of a CPN decision fragment to visualize Definitions 34

and 35

7.3 state-based dead branch absence 111

7.3 state-based dead branch absence

State-based dead branch absence is based on the same line of ar-
gumentation as state-based decision deadlock freedom. Also in this
case, state information is utilized to refine the definition and check-
ing of decision-aware soundness. As an example of where the state-
based and stateless variants of dead branch absence differ, consider a
slightly modified version of the process model in Figure 7.3, namely
the one in Figure 7.7.

Manage
discount

Discount?

25%

50%

100%

Manage
special offer

special
offer?

upgrade

special

Booking Discount Booking
Special
Offer

Discount

none

Figure 7.7: Adapted version of the process model in Figure 7.3

The second decision fragment of this model now contains an addi-
tional branch succeeding the split gateway, associated with the con-
dition none. From a stateless perspective all branches are reachable,
because for every branch condition, there is a matching decision ta-
ble output. From a state-based point of view, however, the output
none cannot be produced in the context of this process model, such
that the corresponding branch cannot be reached—it is conditionally
dead. This example demonstrates that considering state information
for decision soundness checking can render decision fragments ei-
ther sound or unsound, depending on the criterion (DBA or DDF).
This will be discussed further in the next chapter.

State-based dead branch absence (SB-DBA) is then defined as follows.

Definition 35 (State-based dead branch absence). Let CPNdf be a col-
ored Petri net fragment representing the decision fragment df , which
is embedded into a colored workflow net CPN. Let idf be the initial
place of CPNdf and MI be the initial marking of CPN. Further, let M
be a marking and b a binding. The decision fragment df satisfies the
state-based dead branch absence criterion if and only if:

(i) ∀t ∈ Tg, ∃M, M′, M′′, t′ ∈ Tdt, b, b′ : MI
∗−→ M ∧ |M(idf)| > 0 ∧

M
(t′,b′)−−−→ M′ ∧M′

(t,b)−−→ M′′.

�

The only condition of SB-DBA says that, for all gateway transitions
of CPNdf , there must be a marking that can be reached after firing a
decision table transition, so that the gateway transition can fire.

The example in Figure 7.6 shows a marking M in which idf contains
a token. Firing one of the transitions in Tdt will lead to a marking
M′ containing a token in cf1. From this marking, firing one of the

112 state-based decision soundness

transitions in Tg will lead to a marking M′′ with a token in cf2 or cf3.
If a transition in Tg cannot fire under at least one binding b from M′,
the process model contains a conditionally dead branch.

8
A TA X O N O M Y F O R D E C I S I O N S O U N D N E S S

In the last two chapters a stateless and a state-based notion of sound-
ness for decision-aware process models were introduced. While Chap-
ter 6 discussed criteria of decision soundness that consider decision
fragments in isolation and are stateless, Chapter 7 explained how
state information can be utilized to achieve more practical results.
This chapter investigates the relationship between these two approach-
es to decision soundness and also combinations and variants of the
two.

Section 8.1 explores the relationship between the stateless and state-
based soundness criteria and Section 8.2 defines various notions of
decision soundness motivated by the various traditional notions of
soundness introduced in Section 2.1.3.2. Finally, Section 8.3 contains
a short summary and discussion. The work presented in this chapter
has partly been published in [77].

8.1 relationship between the stateless and state-based

decision soundness criteria

This section will show that the stateless decision deadlock freedom
criterion (DDF) is more restrictive than its state-based variant (SB-
DDF), i. e., it is violated in every situation in which SB-DDF is violated
and others (Section 8.1.1). In contrast, stateless dead branch absence
(DBA) is more permissive than state-based dead branch absence (Sec-
tion 8.1.2).

8.1.1 DDF =⇒ SB-DDF

The decision deadlock freedom criterion has two requirements: first,
the corresponding decision model must only contain complete deci-
sion tables, and second, the decision fragment branches must cover
all of the decision model’s outputs (cf. Definition 31). The first con-
dition, table completeness, requires that for every input combination
iv ∈ IV there is a matching rule in the table (cf. Definition 30). By de-
fault, the set IV = ∏n

j=1 dom(ij) is made up of the Cartesian product
of the domains of the input variables.

In terms of a state space analysis of the corresponding colored
workflow net as described in Chapter 7, this means that there are
theoretically as many different markings containing a token in the
initial place of the decision fragment CPN as there are elements in
IV, and not more, but potentially less. This is because some values of

113

114 a taxonomy for decision soundness

IV may not occur in the context of a particular process model, and
therefore, there are fewer markings that need to be “handled” accord-
ing to Definition 34 (SB-DDF), than according to Definition 31 (DDF).
Therefore, a table may not be complete (cf. Definition 30), but still
be conditionally complete (cf. Definition 34), but not the other way
round.

From the fact that there are potentially fewer markings before the
decision is made, it follows that there are potentially fewer markings
after the decision was made. This is analogous to saying that the set of
possible outputs of the decision table can only be decreased because
fewer rules will match and produce an output. Thus, for state-based
output coverage the branch conditions of the decision table need to
cover the same or even less outputs than for (non-state-based) output
coverage.

Hence, DDF is more restrictive than SB-DDF, such that DDF implies
SB-DDF, meaning that every decision fragment that is DDF is also SB-
DDF, but not vice versa. An example of this situation was given in
Figure 7.3 where the second decision fragment is SB-DDF and not
DDF.

8.1.2 SB-DBA =⇒ DBA

The implication between DBA and SB-DBA is the opposite way, which
is not surprising since dead branch absence relates the outputs of the
decision model and the branch conditions of the decision fragment ex-
actly opposite to decision deadlock freedom (cf. Definition 32). Con-
sequently, all of the decision fragment’s branch conditions may be
reachable through the outputs that can be theoretically produced by
the decision model—meaning that the decision fragment is stateless
dead branch free. However, through state space analysis it may be-
come apparent that only a subset of the rules can be matched in the
context of a particular process model, such that only a subset of the
decision model’s outputs can be produced. Thus, there are potentially
fewer reachable markings after the decision, so that it may not be the
case that for all branch conditions there is a marking such that this
condition is fulfilled (as required by Definition 35). The same decision
fragment that is dead branch free may therefore not be state-based
dead branch free.

Hence, SB-DBA is more restrictive than DBA, such that SB-DBA
implies DBA, meaning that every decision fragment that is SB-DBA
is also DBA, but not vice versa. An example of this situation was
given in Figure 7.7 where the second decision fragment is DBA and
not SB-DBA.

8.2 various notions of decision soundness 115

8.2 various notions of decision soundness

The previous section suggests that there exist different levels of deci-
sion soundness depending on whether or not state-based versions of
the criteria are applied. Additionally, it may be possible to weaken the
state-based criteria to allow for more models to be sound in certain
situations. The idea behind such considerations comes from the tax-
onomy of traditional soundness notions described in [44] and shown
in Figure 8.1a

(classical) soundness

relaxed soundness weak soundness

easy soundness lazy soundness

(a) Soundness notions

decision-aware
(classical) soundness

(Sec. 8.2.1)

decision-aware
relaxed soundness

(Sec. 8.2.2)

decision-aware
weak soundness

(Sec. 8.2.3)

decision-aware
easy soundness

(Sec. 8.2.4)

decision-aware
lazy soundness

(Sec. 8.2.5)

(b) Decision soundness notions

Figure 8.1: Various notions of (decision) soundness

From this taxonomy we derived a corresponding taxonomy for de-
cision soundness shown in Figure 8.1b. Comparing the two figures
shows that the relationships between the different notions are pre-
served. Each derived notion will be defined and illustrated in the
following sections.

8.2.1 Decision Soundness

This soundness criterion corresponds to the root node in Figure 8.1b.
As the root node it must be the most restrictive of all decision sound-
ness notions, implying all of the other notions. Therefore, any pro-
cess that satisfies decision soundness will, for example, also satisfy
the notion of relaxed decision soundness. From the preceding sec-
tion discussing the relationship between the stateless and state-based
variants of the decision soundness criteria, it follows that the most
restrictive decision soundness notion must be formulated as follows:

Definition 36 (Decision-aware soundness). A decision-aware process
model is decision-aware sound if and only if:

(i) it is (classically) sound,

(ii) all of its decision fragments are decision deadlock free, and

(iii) all of its decision fragments are state-based dead branch free.

�

116 a taxonomy for decision soundness

Consider the simplified process model in Figure 8.2, with the Man-
age special offer decision shown in Figure 8.3.1 The process is not

Manage
discount

Discount?

25%

50%

100%

Manage
special offer

special
offer?

upgrade

special

none

Figure 8.2: Non-decision sound variant of the process model in Figure 7.3

F
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

Special offer
{none, upgrade, special}

1 25 25% special

2 50 - upgrade

3 - 100% none

Figure 8.3: Decision table called by Manage special offer

decision-aware sound for the following reason: although the second
decision fragment seems to perfectly match the associated decision
table, state space analysis shows that the output none cannot be pro-
duced in the context of that process model, so that the branch with
that condition is state-based unreachable, violating the third condi-
tion of the above definition.

8.2.2 Relaxed Decision Soundness

Relaxed soundness as specified in Definition 14 allows deadlocks to
occur during process execution. However, every transition (or activ-
ity) must be able to participate in at least one sound firing sequence.
This means that “relaxed soundness assumes a responsible user or
environment” [44, p. 344], such that the paths leading to deadlocks
are not taken during runtime. Conversely, in a decision-aware setting,
the decisions which paths to take are explicitly modeled in DMN, and
thus the responsibility is now transferred to design time.

Manage
discount

Manage
special offer

special
offer?

upgrade

special

Figure 8.4: Relaxed decision sound variant of the process model in Fig-
ure 7.3

As an example, consider the process model in Figure 8.4. In this
process the first decision is taken by a user while the second de-
cision is taken by the decision table in Figure 8.3. Therefore, due
to the decision-agnostic setting of the first split gateway—where a
user takes the decision—a user could choose one of the upper two
branches of the split gateway, even if Discount = 100%. This in turn

1 In the remainder of this chapter the data objects are omitted from the process models.

8.2 various notions of decision soundness 117

makes it possible to match the third rule of the table in the second
decision fragment, leading to a user-induced deadlock.

In contrast, if also the first decision is explicitly taken by a decision
model (such as in Figure 7.3), state space analysis can reveal that such
a deadlock will never occur at runtime, as discussed above. Therefore,
that process model is by design decision-aware relaxed sound, because
it satisfies the following definition, which is less restrictive regarding
decision deadlock freedom compared to Definition 36.

Definition 37 (Decision-aware relaxed soundness). A decision-aware
process model is decision-aware relaxed sound if and only if:

(i) it is relaxed sound,

(ii) all of its decision fragments are state-based decision deadlock
free, and

(iii) all of its decision fragments are state-based dead branch free.

�

8.2.3 Weak Decision Soundness

The requirement of weak soundness (cf. Definition 15) is that every
process instance can terminate properly. Thereby, deadlocks and re-
maining tokens are disallowed. What separates weak soundness from
classical soundness is the fact that dead activities are permitted. Con-
sequently, decision-aware weak soundness is defined as follows:

Definition 38 (Decision-aware weak soundness). A decision-aware
process model is decision-aware weak sound if and only if:

(i) it is weak sound,

(ii) all of its decision fragments are state-based decision deadlock
free, and

(iii) for all of its decision fragments there exists a path that is state-
based dead branch free.

�

In this definition, the second condition requires state-based deci-
sion deadlock freedom to prevent deadlocks. The third condition
requires state-based dead branch absence, but only for at least one
“path”. This simply means that the universal quantification of Defini-
tion 35 over the set of transitions t ∈ Tg is turned into an existential
one, i. e., formally, the only difference is that the “∀” in Definition 35

is replaced by an “∃”. This allows the decision fragments to contain
dead branches, but requires at least one branch to be reachable for

118 a taxonomy for decision soundness

each decision fragment, so as to enable the proper termination of pro-
cess instances.

Note that universal quantification is more restrictive than existen-
tial quantification. Therefore, all conditions of weak decision sound-
ness are more permissive than those of decision soundness, such that
the implication between the two in Figure 8.1b is satisfied.

The process model in Figure 8.2 is decision-aware weak sound. The
branch of the second decision fragment with the condition none is
state-based dead, because the output none cannot be produced. But
the other branches are still reachable, such that the existential require-
ment of the third condition is fulfilled. However, the model is not
decision-aware relaxed sound, because of that one dead branch.

8.2.4 Easy Decision Soundness

A workflow net is considered easy sound if a state of proper com-
pletion can be reached at least once. This means that both deadlocks
as well as dead activities are allowed, such that easy soundness is
implied by relaxed and weak soundness at the same time. In terms
of the decision-aware variant of this criterion, guaranteeing proper
completion at least once requires at least one path through the model
that is both state-based decision deadlock free and state-based dead
branch free.

Similar to the existential quantification of SB-DBA, the existential
quantification (“one path”) of SB-DDF means that the universal quan-
tifiers in Definition 34 are replaced by existential quantifiers. There-
fore, there must only exist at least one value such that some decision
table rule can be executed and there must only exist at least one out-
put that is covered by the branch conditions.

Hence, the following definition:

Definition 39 (Decision-aware easy soundness). A decision-aware pro-
cess model is decision-aware easy sound if and only if:

(i) it is easy sound, and

(ii) for all of its decision fragments there exists a path that is state-
based decision deadlock free and state-based dead branch free.

�

Notice that, strictly speaking, the second conjunct of the second
condition requiring state-based dead branch absence is not necessary,
since the existence of a path that is state-based decision deadlock free
implies that this path is also state-based dead branch free.

Consider the process in Figure 8.5, where the decision tasks refer-
ence the tables in Figure 8.6. Note that the second rule of the first
decision table does not consider the case when BahnCardType = 50

8.2 various notions of decision soundness 119

Manage
discount

25%

Manage
special offer

special
offer?

upgrade

special

50%

Figure 8.5: Easy decision sound variant of the process model in Figure 7.3

U
BahnCardType

{25, 50, 100}

Discount
{25%, 50%, 100%}

1 25 25%

2 25 50%

3 100 100%

(a) Manage discount decision table

U
BahnCardType

{25, 50, 100}

Special offer
{none, upgrade, special}

1 25 special

2 50 upgrade

3 100 none

(b) Manage special offer decision table

Figure 8.6: Decision tables referenced by the decision tasks of the process
model in Figure 8.5

anymore. This means it is incomplete and therefore violates (state-
based) decision deadlock freedom. Furthermore, given that the up-
grade branch of the second decision fragment can only be taken given
that BahnCardType is 50, this branch is state-based dead.

It follows that this process is neither decision-aware relaxed nor
weak sound. Still, there is a path through the process and the decision
tables that leads to proper completion, namely the path that is taken
in case BahnCardType = 25. Therefore, the process is decision-aware
easy sound.

8.2.5 Lazy Decision Soundness

Lazy soundness disallows deadlocks and allows dead transitions. Ad-
ditionally, it allows remaining tokens. This means that when a token
reaches the final place, there can be tokens left in the net and there
can be transitions that are enabled or fire. However, the final place
should only be reached once. Lazy decision soundness can be defined
as follows:

Definition 40 (Decision-aware lazy soundness). A decision-aware pro-
cess model is decision-aware lazy sound if and only if:

(i) every process instance reaches the end event exactly once, and

(ii) for all of its decision fragments there exists a path that is state-
based decision deadlock free and state-based dead branch free.

�

Regarding the decision criteria, this definition is the same as that
for easy decision soundness (cf. Definition 38). The difference is that
it (clearly) does not require easy soundness, but more importantly
it also does not require lazy soundness. Still, it requires that every
instance reaches the end event exactly once.

120 a taxonomy for decision soundness

This subtle variation is due to the fact that the use of decision mod-
els can render process models lazy decision sound, that are not con-
sidered lazy sound in the sense of Definition 16. As an example, study
the process model in Figure 8.7, which is not lazy sound: The parallel
gateway spawns two concurrent paths which are later joined by an
exclusive gateway right before the end event, leading to two tokens
in the final place.

Manage
special offer

special
offer?

upgrade

special

Manage
discount discount?

100%

Figure 8.7: Lazy decision sound variant of the process model in Figure 7.3

Now assume that the two decision fragments reference the deci-
sion tables in Figure 8.6a and Figure 8.6b, respectively. With this con-
figuration, in every possible instance, exactly one of the concurrent
branches contains a remaining token: if BahnCardType = 100 a token
remains in the upper branch; and if the type is 50 or 25 the lower
branch contains a remaining token. Consequently, each process in-
stance eventually reaches the end event exactly once, such that the
process model is decision-aware lazy sound.

8.3 summary and discussion

decision-aware
(classical) soundness

(Sec. 8.2.1)

decision-aware
relaxed soundness

(Sec. 8.2.2)

decision-aware
weak soundness

(Sec. 8.2.3)

decision-aware
easy soundness

(Sec. 8.2.4)

decision-aware
lazy soundness

(Sec. 8.2.5)

 (i) sound
(ii) DDF

 (iii) SB-DBA

 (i) weak sound
(ii) SB-DDF

 (iii) $ SB-DBA

 (i) end event
 reached

 exactly once
 (ii) $ (SB-DDF
  SB-DBA)

 (i) relaxed
 sound

 (ii) SB-DDF
 (iii) SB-DBA

 (i) easy sound
(ii) $ (SB-DDF
  SB-DBA)

Figure 8.8: Various notions of decision soundness annotated with their re-
spective conditions as defined in Section 8.2

The various notions of decision soundness described above are
summarized in Figure 8.8. For each notion the figure shows the con-
ditions that must be fulfilled in order to satisfy that notion. The num-
bering corresponds to the numbering of the conditions of the corre-
sponding definition in Section 8.2.

8.3 summary and discussion 121

This figure also demonstrates that the implications between the
different notions (indicated by arrows) are satisfied by the condi-
tions. For example, there is an arrow between relaxed decision sound-
ness and easy decision soundness, claiming an implication between
the two. Indeed, relaxed soundness (of workflow nets) implies easy
soundness (cf. Figure 8.1a), and if SB-DDF and SB-DBA are fulfilled,
then there certainly exists at least one path that is SB-DDF and SB-
DBA. Therefore, the implication is true, and similar arguments can
be made for the other implications in Figure 8.8.

Regarding the actual verification of the decision soundness crite-
ria, it is important to note that this will be done in two steps. For
example, to check relaxed decision soundness, first, the formalization
of the process model as a workflow net will be checked for relaxed
soundness. Afterwards, the formalization of the process model as a
colored workflow net will be checked for relaxed decision soundness.

This demonstrates that the various notions of decision soundness dif-
fer from the various notions of soundness that could be defined for col-
ored workflow nets. Definition 28 already gives a definition of sound-
ness for a colored workflow net, and similarly one might define a
notion of relaxed soundness of a colored workflow net. Without giv-
ing a full definition here, we claim that that definition will (at least)
replace criteria (i)− (iii) of colored workflow net soundness by the
following criterion:

(i) ∀t ∈ T, ∃Mf ∈ MF, M, M′, b : MI
∗−→ M

(t,b)−−→ M′ ∗−→ Mf .

This criterion allows state-based decision deadlock freedom to be
violated. It only requires every transition to be part of a sound firing
sequence of the colored workflow net, i. e., there can be markings any-
where in the net that are deadlocks. Relaxed decision soundness also
allows deadlocks (due to its first condition), but not in the decision
fragment (due to its second condition). Therefore, a colored workflow
net that is relaxed sound may not be relaxed decision sound, and sim-
ilar arguments can be made for the other soundness notions.

Part IV

E VA L U AT I O N A N D C O N C L U S I O N

9
E VA L U AT I O N

This chapter is concerned with the evaluation of the concepts and
ideas described in this thesis. First, the prototypical implementation
of the algorithms necessary for checking the (stateless) soundness of
decision-aware process models are outlined in Section 9.1, including
runtime considerations. Next, an empirical evaluation of the notion
of decision soundness is presented with models from participants of
an online course on process and decision modeling as well as from
a BPM project of a large insurance company in Section 9.2. Finally,
Section 9.3 demonstrates how the explicit consideration of decisions
in process models can improve also another area of analysis, namely
compliance checking. The work presented in this chapter has partly
been published in [78–80, 95, 96, 101].

9.1 prototypical implementation

In order to enable the verification of (stateless) soundness of decision-
aware process models, we implemented corresponding algorithms in
dmn-js1, a DMN decision table editor developed by Camunda. Those
algorithms were already described in [79] and [95], and their com-
bined use integrated into the Camunda Modeler2 will be presented in
the following.

9.1.1 Extended Camunda Tool

The entire functionality of the soundness checking procedure was im-
plemented in the dmn-js component of the Camunda Modeler, a stan-
dalone application for the integrated modeling of BPMN and DMN
diagrams. The Camunda Modeler allows to design process and deci-
sion models whose serialization in XML format is conformant to the
respective standards. Therefore, decision soundness can be checked
for models that were created with the Camunda tool itself or, alter-
natively, for models that were created with a different standard con-
formant application and that are then imported to Camunda. Our
extended, ready to execute Camunda Modeler and corresponding
screencasts are available for download.3

Figure 9.1 shows a screenshot of the extended tool after the sound-
ness check was executed for the decision-aware process model at the

1 https://github.com/bpmn-io/dmn-js

2 https://github.com/camunda/camunda-modeler

3 https://bpt.hpi.uni-potsdam.de/Public/BpmnDmnSoundness

125

https://github.com/bpmn-io/dmn-js
https://github.com/camunda/camunda-modeler
https://bpt.hpi.uni-potsdam.de/Public/BpmnDmnSoundness

126 evaluation

bottom of that figure. This simplistic process determines the credit
rating of an applicant and, depending on the result, accepts or rejects
the applicant or invites them for an interview. The credit rating is de-
termined by the decision table displayed at the top of the figure and
the analysis results are shown in the middle.

The table in this example is actually the same as the one in Fig-
ure 4.1 in Section 4. The analysis results in the screenshot show that
the output set of the table is computed to be able to check decision
deadlock freedom and dead branch absence. Note that in this proto-
typical implementation the stateless variants of the criteria defined in
Section 6.3 are checked. Therefore, multiple violations are detected,
five of which are due to a DDF violation and the other one being a
DBA violation.

The results also show the reasons for the violations. For example,
the table can produce the output [A, B], but there is no branch con-
dition in the process model that would take care of this output. The
first condition requires the output to be exactly equal to A, the sec-
ond expects the single value E or a list that contains the value E, and
the third requires the value A and a list that does not contain E or a
single value that is not equal to E.4 Similar arguments apply to the
other instances of DDF violations.

The last violation concerns the lowest branch of the process model,
which is unreachable because it requires the decision output to be
both a single value (equal to A) and at the same time a list that does
not contain E. Hence, the dead branch absence criterion is not sat-
isfied. Luckily, the solution to all of those problems is simple. The
designer of the process model merely forgot to negate the first part
of the condition and confused the logical or in the last part with a
logical and. The correct branch condition would thus be:

CreditRating != A and (CreditRating !contains E and CreditRating != E)

which simply matches everything that does not match the first two
conditions. Updating the process model accordingly would then yield
the result that it is indeed (stateless) decision sound.

Notice that the decision table output set that is displayed in the
first row of the analysis results table is computed by the procedure
described in Section 4.2, but the table is not uniqueified (i. e., trans-
formed into a unique table) afterwards. However, this can also be
achieved by pressing the uniqueify table button on the top right of the
figure. The result is shown in the screenshot in Figure 9.2.

9.1.2 Runtime Analysis

Parts of our implementation rely on functionality provided by an-
other extension of dmn-js for the verification of DMN decision ta-

4 The violations are obviously due to that last branch condition.

9.1 prototypical implementation 127

Fi
gu

re
9
.1

:V
ie

w
of

th
e

to
ol

af
te

r
ch

ec
ki

ng
so

un
dn

es
s

of
th

e
di

sp
la

ye
d

de
ci

si
on

-a
w

ar
e

pr
oc

es
s

m
od

el

128 evaluation

Figure
9.

2:V
iew

of
the

toolafter
uniqueifying

the
table

show
n

in
Figure

9.
1

9.1 prototypical implementation 129

bles [73]. That extension includes the detection of missing and over-
lapping rules, and the optimization of the table by merging rules. In
[97] the algorithms are reported to be of quadratic complexity. Check-
ing decision deadlock freedom and dead branch absence does not
result in a higher complexity class. This is because both checks essen-
tially consist of two nested for-loops that compare the decision table
outputs with the process branch conditions, which is also of quadratic
complexity.

The most time-consuming part of the decision soundness check is
actually the computation of the decision table output set—if the table
contains overlapping rules. To assess the runtime of that computa-
tion, 1000 different artificial decision tables with overlapping rules
were generated and uniqueified. Those 1000 tables are made up of
ten sets of 100 decision tables, where each set contains tables with
all combinations of {5, 10, 15, . . . , 50} rows and {3, 6, 9, . . . , 30} input
columns columns. All the input columns of the table have an integer
domain, while the single output column is of type string.

The rules are randomly generated by generating a random condi-
tions for each input. Each condition is made up of one of the opera-
tors in {<,>,≤,≥,=} and an integer, both chosen at random. More-
over, each table has a rule-order multi-hit policy. Hence, the generated
tables have a random number of overlapping rules and can therefore
be processed by the uniqueification algorithm to compute their out-
put sets.

50
40

30

#rows

20
10

00

5

10

#columns

15

20

25

80

20

0

160

140

120

100

60

40

30

ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Figure 9.3: Averaged execution times in seconds for a set of 1000 multi-hit
tables with up to 50 rows and 30 columns

The algorithm was applied to the tables in the ten sets and the exe-
cution times were averaged over the ten sets. The measurements are
displayed as a three-dimensional surface plot in Figure 9.3, where the
x-axis shows the number of rules of the table, the y-axis the number
of columns, and the z-axis the averaged execution times.

130 evaluation

The plot shows that the execution times are more dependent on
the number of rows than the number of columns. This is because
the more rules there are, the more intervals need to be checked for
matching rules. However, the maximum average execution time was
actually reached for the 50× 6-tables with 151 seconds; and also other
tables with similar numbers of rules and columns lead to comparably
high execution times.

The reason for that is the high number of overlapping rules of those
tables. More specifically, tables with a high number of rules but a
low number of columns have much more rules that overlap across
all dimensions. And the more rules overlap in all dimensions, the
more intervals need to be checked per dimension (cf. recursive call in
Algorithm 1).

The average total number of overlaps of the rules of the tables in
our data set is shown in Figure 9.4. Here, the maximum number of
overlaps is 1138 for the 50× 6-tables, which coincides with the maxi-
mum in Figure 9.3.

50
40

30

#rows

20
10

00

5

10

#columns

15

20

25

1400

0

1000

800

400

200

600

1200

30

nu
m

be
r

of
 o

ve
rla

pp
in

g
ru

le
s

Figure 9.4: Total number of overlaps found in the tables

Note that the number of overlaps for the tables with a high num-
ber of columns is nearly always zero. This is because the higher the
number of columns, the harder it is for multiple rules to overlap in all
of those dimensions. This shows that our uniqueification approach is
especially suited (or effective) for tables with a high number of rules
and a lower number of columns.

9.2 empirical evaluations

This section first describes in Section 9.2.1 the results of an evalu-
ation of the decision soundness criteria of Section 6.3 on models ob-
tained from participants of an online course. Afterwards, Section 9.2.2
presents results and statistics of the analysis of a large real-world
BPM project. Both empirical evaluations were conducted to find out

9.2 empirical evaluations 131

whether process and decision designers indeed make modeling mis-
takes that would lead to a violation of the decision soundness criteria,
thereby ascertaining their practical relevance.

9.2.1 Academic Models

The collection of “academic” decision-aware process models came
from participants of a massive open online course (MOOC) on pro-
cess and decision modeling with BPMN and DMN offered by openHPI
[56] in Spring 2016.5 The MOOC lasted six weeks and had around
5500 participants in total, the majority of which were between 30 and
50 years old working as consultants with an IT background, while the
second largest group came from academia. For the successful com-
pletion of the course, the participants had to solve weekly exercises
involving both theoretical questions and modeling tasks.

Figure 9.5: Modeling exercise given to openHPI course participants

To evaluate the decision soundness criteria, in the last week of the
course the participants were asked to voluntarily submit their solu-
tion to a modeling exercise requiring them to model a BPMN process
associated with a DMN decision model. For that purpose, they were
given a textual description of a simplistic billing process, in which a
decision is made about the particular type of bill that applies to a cus-

5 https://open.hpi.de/courses/bpm2016

https://open.hpi.de/courses/bpm2016

132 evaluationBilling Process exclusive

Decide on
billing

Send
minimum

bill

Send plan
A bill

Send plan
B bill

Bills sentEnd of
month

Customer

Billing

Billing?

Send plan
A and plan

B bill

Minimum

Plan A

Plan B

[Plan A, Plan B]

Figure 9.6: Model for the billing process described in Figure 9.5

Figure 9.7: Decision table for the billing decision described in Figure 9.5

tomer. A screenshot of the openHPI system displaying the exercise is
shown in Figure 9.5.

Figure 9.6 and Figure 9.7 show the sample solution for the model-
ing task in Figure 9.5. The process is started at the end of the month
and the type of the bill is decided upon based on the customer data.
As described in the text, the decision table takes into account whether
or not the customer has a fixed rate contract and their consumption.
Note that rules three and four are overlapping for consumption val-
ues of more than 2500 kWh. Therefore, the output set of this decision
table is Minimum, Plan A, Plan B, [Plan A, Plan B]. The last output is a
list output and is processed by the decision fragment accordingly. In
this way, two bills are sent for such cases, as asked in the text.

From the course participants, in total, we received 157 unique sub-
missions, 70 of which were evaluable with respect to decision-aware
soundness. The two most common reasons for the other 87 submis-
sions to be unsuitable for our evaluation were that either the partici-
pants only submitted a DMN model but no associated BPMN model
(52 submissions), or that the associated BPMN model did not con-
tain a decision fragment as defined in Definition 20 (24 submissions).
Rather, the process was designed like in Figure 2.22.

Table 9.1 summarizes the results of our analysis. While the sample
solution in Figure 9.7 uses a multi-hit table, more submissions favored

9.2 empirical evaluations 133

Table 9.1: Number and percentage of sound and unsound decision-aware
process models designed by the MOOC course participants

Sound Not Sound Total

Single-hit 12 (29%) 29 (71%) 41 (100%)

Multi-hit 15 (52%) 14 (48%) 29 (100%)

Total 27 (39%) 43 (61%) 70 (100%)

using single-hit tables, which is also possible. Looking at the ratio
of unsound processes, in both cases mistakes are made: 71% of the
single-hit and 48% of the multi-hit tables were found to be unsound.
Thus, in total, 61% of the analyzed decision fragments violate at least
one of the decision soundness criteria of Section 6.3.

Figure 9.8: Submission by a course participant for the modeling task de-
scribed in Figure 9.5

Figure 9.9: Decision table associated with the decision fragment in Fig-
ure 9.8

Figure 9.8 and Figure 9.9 show a “typical” solution by a course par-
ticipant. Since all the rules of the table are exclusive, the output set
is minimum, A, B. But only for the B output there is a corresponding
branch condition (Billing Plan B). The other outputs are not explicitly
considered here (i. e., output coverage is violated). One may assume
that the upper branch of the first split gateway simply matches any-
thing that is not equal to Billing Plan B. But this does not seem feasible,
because that branch only leads to an activity dealing with a Plan A
bill, and not with a Minimum bill.

134 evaluation

In conclusion, most participants understood how to design decision-
aware business process models, i. e., they modeled decision fragments
that interact with decision models. However, they lacked the precision
required for a sound integration of the two types of models. This is
especially important when such models are supposed to be executed
automatically in an environment where there are no domain experts
that could guess how the model should be interpreted correctly.

9.2.2 Industry Use Case

Since the empirical evaluation of the previous section was conducted
on models of an artificial use case by modeling novices, another eval-
uation was carried out on real-life decision-aware process models.
Those came from an implemented process management project of a
large German insurance company that deals with automatically han-
dling invoices submitted by customers with private health insurance.

The decision soundness evaluation was part of a bigger project in-
vestigating the gap between academic research on decision manage-
ment and decision management in the BPM software Pega by assess-
ing the model quality of an implemented decision-heavy Pega project.
Pega is a software platform developed by Pegasystems, intended for
the model-driven development of BPM applications.6

The scrutinized Pega project is embedded in an application of the
insurance company dealing with the reimbursement of health care
services filed by their customers. That application’s objective is to
increase the rate of automation of processing customer requests. In
general, the application contains a deterministic and a stochastic com-
ponent, both of which execute the processes fully automatically or, in
some exceptional cases, with the help of a case worker. The deter-
ministic component is implemented in Pega and includes, for exam-
ple, checking the filed requests for correctness according to formal
and legal requirements, and calculating the reimbursement amount
according to the tariff of the customer.

The Pega project contains 86 decision-aware process models, 26
(30%) of which were found to be not decision sound because they
violate the output coverage criterion. An example of such a process
model is shown in Figure 9.10, which is associated to the decision
table in Figure 9.11 via its gateway (Determine Block Number).

The process model is designed to react to two outcomes of the table,
Block 2 and Block 3. However, the decision table can also produce
another output, namely Error, which is not covered by the process
model. Hence, the decision deadlock freedom criterion is violated
and the process is not decision sound.

Yet, the state-based version of the decision deadlock freedom cri-
terion is actually not violated by this process. This was discovered

6 https://www.pega.com/

https://www.pega.com/

9.2 empirical evaluations 135

Figure 9.10: Example of decision-aware process model found in the ana-
lyzed Pega project

Figure 9.11: Decision table associated with the gateway in Figure 9.10

after a consultation with one of the process owners who explained
that the application in which the Pega project is embedded already
makes sure that the variable BlockNumber will only contain either the
value 2 or 3. Hence, the process is state-based decision deadlock free
and, therefore, satisfies all of the notions of decision soundness in
Figure 8.1b, except for the top one.

Apart from the 86 decision-aware process models, the Pega project
also contains decision tables that are not associated with any pro-
cesses. While they cannot be evaluated with regard to decision sound-
ness, they can still be analyzed regarding completeness. When doing
so it makes a substantial difference how completeness is defined. In
general, a table is complete if for every possible combination of in-
put values at least one rule matches. The question then is what the
possible input values are.

According to DMN, the possible input values are the values of the
variable’s domain, which can be infinitely many, in case of an inte-
ger domain, for instance. Pega, on the other hand, assumes that only
those values that are actually used in the table are the values that the
variable can assume.

For example, the table in Figure 9.12 is complete according to Pega,
but not according to DMN, because the variable RECHPRUEERG is of

Figure 9.12: Example for a Pega decision table taken from the analyzed
project

136 evaluation

type integer.7 Note that this is exactly the difference between stateless
and state-based decision deadlock freedom. Applying both complete-
ness notions to the project’s 65 decision tables shows that according
to Pega 48 (74%) of the tables are (state-based) complete, but accord-
ing to DMN only 5 (8%) are (stateless) complete, as visualized in
Figure 9.13.

5

48

0

10

20

30

40

50

60

DMN complete # Pega complete

Figure 9.13: Number of decision tables of the Pega project that are complete
according to DMN (stateless) and Pega (state-based)

9.3 compliance checking of decision-aware processes

Soundness checking is not the only kind of verification that can ben-
efit from a “decision-aware analysis” of the process model. In [101]
it was shown that also the verification of process models with re-
gard to compliance rules can take advantage of decision-awareness.
The essence of compliance checking is traditionally the verification of
rules constraining the control flow of a process model [29]. Such rules
may be internal to the organization the process belongs to. But more
often the rules stem from laws and regulations that the organization
must adhere to. Therefore, compliance checking of process models is
the topic of numerous publications (e. g., [27], [29], [33], [38], [92]).

Consider again the running example of a train ticket booking pro-
cess model, repeated for convenience in Figure 9.14. An internal com-
pliance rule regarding this process may be formulated as follows:

If a 50% discount is applied to the booking, the customer must not be
offered a special deal afterwards.

This rule concerns the two activities Apply 50% discount and Offer
special deal. Specifically, it says that if in a particular process instance
Apply 50% discount is executed, Offer special deal must not be executed
afterwards in this instance. Such relations between activities can be

7 This assumes that the otherwise row is not considered in the completeness check,
which is the case according to Pega.

9.3 compliance checking of decision-aware processes 137

Booking
received

Manage
discount

Discount?

25%
Apply 25%
discount

50%
Apply 50%
discount

100%
Apply 100%

discount

Manage
special offer

upgrade
Offer

upgrade

special
Offer

special deal

Booking
completed

Booking Discount Booking
Special
Offer

Booking Booking

Special
offer?

BookingDiscount

Figure 9.14: The train ticket booking process model, repeated for conve-
nience

formally specified using temporal logic [29]. To explain the impact of
decision-awareness, however, it should suffice to work with natural
language.

Essentially, to check such a rule one has to analyze the state space
of the corresponding process to find out if there are states that violate
the rule. For example, one could translate the process model in Fig-
ure 9.14 to a workflow net and construct its reachability graph. Then,
it will become apparent that there is a path in the graph containing
the transition corresponding to Apply 50% discount and the transi-
tion corresponding to Offer special deal afterwards. Therefore, the rule
would be violated according to that analysis.

A decision-aware analysis, however, changes that. Translating the
process model to a colored workflow net considering the decision
logic, and then constructing the reachability graph, will show that
there actually is no such path. This is because if a 50% discount is
applied, the BahnCardType must be 50, according to the first decision
table (cf. Figure 7.2a). This in turn means that the output of the second
decision table will be upgrade (cf. Figure 7.2b), so that the activity Offer
special deal cannot be executed. Thus, the compliance rule is indeed
satisfied.

It turns out that, in general, decision-awareness reduces the num-
ber of false negatives and false positives of compliance checking, be-
cause it reduces the number of possible traces of a process model—
traces that can never occur in reality.

10
C O N C L U S I O N

The conclusion of this thesis summarizes its results in Section 10.1.
Lastly, Section 10.2 discusses limitations of our work, while also pro-
viding directions for future work.

10.1 summary

This thesis introduced and detailed approaches to verify the sound-
ness of a decision-aware business process model, which is a pro-
cess model that references one or more decision models. Upon be-
ing called by the process, the decision model will execute its decision
logic and return the result back to the process, which then acts ac-
cordingly. This interaction is prone to errors, leading to soundness vi-
olations of the process model. Therefore, this thesis defined so called
decision soundness criteria along with a method to verify them such
that the correctness of a decision-aware process model can be ascer-
tained. In detail, the results of this thesis are the following:

• The separation of concerns of processes and decisions: An analysis
of almost 1000 real world process models testified that process
modeling constructs are regularly misused to implement the
logic of decisions that need to be made during process execu-
tion. Such implementations are mainly based on three control-
flow decision patterns which we elicited and defined.

• Input-output behavior of DMN decision tables: Decision tables are
the standardized means of defining decision logic in DMN. Due
to the different variations of those tables, however, their input-
output behavior might not always be clear. Moreover, in terms
of their formalization in the context of a process model, it is
useful to have a standard format for the tables. Hence, we de-
vised and implemented an algorithm to uniqueify DMN tables,
where the uniqueified form serves as their standardized repre-
sentation. Furthermore, we proved what the maximum number
of outputs of a DMN table with a single input column is.

• Formalization of decision-aware process models and their verification
via abstraction: For a formal verification of decision soundness,
a formal representation of a decision-aware process model is
required. We proposed a mapping of such models to colored
Petri nets, while also acknowledging that soundness verification
given a “one-to-one” mapping is undecidable, due to the infin-
ity of the reachability graph. Therefore, an abstraction method

139

140 conclusion

was proposed that divides the infinitely many states of the reach-
ability graph into finitely many partitions. This enables a sound-
ness analysis of the abstract graph to verify the correctness of
the original decision-aware process model.

• Stateless decision soundness: For a quick decision soundness check
based directly on the decision-aware process model, we define
structural and basic behavioral criteria. Those criteria consider
each decision fragment in isolation and do not take the context
of the process model into account which they are embedded in.
This may be relevant, however, since the process determines the
possible inputs that the decision is called with, and accordingly
not all rules of the decision table may be matched. Such situa-
tions can particularly arise if the same decision model is used
by several slightly different process models, such that the deci-
sion model will not perfectly fit with every process model it is
associated with.

• Various notions of decision soundness: To support the reuse of de-
cision models across multiple process models in the soundness
check, we formally defined various notions of decision sound-
ness that also take the context (or states) of the decision frag-
ment into account. Those soundness notions are checked on
the abstract colored Petri net mapping of the decision-aware
process model. The notions have been inspired by the existing
notions of control-flow soundness and have the same relation-
ships.

• Implementation and empirical evaluation: We implemented the state-
less decision soundness check in the Camunda Modeler, includ-
ing the table uniqueification algorithm, which is required to
compute the possible outputs of the decision table, but can also
be executed on a table alone to transform it into its standard for-
mat. Moreover, two empirical evaluations were conducted on a
set of decision-aware process models designed by participants
of an online course on process and decision modeling, and on
models from a real world BPM project of a large insurance com-
pany. In both cases it was shown that decision soundness vi-
olations frequently occur. At the same time, in the real world
BPM project it was revealed that taking state information into
account renders some of the models indeed decision sound.

10.2 limitations and future work

The work presented in this thesis does not come without limitations
that may be subject to future work and will be described in the fol-
lowing.

10.2 limitations and future work 141

First of all, the decision soundness considerations of this thesis as-
sume the decision logic to be represented by default as a decision
table. This raises the question whether the ideas presented here can
also be applied if other forms of decision logic are used. Section 4.3
described how decision tables can be interpreted as functions. Simi-
larly, any other logic that is interpretable as a function may replace de-
cision tables. Regarding the stateless criteria, it even suffices to know
what the possible outputs of that function are (i. e., its image), and
whether or not it is a partial function (so that its “completeness” can
be determined). For the state-based criteria—requiring a mapping to
a colored Petri net—the full function definition must be available,
such that the decision function is simply mapped to a single CPN
transition that implements that function.

Moreover, the mapping of a decision fragment to a colored Petri
net assumes that the fragment’s split gateway is of type XOR with
non-overlapping conditions. The requirement of an exclusive gateway
simplifies the mapping considerably because the inclusive or join is
hard to tackle in general. Kunze and Weske [72] demonstrate a map-
ping in case the split and join gateways are “well structured”, but no
general CPN mapping is proposed.

Related to this is the requirement that the conditions of the outgo-
ing edges of the decision fragment’s split gateway are non-overlapping,
i. e., at most one condition evaluates to true in a given situation. Re-
garding the BPMN execution semantics, one could resolve such am-
biguities by stating that the edge conditions are evaluated from top
to bottom, and the first edge whose condition evaluates to true will
be signaled (similar to the first hit policy of a DMN table). Such logic
would have to be implemented in the CPN as well.

As already discussed in Section 5.5, the CPN mapping and reach-
ability graph analysis is only possible if the decision logic is imple-
mented in S-FEEL. However, also the stateless soundness check is lim-
ited to S-FEEL because the table uniqueification algorithm—which is
also used to determine the possible outputs of the table—is limited
to S-FEEL. This is because the analysis of DMN tables via their geo-
metric interpretation as hyperrectangles requires S-FEEL tables, since
FEEL would also allow the comparison of two variables (e. g., x < y)
as rule conditions. Such rules cannot be interpreted geometrically,
however [97].

In Chapter 9 we described a prototype that is able to check stateless
decision soundness. The verification of the state-based soundness no-
tions is not supported, however. Obviously, this requires the decision-
aware process model to be translated to an abstract colored Petri net,
whose reachability graph can then be generated and analyzed. Tool
support for colored Petri net modeling and analysis is given through
CPN Tools [21]. Clearly, representing abstract symbols in CPN Tools—
which is based on the functional programming language Standard

142 conclusion

ML [10]—is a challenge. Representing the color set of an abstract
token explicitly is impossible because one would need to define all
elements of the powerset of the variable’s original domain. This pow-
erset is infinite, however, if the original domain is infinite (such as the
integers). Alternatively, one can represent each element of the pow-
erset as a list of intervals. For example, the element {3, 7, 8, 9} ∈ 2Z

can be represented as [[3, 3], [7, 9]]. Consequently, the color set of the
corresponding token would just be a list of such intervals.

Another limitation—one that is not directly related to soundness
verification—is the restriction of the proof in Section 4.4 about the
maximum number of DMN decision tables to one input column. Cer-
tainly, statements about tables with more than one input column
would be helpful to get an idea of the maximum number of outputs
one has to cover in the process model. Yet, as stated in Section 4.4
for this a complicated analysis of the different ways in which a set
of n-dimensional hyperrectangles can overlap is required. Since this
does not directly contribute to the main objectives of this thesis, it is
not considered here.

B I B L I O G R A P H Y

[1] Carl Adam Petri. “Kommunikation mit Automaten.” ger. PhD
thesis. Universität Hamburg, 1962.

[2] D. L. Parnas. “On the Criteria to Be Used in Decomposing
Systems into Modules.” In: Commun. ACM 15.12 (Dec. 1972),
pp. 1053–1058. issn: 0001-0782.

[3] Herbert Stachowiak. Allgemeine Modelltheorie. Wien, New York:
Springer, 1973.

[4] Peter Pin-Shan Chen. “The Entity-relationship Model—Toward
a Unified View of Data.” In: ACM Trans. Database Syst. 1.1 (Mar.
1976), pp. 9–36. issn: 0362-5915.

[5] J. L. Bentley and T. A. Ottmann. “Algorithms for Reporting
and Counting Geometric Intersections.” In: IEEE Trans. Com-
put. 28.9 (Sept. 1979), pp. 643–647. issn: 0018-9340.

[6] Herbert Edelsbrunner. “A new approach to rectangle intersec-
tions.” In: International Journal of Computer Mathematics 13.3-4
(1983), pp. 221–229.

[7] Herbert Edelsbrunner. “A new approach to rectangle intersec-
tions part I.” In: International Journal of Computer Mathematics
13.3-4 (1983), pp. 209–219.

[8] T. A. Nguyen, W. A. Perkins, T. J. Laffey, and D. Pecora. “Check-
ing an Expert Systems Knowledge Base for Consistency and
Completeness.” In: Proceedings of the 9th International Joint Con-
ference on Artificial Intelligence - Volume 1. IJCAI’85. Los Ange-
les, California: Morgan Kaufmann Publishers Inc., 1985, pp.
375–378.

[9] Tin A Nguyen, Walton Perkin, Thomas J Laffey, and Deanne
Pecora. “Knowledge Base Verification.” In: AI Mag. 8.2 (June
1987), pp. 69–75. issn: 0738-4602.

[10] Robin Milner, Mads Tofte, and Robert Harper. The Definition
of Standard ML. Cambridge, MA, USA: MIT Press, 1990. isbn:
0262132559.

[11] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Meth-
ods and Practical Use. Vol. 1, Basic Concepts. English. 2. printing
with few corrections 1997. ISBN: 3-540-60943-1. Springer, 1992.
isbn: 3-540-55597-8.

[12] J. Vanthienen and E. Dries. Developments in decision tables: evolu-
tion, applications and a proposed standard. Research Report 9227.
Leuven, Belgium: KU Leuven, 1992.

143

144 bibliography

[13] Thomas H. Davenport. Process Innovation: Reengineering Work
Through Information Technology. Boston, MA, USA: Harvard Busi-
ness School Press, 1993. isbn: 0-87584-366-2.

[14] J. Vanthienen and G. Wets. “Integration of the Decision Table
Formalism with a Relational Database Environment.” In: Inf.
Syst. 20.7 (Nov. 1995), pp. 595–616.

[15] Wil M. P. van der Aalst. “Verification of Workflow Nets.” In:
Proceedings of the 18th International Conference on Application and
Theory of Petri Nets. ICATPN ’97. Berlin, Heidelberg: Springer-
Verlag, 1997, pp. 407–426. isbn: 3-540-63139-9.

[16] Wil M. P. van der Aalst. “The Application of Petri Nets to
Workflow Management.” In: Journal of Circuits, Systems, and
Computers 8.1 (1998), pp. 21–66.

[17] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. Cambridge, MA, USA: MIT Press, 1999. isbn:
0-262-03270-8.

[18] Coverpages.com. Simple Rule Markup Language (SRML). 2001.
url: http : / / xml . coverpages . org / srml . html (visited on
03/27/2019).

[19] Juliane Dehnert and Peter Rittgen. “Relaxed Soundness of Busi-
ness Processes.” In: Advanced Information Systems Engineering.
Ed. by Klaus R. Dittrich, Andreas Geppert, and Moira C. Nor-
rie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
157–170. isbn: 978-3-540-45341-3.

[20] Workflow Management: Models, Methods, and Systems. Cambridge,
MA, USA: MIT Press, 2002. isbn: 0262011891.

[21] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads
Laursen, Jacob Frank Qvortrup, Martin Stig Stissing, Michael
Westergaard, Søren Christensen, and Kurt Jensen. “CPN Tools
for Editing, Simulating, and Analysing Coloured Petri Nets.”
In: Applications and Theory of Petri Nets 2003. Ed. by Wil M. P.
van der Aalst and Eike Best. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 450–462. isbn: 978-3-540-44919-5.

[22] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Cameron
Foulger. “Data Flow and Validation in Workflow Modelling.”
In: Proceedings of the 15th Australasian Database Conference - Vol-
ume 27. ADC ’04. Dunedin, New Zealand: Australian Com-
puter Society, Inc., 2004, pp. 207–214.

[23] R.A. Toorn, van der. “Component-based software design with
Petri nets : an approach based on inheritance of behavior.”
PhD thesis. Department of Mathematics and Computer Sci-
ence, 2004. isbn: 90-386-0802-0.

http://xml.coverpages.org/srml.html

bibliography 145

[24] Axel Martens. “Analyzing Web Service Based Business Pro-
cesses.” In: Fundamental Approaches to Software Engineering. Ed.
by Maura Cerioli. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 19–33. isbn: 978-3-540-31984-9.

[25] Frank Puhlmann and Mathias Weske. “Interaction Soundness
for Service Orchestrations.” In: Service-Oriented Computing –
ICSOC 2006. Ed. by Asit Dan and Winfried Lamersdorf. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 302–313. isbn:
978-3-540-68148-9.

[26] Jan Recker, Marta Indulska, Michael Rosemann, and Peter F.
Green. “How good is BPMN really? Insights from theory and
practice.” In: ECIS. 2006, pp. 1582–1593.

[27] Ahmed Awad. “BPMN-Q: A Language to Query Business Pro-
cesses.” In: Enterprise Modelling and Information Systems Archi-
tectures - Concepts and Applications , Proceedings of the 2nd Inter-
national Workshop on Enterprise Modelling and Information Sys-
tems Architectures (EMISA’07), St. Goar, Germany, October 8-9,
2007. Ed. by Manfred Reichert, Stefan Strecker, and Klaus Tur-
owski. Vol. P-119. LNI. GI, 2007, pp. 115–128.

[28] James Taylor and Neil Raden. Smart (Enough) Systems: How to
Deliver Competitive Advantage by Automating the Decisions Hid-
den in Your Business. First. Upper Saddle River, NJ, USA: Pren-
tice Hall Press, 2007. isbn: 9780132347969.

[29] Ahmed Awad, Gero Decker, and Mathias Weske. “Efficient
Compliance Checking Using BPMN-Q and Temporal Logic.”
In: Business Process Management. Ed. by Marlon Dumas, Man-
fred Reichert, and Ming-Chien Shan. Berlin, Heidelberg: Sprin-
ger Berlin Heidelberg, 2008, pp. 326–341.

[30] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. “Se-
mantics and Analysis of Business Process Models in BPMN.”
In: Inf. Softw. Technol. 50.12 (Nov. 2008), pp. 1281–1294. issn:
0950-5849.

[31] Marwane El Kharbili, Ana Karla A. de Medeiros, Sebastian
Stein, and Wil M. P. van der Aalst. “Business Process Com-
pliance Checking: Current State and Future Challenges.” In:
MobIS. Vol. 141. LNI. GI, 2008, pp. 107–113.

[32] Michael zur Muehlen and Jan Recker. “How Much Language
Is Enough? Theoretical and Practical Use of the Business Pro-
cess Modeling Notation.” In: Advanced Information Systems En-
gineering. Ed. by Zohra Bellahsène and Michel Léonard. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 465–479. isbn:
978-3-540-69534-9.

146 bibliography

[33] Ahmed Awad, Matthias Weidlich, and Mathias Weske. “Spec-
ification, Verification and Explanation of Violation for Data
Aware Compliance Rules.” In: Service-Oriented Computing. Ed.
by Luciano Baresi, Chi-Hung Chi, and Jun Suzuki. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 500–515. isbn:
978-3-642-10383-4.

[34] Volker Gruhn and Ralf Laue. “Reducing the cognitive com-
plexity of business process models.” In: IEEE ICCI. IEEE Com-
puter Society, 2009, pp. 339–345.

[35] Barbara von Halle and Larry Goldberg. The Decision Model:
A Business Logic Framework Linking Business and Technology. 1st.
Boston, MA, USA: Auerbach Publications, 2009. isbn: 97814200-
82814.

[36] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Mod-
elling and Validation of Concurrent Systems. 1st. Springer Pub-
lishing Company, Incorporated, 2009. isbn: 9783642002830.

[37] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-Ma, Hol-
ger Pfeifer, and Peter Dadam. “On Enabling Data-Aware Com-
pliance Checking of Business Process Models.” In: Conceptual
Modeling – ER 2010. Ed. by Jeffrey Parsons, Motoshi Saeki,
Peretz Shoval, Carson Woo, and Yair Wand. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 332–346. isbn: 978-3-642-
16373-9.

[38] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-Ma, Hol-
ger Pfeifer, and Peter Dadam. “On Enabling Data-Aware Com-
pliance Checking of Business Process Models.” In: Conceptual
Modeling – ER 2010. Ed. by Jeffrey Parsons, Motoshi Saeki,
Peretz Shoval, Carson Woo, and Yair Wand. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 332–346. isbn: 978-3-642-
16373-9.

[39] Elena Kornyshova and Rébecca Deneckère. “Decision-Making
Ontology for Information System Engineering.” In: Conceptual
Modeling – ER 2010. Ed. by Jeffrey Parsons, Motoshi Saeki,
Peretz Shoval, Carson Woo, and Yair Wand. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 104–117. isbn: 978-3-642-
16373-9.

[40] Hafedh Mili, Guy Tremblay, Guitta Bou Jaoude, Éric Lefebvre,
Lamia Elabed, and Ghizlane El Boussaidi. “Business Process
Modeling Languages: Sorting Through the Alphabet Soup.”
In: ACM Comput. Surv. 43.1 (Dec. 2010), 4:1–4:56. issn: 0360-
0300.

[41] Michael zur Muehlen and Marta Indulska. “Modeling langua-
ges for business processes and business rules: A representa-
tional analysis.” In: Information Systems 35.4 (2010). Vocabular-

bibliography 147

ies, Ontologies and Rules for Enterprise and Business Process
Modeling and Management, pp. 379–390. issn: 0306-4379.

[42] Wolfgang Reisig. Petrinetze: Modellierungstechnik, Analysemetho-
den, Fallstudien. Studium. Wiesbaden: Vieweg + Teubner, 2010.
isbn: 978-3-8348-1290-2.

[43] Natalia Sidorova, Christian Stahl, and Nikola Trčka. “Work-
flow Soundness Revisited: Checking Correctness in the Pres-
ence of Data While Staying Conceptual.” In: Advanced Informa-
tion Systems Engineering. Ed. by Barbara Pernici. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 530–544. isbn:
978-3-642-13094-6.

[44] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofst-
ede, N. Sidorova, H. M. W. Verbeek, M. Voorhoeve, and M. T.
Wynn. “Soundness of workflow nets: classification, decidabil-
ity, and analysis.” In: Formal Aspects of Computing 23.3 (May
2011), pp. 333–363.

[45] Wil van der Aalst and Christian Stahl. Modeling Business Pro-
cesses: A Petri Net-Oriented Approach. The MIT Press, 2011. isbn:
9780262015387.

[46] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process
Management: A Guide for the Design of Business Processes. 2nd.
Springer Publishing Company, Incorporated, 2011. isbn: 97836-
42151897.

[47] Ran Cheng, Shazia Sadiq, and Marta Indulska. “Framework
for Business Process and Rule Integration: A Case of BPMN
and SBVR.” In: Business Information Systems. Ed. by Witold
Abramowicz. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 13–24. isbn: 978-3-642-21863-7.

[48] Jörg Hohwiller, Diethelm Schlegel, Gunter Grieser, and Yvette
Hoekstra. “Integration of BPM and BRM.” In: Business Process
Model and Notation. Ed. by Remco Dijkman, Jörg Hofstetter,
and Jana Koehler. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 136–141. isbn: 978-3-642-25160-3.

[49] Natalia Sidorova, Christian Stahl, and Nikola Trčka. “Sound-
ness verification for conceptual workflow nets with data: Early
detection of errors with the most precision possible.” In: In-
formation Systems 36.7 (2011). Special Issue: Advanced Infor-
mation Systems Engineering (CAiSE’10), pp. 1026–1043. issn:
0306-4379.

[50] Martijn Zoet, Johan Versendaal, Pascal Ravesteyn, and Richard
J. Welke. “Alignment of business process management and
business rules.” In: ECIS. 2011.

148 bibliography

[51] Cédric Favre and Hagen Völzer. “The Difficulty of Replacing
an Inclusive OR-Join.” In: Business Process Management. Ed. by
Alistair Barros, Avigdor Gal, and Ekkart Kindler. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 156–171. isbn:
978-3-642-32885-5.

[52] Alan N. Fish. Knowledge automation: how to implement decision
management in business processes. USA: John Wiley & Sons, 2012.
isbn: 9781118094761.

[53] Mathias Weske. Business Process Management: Concepts, Langua-
ges, Architectures. 2nd. Springer Publishing Company, Incorpo-
rated, 2012. isbn: 9783642286155.

[54] A. Zarghami, B. Sapkota, M. Z. Eslami, and M. van Sinderen.
“Decision as a Service: Separating Decision-making from Ap-
plication Process Logic.” In: 2012 IEEE 16th International Enter-
prise Distributed Object Computing Conference. Sept. 2012, pp. 103–
112.

[55] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali.
“Foundations of Data-aware Process Analysis: A Database The-
ory Perspective.” In: Proceedings of the 32Nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems
. PODS ’13. New York, New York, USA: ACM, 2013, pp. 1–12.
isbn: 978-1-4503-2066-5.

[56] Michael Totschnig, Christian Willems, and Christoph Meinel.
“openHPI: Evolution of a MOOC Platform from LMS to SOA.”
In: ed. by Owen Foley, Maria Teresa Restivo, James Onohuome
Uhomoibhi, and Markus Helfert. SciTePress, 2013, pp. 593–
598.

[57] Semra Catalkaya, David Knuplesch, Carolina Chiao, and Man-
fred Reichert. “Enriching Business Process Models with De-
cision Rules.” In: Business Process Management Workshops. Ed.
by Niels Lohmann, Minseok Song, and Petia Wohed. Cham:
Springer International Publishing, 2014, pp. 198–211. isbn: 978-
3-319-06257-0.

[58] Tom Debevoise and James Taylor. The MicroGuide to Process
and Decision Modeling in BPMN/DMN: Building More Effective
Processes by Integrating Process Modeling with Decision Model-
ing. USA: CreateSpace Independent Publishing Platform, 2014.
isbn: 9781502789648.

[59] OMG. Business Process Model and Notation, Version 2.0.2. OMG
Standard. Jan. 2014.

[60] Kimon Batoulis, Andreas Meyer, Ekaterina Bazhenova, Gero
Decker, and Mathias Weske. “Extracting Decision Logic from
Process Models.” In: Advanced Information Systems Engineering.

bibliography 149

Ed. by Jelena Zdravkovic, Marite Kirikova, and Paul Johannes-
son. Cham: Springer International Publishing, 2015, pp. 349–
366. isbn: 978-3-319-19069-3.

[61] OMG. Decision Model and Notation, Version 1.0. OMG Standard.
Sept. 2015.

[62] Han van der Aa, Henrik Leopold, Kimon Batoulis, Mathias
Weske, and Hajo A. Reijers. “Integrated Process and Decision
Modeling for Data-Driven Processes.” In: Business Process Man-
agement Workshops. Ed. by Manfred Reichert and Hajo A. Rei-
jers. Cham: Springer International Publishing, 2016, pp. 405–
417. isbn: 978-3-319-42887-1.

[63] Kimon Batoulis, Anne Baumgraß, Nico Herzberg, and Mathias
Weske. “Enabling Dynamic Decision Making in Business Pro-
cesses with DMN.” In: Business Process Management Workshops.
Ed. by Manfred Reichert and Hajo A. Reijers. Cham: Springer
International Publishing, 2016, pp. 418–431. isbn: 978-3-319-
42887-1.

[64] Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio M.
Maggi, Marco Montali, and Irene Teinemaa. “Semantics and
Analysis of DMN Decision Tables.” In: Business Process Man-
agement. Ed. by Marcello La Rosa, Peter Loos, and Oscar Pas-
tor. Cham: Springer International Publishing, 2016, pp. 217–
233. isbn: 978-3-319-45348-4.

[65] Carlo Combi, Barbara Oliboni, Alessandro Zardiniy, and Fran-
cesca Zerbato. “Seamless Design of Decision-Intensive Care
Pathways.” In: ICHI. IEEE Computer Society, 2016, pp. 35–45.

[66] Riadh Ghlala, Zahra Kodia Aouina, and Lamjed Ben Said. “BP-
MN Decision Footprint: Towards Decision Harmony Along
BI Process.” In: Information and Software Technologies. Ed. by
Giedre Dregvaite and Robertas Damasevicius. Cham: Sprin-
ger International Publishing, 2016, pp. 269–284. isbn: 978-3-
319-46254-7.

[67] Paul Harmon. The State of Business Process Management 2016.
Tech. rep. BPTrends, 2016.

[68] Knut Hinkelmann. “Business Process Flexibility and Decision-
Aware Modeling—The Knowledge Work Designer.” In: Domain-
Specific Conceptual Modeling: Concepts, Methods and Tools. Ed. by
Dimitris Karagiannis, Heinrich C. Mayr, and John Mylopoulos.
Cham: Springer International Publishing, 2016, pp. 397–414.

[69] Laurent Janssens, Ekaterina Bazhenova, Johannes De Smedt,
Jan Vanthienen, and Marc Denecker. “Consistent Integration
of Decision (DMN) and Process (BPMN) Models.” In: CAiSE
Forum. Vol. 1612. CEUR Workshop Proceedings. CEUR-WS.org,
2016, pp. 121–128.

150 bibliography

[70] Laurent Janssens, Johannes De Smedt, and Jan Vanthienen.
“Modeling and Enacting Enterprise Decisions.” In: Advanced
Information Systems Engineering Workshops. Ed. by John Krogstie,
Haralambos Mouratidis, and Jianwen Su. Cham: Springer In-
ternational Publishing, 2016, pp. 169–180. isbn: 978-3-319-39564-
7.

[71] Krzysztof Kluza and Krzysztof Honkisz. “From SBVR to BPMN
and DMN Models. Proposal of Translation from Rules to Pro-
cess and Decision Models.” In: Artificial Intelligence and Soft
Computing. Ed. by Leszek Rutkowski, Marcin Korytkowski,
Rafał Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek
M. Zurada. Cham: Springer International Publishing, 2016, po.
453–462. isbn: 978-3-319-39384-1.

[72] Matthias Kunze and Mathias Weske. Behavioural Models - From
Modelling Finite Automata to Analysing Business Processes. Sprin-
ger, 2016. isbn: 978-3-319-44958-6.

[73] Ülari Laurson and Fabrizio Maria Maggi. “A Tool for the Anal-
ysis of DMN Decision Tables.” In: Proceedings of the BPM Demo
Track 2016 Co-located with the 14th International Conference on
Business Process Management (BPM 2016), Rio de Janeiro, Brazil,
September 21, 2016. 2016, pp. 56–60.

[74] Marco Montali and Diego Calvanese. “Soundness of data-aware,
case-centric processes.” In: International Journal on Software Tools
for Technology Transfer 18.5 (Oct. 2016), pp. 535–558. issn: 1433-
2787.

[75] Adriatik Nikaj, Kimon Batoulis, and Mathias Weske. “REST-
Enabled Decision Making in Business Process Choreographies.”
In: Service-Oriented Computing. Ed. by Quan Z. Sheng, Eleni
Stroulia, Samir Tata, and Sami Bhiri. Cham: Springer Interna-
tional Publishing, 2016, pp. 547–554. isbn: 978-3-319-46295-0.

[76] OMG. Decision Model and Notation, Version 1.1. OMG Standard.
June 2016.

[77] Kimon Batoulis, Stephan Haarmann, and Mathias Weske. “Var-
ious Notions of Soundness for Decision-Aware Business Pro-
cesses.” In: Conceptual Modeling. Ed. by Heinrich C. Mayr, Gi-
ancarlo Guizzardi, Hui Ma, and Oscar Pastor. Cham: Springer
International Publishing, 2017, pp. 403–418. isbn: 978-3-319-
69904-2.

[78] Kimon Batoulis, Alexey Nesterenko, Guenther Repitsch, and
Mathias Weske. “Decision Management in the Insurance In-
dustry: Standards and Tools.” In: Proceedings of the BPM 2017
Industry Track co-located with the 15th International Conference
on Business Process Management (BPM 2017), Barcelona, Spain,
September 10-15, 2017. 2017, pp. 52–63.

bibliography 151

[79] Kimon Batoulis and Mathias Weske. “A Tool for Checking
Soundness of Decision-Aware Business Processes.” In: Proceed-
ings of the BPM Demo Track and BPM Dissertation Award co-
located with 15th International Conference on Business Process Mod-
eling (BPM 2017), Barcelona, Spain, September 13, 2017. 2017.

[80] Kimon Batoulis and Mathias Weske. “Soundness of Decision-
Aware Business Processes.” In: Business Process Management Fo-
rum. Ed. by Josep Carmona, Gregor Engels, and Akhil Kumar.
Cham: Springer International Publishing, 2017, pp. 106–124.
isbn: 978-3-319-65015-9.

[81] Joachim Bossuyt and Frederik Gailly. Investigating The Benefits
Of Modeling Business Processes With Bpmn + Dmn. Gent, Bel-
gium, 2017.

[82] Diego Calvanese, Marlon Dumas, Fabrizio M. Maggi, and Mar-
co Montali. “Semantic DMN: Formalizing Decision Models
with Domain Knowledge.” In: Rules and Reasoning. Ed. by Ste-
fania Costantini, Enrico Franconi, William Van Woensel, Ro-
man Kontchakov, Fariba Sadri, and Dumitru Roman. Cham:
Springer International Publishing, 2017, pp. 70–86. isbn: 978-
3-319-61252-2.

[83] Carlo Combi, Barbara Oliboni, Alessandro Zardini, and Fran-
cesca Zerbato. “A Methodological Framework for the Integrat-
ed Design of Decision-Intensive Care Pathways—an Applica-
tion to the Management of COPD Patients.” In: Journal of Health-
care Informatics Research 1.2 (Dec. 2017), pp. 157–217. issn: 2509-
498X.

[84] Johannes De Smedt, Seppe K. L. M. vanden Broucke, Josue
Obregon, Aekyung Kim, Jae-Yoon Jung, and Jan Vanthienen.
“Decision Mining in a Broader Context: An Overview of the
Current Landscape and Future Directions.” In: Business Process
Management Workshops. Ed. by Marlon Dumas and Marcelo
Fantinato. Cham: Springer International Publishing, 2017, pp.
197–207. isbn: 978-3-319-58457-7.

[85] Johannes De Smedt, Faruk Hasić, Seppe K. L. M. vanden Brou-
cke, and Jan Vanthienen. “Towards a Holistic Discovery of De-
cisions in Process-Aware Information Systems.” In: Business
Process Management. Ed. by Josep Carmona, Gregor Engels,
and Akhil Kumar. Cham: Springer International Publishing,
2017, pp. 183–199. isbn: 978-3-319-65000-5.

[86] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. “A Ser-
vice-Oriented Architecture Design of Decision-Aware Informa-
tion Systems: Decision as a Service.” In: On the Move to Mean-
ingful Internet Systems. OTM 2017 Conferences. Ed. by Hervé
Panetto, Christophe Debruyne, Walid Gaaloul, Mike Papazo-
glou, Adrian Paschke, Claudio Agostino Ardagna, and Robert

152 bibliography

Meersman. Cham: Springer International Publishing, 2017, pp.
353–361. isbn: 978-3-319-69462-7.

[87] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. “To-
wards Assessing the Theoretical Complexity of the Decision
Model and Notation (DMN).” In: RADAR+EMISA@CAiSE. Vol.
1859. CEUR Workshop Proceedings. CEUR-WS.org, 2017, pp.
64–71.

[88] Faruk Hasić, Linus Vanwijck, and Jan Vanthienen. “Integrat-
ing Processes, Cases, and Decisions for Knowledge-Intensive
Process Modelling.” In: Proceedings of the 1st International Work-
shop on Practicing Open Enterprise Modeling within OMiLAB (PrO-
se 2017) co-located with 10th IFIP WG 8.1 Working Conference on
the Practice of Enterprise Modelling (PoEM 2017), Leuven, Belgium,
November 22, 2017. 2017.

[89] Florian Imgrund, Mathäus Malorny, and Christian Janiesch.
“Eine Literaturanalyse zur Integration von Business Rules und
Business Process Management.” In: Wirtschaftsinformatik. Ed.
by Jan Marco Leimeister and Walter Brenner. 2017.

[90] Mathias Kirchmer. High Performance through Business Process
Management. Strategy Execution in a Digital World. 3rd. Springer,
2017. isbn: 9783319512587.

[91] Krzysztof Kluza and Grzegorz J. Nalepa. “A method for gen-
eration and design of business processes with business rules.”
In: Information and Software Technology 91 (2017), pp. 123–141.
issn: 0950-5849.

[92] David Knuplesch and Manfred Reichert. “A Visual Language
for Modeling Multiple Perspectives of Business Process Com-
pliance Rules.” In: Softw. Syst. Model. 16.3 (July 2017), pp. 715–
736. issn: 1619-1366.

[93] OMG. Semantics of Business Vocabulary and Rules, Version 1.4.
OMG Standard. May 2017.

[94] Luise Pufahl, Sankalita Mandal, Kimon Batoulis, and Mathias
Weske. “Re-evaluation of Decisions Based on Events.” In: En-
terprise, Business-Process and Information Systems Modeling. Ed.
by Iris Reinhartz-Berger, Jens Gulden, Selmin Nurcan, Wided
Guédria, and Palash Bera. Cham: Springer International Pub-
lishing, 2017, pp. 68–84. isbn: 978-3-319-59466-8.

[95] Kimon Batoulis and Mathias Weske. “A Tool for the Uniqueifi-
cation of DMN Decision Tables.” In: Proceedings of the Disser-
tation Award, Demonstration, and Industrial Track at BPM 2018
co-located with 16th International Conference on Business Process
Management (BPM 2018), Sydney, Australia, September 9-14, 2018.
2018, pp. 116–119.

bibliography 153

[96] Kimon Batoulis and Mathias Weske. “Disambiguation of DMN
Decision Tables.” In: Business Information Systems. Ed. by Witold
Abramowicz and Adrian Paschke. Cham: Springer Interna-
tional Publishing, 2018, pp. 236–249. isbn: 978-3-319-93931-5.

[97] Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio M.
Maggi, Marco Montali, and Irene Teinemaa. “Semantics, Anal-
ysis and Simplification of DMN Decision Tables.” In: Informa-
tion Systems (2018). issn: 0306-4379.

[98] Carl Corea and Patrick Delfmann. “A Tool to Monitor Consis-
tent Decision-Making in Business Process Execution.” In: BPM
(Dissertation/Demos/Industry). Vol. 2196. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2018, pp. 76–80.

[99] Carl Corea and Patrick Delfmann. “Supporting Business Rule
Management with Inconsistency Analysis.” In: BPM (Disserta-
tion/Demos/Industry). Vol. 2196. CEUR Workshop Proceedings.
CEUR-WS.org, 2018, pp. 141–147.

[100] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo
A. Reijers. Fundamentals of Business Process Management, Second
Edition. Springer, 2018.

[101] Stephan Haarmann, Kimon Batoulis, and Mathias Weske. “Com-
pliance Checking for Decision-Aware Process Models.” In: Busi-
ness Process Management Workshops - BPM 2018 International
Workshops, Sydney, NSW, Australia, September 9-14, 2018, Revised
Papers. 2018, pp. 494–506.

[102] Faruk Hasić, Lesly Devadder, Maxim Dochez, Jonas Hanot, Jo-
hannes De Smedt, and Jan Vanthienen. “Challenges in Refac-
toring Processes to Include Decision Modelling.” In: Business
Process Management Workshops. Ed. by Ernest Teniente and Mat-
thias Weidlich. Cham: Springer International Publishing, 2018,
pp. 529–541. isbn: 978-3-319-74030-0.

[103] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. “Aug-
menting processes with decision intelligence: Principles for in-
tegrated modelling.” In: Decision Support Systems 107 (2018),
pp. 1–12. issn: 0167-9236.

[104] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. “Re-
designing Processes for Decision-Awareness: Strategies for In-
tegrated Modelling.” In: QUATIC. IEEE Computer Society, 2018,
pp. 247–250.

[105] Krzysztof Kluza and Grzegorz J. Nalepa. “Formal Model of
Business Processes Integrated with Business Rules.” In: Infor-
mation Systems Frontiers (Feb. 2018). issn: 1572-9419.

154 bibliography

[106] Massimiliano de Leoni, Paolo Felli, and Marco Montali. “A
Holistic Approach for Soundness Verification of Decision-Aware
Process Models.” In: Conceptual Modeling. Ed. by Juan C. Tru-
jillo, Karen C. Davis, Xiaoyong Du, Zhanhuai Li, Tok Wang
Ling, Guoliang Li, and Mong Li Lee. Cham: Springer Interna-
tional Publishing, 2018, pp. 219–235. isbn: 978-3-030-00847-5.

[107] Massimiliano de Leoni, Paolo Felli, and Marco Montali. “A
Holistic Approach for Soundness Verification of Decision-Aware
Process Models (extended version).” In: CoRR abs/1804.02316

(2018).

[108] F. Mannhardt. “Multi-perspective process mining.” English.
Proefschrift. PhD thesis. Department of Mathematics and Com-
puter Science, Feb. 2018. isbn: 978-90-386-4438-7.

[109] Roberto Posenato, Francesca Zerbato, and Carlo Combi. “Man-
aging Decision Tasks and Events in Time-Aware Business Pro-
cess Models.” In: Business Process Management. Ed. by Math-
ias Weske, Marco Montali, Ingo Weber, and Jan vom Brocke.
Cham: Springer International Publishing, 2018, pp. 102–118.
isbn: 978-3-319-98648-7.

[110] Ekaterina Bazhenova, Francesca Zerbato, Barbara Oliboni, and
Mathias Weske. “From BPMN process models to DMN deci-
sion models.” In: Information Systems 83 (2019), pp. 69–88. issn:
0306-4379.

[111] Faruk Hasić, Alexander De Craemer, Thijs Hegge, Gideon Ma-
gala, and Jan Vanthienen. “Measuring the Complexity of DMN
Decision Models.” In: Business Process Management Workshops.
Ed. by Florian Daniel, Quan Z. Sheng, and Hamid Motahari.
Cham: Springer International Publishing, 2019, pp. 514–526.
isbn: 978-3-030-11641-5.

[112] Faruk Hasić and Jan Vanthienen. “Complexity metrics for DMN
decision models.” In: Computer Standards & Interfaces (2019).
issn: 0920-5489.

[113] Sabine Nagel, Carl Corea, and Patrick Delfmann. “Effects of
Quantitative Measures on Understanding Inconsistencies in
Business Rules.” In: Proceedings of the 52nd Hawaii International
Conference on System Sciences. IEE, 2019.

[114] OMG. Decision Model and Notation, Version 1.2. OMG Standard.
Jan. 2019.

[115] Suchenia, Anna, Kluza, Krzysztof, Wi´sniewski, Piotr, Jobczyk,
Krystian, and Ligeza, Antoni. “Towards knowledge interoper-
ability between the UML, DMN, BPMN and CMMN models.”
In: MATEC Web Conf. 252 (2019), p. 02011.

bibliography 155

[116] Michael zur Muehlen, Marta Indulska, and Kai Kittel. “To-
wards Integrated Modeling of Business Processes and Busi-
ness Rules.” In: ACIS 2008 Proceedings. 108. 208.

	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	 Background
	1 Introduction
	1.1 Research Objective
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Foundations and Related Work
	2.1 Business Process Management
	2.1.1 Business Process Lifecycle
	2.1.2 Business Process Models
	2.1.2.1 Petri Nets
	2.1.2.2 Colored Petri Nets
	2.1.2.3 Business Process Model and Notation
	2.1.2.4 Running Example

	2.1.3 Verification of Business Process Models
	2.1.3.1 Mapping BPMN Models to Petri Nets
	2.1.3.2 Soundness Verification

	2.2 Business Decision Management
	2.2.1 DMN Decision Models
	2.2.2 DMN Decision Table Hit Policies
	2.2.3 Formalization of DMN Decision Models
	2.2.4 Decision Table Analysis

	2.3 Integration of Process and Decision Management
	2.4 Related Work
	2.4.1 Integration of Processes and Rules
	2.4.2 Integration of Processes and Decisions
	2.4.3 DMN Decision Model Analysis
	2.4.4 Process Verification with Data

	 Formal Framework for Processes and Decisions
	3 On the Separation of Concerns of Processes and Decisions
	3.1 Process and Decision Modeling in the Real World
	3.2 Control-Flow-Based Decision Patterns
	3.2.1 P1—Single Split Gateway
	3.2.2 P2—Sequence of Split Gateways (Decision Tree)
	3.2.3 P3—Sequence of Split Gateways Separated by an Activity

	3.3 Statistics about the Decision Patterns

	4 Input-Output Behavior of DMN Decision Tables
	4.1 Problem Statement
	4.2 Decision Table Uniqueification
	4.3 Decision Tables as Functions
	4.4 Maximum Number of Outputs of a Decision Table

	5 Formalizing Decision-Aware Process Models
	5.1 Simple Colored Petri Net Mapping
	5.1.1 Merging Decision Tables
	5.1.2 Mapping Decision Fragments to CPNs

	5.2 Abstract Colored Petri Net Mapping
	5.2.1 Symbolic Abstraction
	5.2.2 Mapping Decision Fragments to Abstract CPNs
	5.2.3 Assumptions

	5.3 Colored Workflow Nets and Their Soundness
	5.4 Concurrent Execution of Decision Fragments
	5.5 Summary and Discussion

	 Soundness of Decision-Aware Business Processes
	6 Stateless Decision Soundness
	6.1 Motivation and Problem Statement
	6.2 Structural Consistency
	6.3 Behavioral Consistency
	6.3.1 Decision Deadlock Freedom
	6.3.2 Dead Branch Absence

	6.4 Stateless Decision-aware Soundness
	6.5 Discussion and Shortcomings

	7 State-based Decision Soundness
	7.1 Using State Information for Soundness Checking
	7.2 State-based Decision Deadlock Freedom
	7.3 State-based Dead Branch Absence

	8 A Taxonomy for Decision Soundness
	8.1 Relationship between the Stateless and State-based Decision Soundness Criteria
	8.1.1 DDF -3.45mu SB-DDF
	8.1.2 SB-DBA -3.45mu DBA

	8.2 Various Notions of Decision Soundness
	8.2.1 Decision Soundness
	8.2.2 Relaxed Decision Soundness
	8.2.3 Weak Decision Soundness
	8.2.4 Easy Decision Soundness
	8.2.5 Lazy Decision Soundness

	8.3 Summary and Discussion

	 Evaluation and Conclusion
	9 Evaluation
	9.1 Prototypical Implementation
	9.1.1 Extended Camunda Tool
	9.1.2 Runtime Analysis

	9.2 Empirical Evaluations
	9.2.1 Academic Models
	9.2.2 Industry Use Case

	9.3 Compliance Checking of Decision-aware Processes

	10 Conclusion
	10.1 Summary
	10.2 Limitations and Future Work

	 Bibliography

