
87HEARING THE SELF

LISP in Max:
Exploratory Computer-Aided Composition in Real-Time  

 
ABSTRACT

The author describes a strategy to implement Common
Lisp applications for computer-aided composition within
Max, to enrich the possibilities offered by the bach
library. In parallel, a broader discussion is opened on the
current state of the discipline, and some applications are
presented.

1. 1. INTRODUCTION
Computer-aided composition (CAC), as we know it, has
been around for decades. Following the pioneers of algo-
rithmic music, the emergence of the first relevant graphi-
cal interfaces allowed the discipline to expand in several
directions. CAC exists today under a variety of forms,
languages and tools available to composers.
This tendency has crystallized around visual program-

ming environments such as OpenMusic (OM) and PWGL,
both derived from the program PatchWork (or PW)
developed by Mikael Laurson since the late 1980s [5]. A
specificity of this family of programs, but also many
others since then , is that they were all built on top of the 1

same language: Common Lisp . 2

Since the early days of artificial intelligence, Lisp has
always been considered a special language, and its
popularity is quite uneven among professional program-
mers. However, the interest among musicians never com-
pletely declined. This probably has to do with the
inherent facility of Lisp to represent, through nested lists
(see Fig. 1), the hierarchical structures of music notation,
but also any kind of conceptual encoding. Lisp also
brings several assets: its clear and elegant syntax, its effi-
ciency working with recursion (a powerful concept which
has many concrete applications in the musical field), and
its ability to generate code dynamically through macros.
One could argue that the most recent innovations in

interactive systems and real-time sound processing, as
well as the development of various ways of representa-
tion and control, have pushed such practice to the back-
ground of computer music. In a certain way this is under-
standable, since purely symbolic approaches, mostly

dedicated to traditional notation, concern a small popula-
tion of musicians.

Nevertheless, we can observe today a real interest in
renewing those paradigms. The discipline of CAC is
going through a phase of transition, with the emergence
of new tools oriented toward real-time, interactivity, and
performance such as the “reactive mode” in
OpenMusic [4], and of course the bach library for Max,
developed by Andrea Agostini and Daniele Ghisi [1].

All these recent developments are stimulating and we
cannot yet imagine the applications that will result,
especially for the conception of open/generative scores
and forms in composition, and for interactive installations
in particular. But most of all, they redefine deeply the
access to these tools for the “outside-time” work of the
composer, as well as the distance between concepts and
realization.

Julien Vincenot

Composer, PhD candidate
Harvard University

julien.vincenot@gmail.com

 We can mention for instance Common Music or more recently OpusModus, which both rely on a textual programming interface.  1

cf. commonmusic.sourceforge.net | opusmodus.com

 One of the oldest programming languages, LISP (standing for « list processing ») was originally designed by John McCarthy in 1958. Common Lisp 2

is one of the several Lisp dialects derived from the original language, standardized in the early 1980s, and one of the most popular with Scheme,
Clojure and Emacs LISP.

Figure 1. A Score object in PWGL and
its inner representation as a Lisp linked-list or tree.

Copyright: © 2017 Julien Vincenot This is an open-access article distributed
under the terms of the Creative Commons Attribution License 3.0 Unported,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

88 2017 ICMC/EMW

2. 2. LISP CAC IN REAL-TIME

2.1. Lisp vs. the bach library

My whole practice as a composer, during the last decade,
has revolved around PWGL. Clearly, I did not use it only
as a way to generate and transform pre-compositional
elements, but as a working space, favoring a certain
slowness and distance from the material, and helping me
to think about music in general [7]. Like OM, PWGL can
be seen as an environment to program in Lisp visually, so
I ended up learning to code in Common Lisp as well, and
it became to me a very natural medium to manipulate
musical ideas.

My first approach of the bach library was problematic,
considering my practice of CAC so far. While it certainly
borrowed some of the flavor of Lisp-based environments,
it was clearly designed by its creators with other para-
digms in mind, pretty far from Lisp. The proximity with
the PW family was only a façade, and I was reluctant to
dive deeper into it. However, as I was conceiving the
prototype for a set of pedagogical tools that would
become MOZ'Lib (see below), I got more and more
seduced by the huge possibilities of the library, in terms
of interactivity and exploratory composition.

It was only later that I realized its hidden power as a
language. bach relies heavily, as its main data structure,
on the well-name “lisp-like linked lists” (or lllls), which
borrows Lisp’s parenthesized structure. This is, of course,
fundamental, as I already explained, in order to represent
musical data in a hierarchical manner. But lllls also hold
an unexpected feature: they can be “hijacked” to generate
fully fledged Lisp code in real-time.

2.2. Just another language for Max?

At this point, one might wonder about the interest of
bringing an old-fashioned language such as Lisp inside
Max. Beyond the ability to write new objects in C with
the dedicated SDK, Max users already have access to
several embedded languages: Gen~, Lua, Javascript and
Java. This has already proven very useful when hitting
the limits of visual programming, especially in the case of
control structures such as loops and recursion.

As we will see below, offering Max a stable bridge with
Common Lisp not only enriches the possibilities of the
bach library — by 40 years of formalization and compo-
sitional techniques, from several esthetics and computa-
tional paradigms — but also allows to renew a myriad of
historical practices that were restricted to “deferred-time”
(non real-time) working environments.

As a matter of fact, Lisp was already accessible in Max
through a previous library, MaxLISPj , developed by 3

Brad Garton. In this approach the Lisp interpreter, ABCL
(Armed Bear Common Lisp, an implementation based on
a Java virtual machine), was encapsulated within the mxj
object and ran directly in Max. There was therefore a risk

of slowing down or even crashing Max in case of coding
mistakes. Besides, the author pointed out that the stability
of his implementation was not guaranteed in case of
heavy calculations. Finally, the output of MaxLISPj could
not exceed 2000 characters — possibly due to the inner
limitations of Max messages — therefore it was impracti-
cable to evaluate complex musical structures. All these
reasons justify looking for an alternate approach. 4

2.3. How to format Lisp expressions with bach

In order to generate Lisp code easily with the bach
library, this article proposes a pretty straightforward
method. The starting point is the object bach.join (for-
merly bach.append), which is an equivalent to the vene-
rable list function in Lisp.
As seen in the figure below, the object needs several

arguments and attributes in order to format proper Lisp
notation, or s-expressions. First, the number of inputs
must take into account the number of arguments for the
s-expression, including the name of the function itself. So
(+ 1 2) will require a bach.join with 3 inputs.
The attribute @set allows to initialize arguments for the

list: here we define the name of the function, of course,
but also constants if necessary. The two remaining attri-
butes, @triggers 0 and @outwrap 1, make sure that every
input of the box is “hot” (i.e. can trigger an evaluation),
and that the resulting list is output in-between paren-
theses, respectively.
One must understand at this point that bach objects, like

bach.join, do not output a standard Max message, but a
sort of pointer called “native” format. This allows bach
objects to exchange lllls with virtually no limitation of
size or depth.

 cf. http://sites.music.columbia.edu/brad/maxlispj/3

 Lisper, a library developed by Alex Graham between 2011 and 2013, pursued a similar goal. This approach, unlike MaxLISPj, relied on the OSC 4

protocol to establish a communication between Max 4 or 5 and a Lisp implementation such as Clozure CL. Since this work was brought to the author's
knowledge only recently, no clear comparison could be established between this approach and the one described in this article. However the use of such
network protocol will be carefully investigated for future development, as well as its possible impact, positive or negative, on the ease of use for
average users of the system. cf. https://github.com/thealexgraham/lisper

Figure 2. Formatting Lisp code with bach.join

89HEARING THE SELF

In this example, the list is converted to “text” format,
with the bach.portal object, only for illustration purposes.
Two bach.join objects are combined to produce a valid
s-expression, ready to be sent to a Lisp interpreter.
Changing the values in the number boxes will immedia-
tely update the s-expression, turning constants into
variables. In the same manner, one could input a symbol
or a pre-formatted list with the help of the quote function,
preventing the interpreter from confusing them with a
variable name or an s-expression with an incorrect func-
tion name. 5

2.4. Evaluations on-the-fly

Obviously, generating Lisp code dynamically has little
interest without producing any result. After several
attempts , a strategy requiring the use of SBCL (Steel 6

Bank Common Lisp) in parallel with Max was designed. 7

The Lisp interpreter is called in Max through a com-
mand-line interface, with the help of the shell external 8

on macOS (a similar approach is considered for Windows
10, using mxj DOShack).
At this point, the bach.write object is used to turn the

generated code into a temporary text file, with the .lisp
extension. This operation is pretty immediate and there is
no limit to the size of the script, thanks to the lllls format.
The script is now ready to be evaluated with the follo-
wing shell command:

sbcl --script path-of-script.lisp

In order to receive the result in Max, things get more
complicated. Indeed, just like MaxLISPj, the shell object
returns a string limited in size, which we cannot use for
results longer than a few characters. The solution to this
problem was to write eventually the result of our code
into another temp file, from SBCL itself.
For this purpose a simple Max abstraction, pw.eval-box,

was created. It is now available as part of MOZ’Lib (see
below). Its purpose is to complete our Lisp code just
before it is sent to the bach.write, by adding a few
s-expressions. This supplement of code makes sure that:

- the Lisp package for evaluation is defined by the
in-package function, allowing to work with a given
user library (see below);
- the *random-state* global variable is initialized at
each evaluation, preventing random processes to return
always the same value;
- eventually, the result is written to another temp file at
a defined location.

Whenever the evaluation is finished, the second output
of the shell object returns a bang. This is used to trigger a
bach.read to import the content of the resulting temp file.
It is now up to the user to decide what to do with this new
data: control real time processes in Max itself, or display
the result as standard notation with bach.roll or bach.
score for instance. Of course, when needed, one might
interrupt any endless evaluation by sending the pkill mes-
sage to the shell object.
Obviously, this approach is not real-time, per se, since it

relies on temporary files and needs to wait for SBCL to
return a result, then for Max to read it. The latency bet-
ween both steps is minimal in our experience, even with
heavy computations, and remains fairly close to running
SBCL by itself, thus allowing to implement the system
inside reactive applications. However, a slightly longer
delay can become perfectly acceptable — depending on
the goal of the evaluation, the complexity of the script
and the length of the result — as long as such high-level
algorithms become relevant to a given artistic context.

2.5. Extended vocabulary

As previously mentioned, it is possible with the pw.eval-
box to specify a start-up package for our evaluations. For
Common Lisp, packages are a way to define separate
namespaces while coding. For instance, this feature is
frequently used in OM and PWGL to avoid conflicts bet-
ween several user libraries, in case functions or variables
would share the same name.

The richness of environments like PWGL and OM lies
precisely in the multitude of libraries they brought to the
public through the last decades, ranging from very
personal techniques by composers such as Tristan Murail
(Esquisse) or Brian Ferneyhough (Combine), to more
general systems of music generation or analysis. These
are only a few examples of a huge variety of artistic
research whose scope could be greatly extended through
real-time interfaces.

SBCL allows to use a pre-defined environment instead
of the one provided in the official distribution. The
function save-lisp-and-die (from the SBCL package
sb-ext) can store any set of packages, functions and
variables as a binary image, or .core file. Therefore a
newly generated image will include all standard
functionality of Common Lisp and SBCL, extended by
those user definitions. Consequently, evaluating a script
will require to install only two files on the user’s
machine: the SBCL executable itself and a proper core
file.

 A rule of Lisp is that any s-expression must start with a function call, otherwise it will return an error. (+ 1 2) is correct because the symbol + is 5

understood as a function. The flat list (1 2 3), on the other hand, will return an error since its first element 1 is not a function. The proper syntax
would use the list function (list 1 2 3) or the quote notation : ’(1 2 3) or (quote (1 2 3)). Similarly, a single symbol like foo must be quoted
'foo or (quote foo), otherwise it will be interpreted as an unbound variable. In other words, quote allows to turn a piece of code into a piece of
data.

 This approach was initially discussed at IRCAM at the occasion of the International PRISMA Meeting 2015. Several members had noticed that, under 6

certain conditions, heavy computations were really difficult to handle by PWGL or OM, but would be evaluated without hassle in pure Lisp. A first
strategy was using sprintf to format Lisp code, but became quickly problematic for multiple reasons (confusing user interface, stability compromised by
the memory management of symbols in Max, etc.). This method was explored for several months in collaboration with the composers Örjan Sandred,
Hans Tutschku, Johannes Kretz and Jacopo Baboni Schilingi, then optimized and standardized by the author.

 Obviously, any implementation of Common Lisp, that can be accessed through a command-line interface, could be used instead. SBCL is one of the 7

most popular implementations today: it is open-source, cross-platform, and offers great performance. Clozure CL is a good alternative, and offers
similar advantages. cf. www.sbcl.org | ccl.clozure.com

 This external was initially developed by Bill Orcutt, then updated by Jeremy Bernstein in 2013. cf. cycling74.com/toolbox/bernstein-shell/8

90 2017 ICMC/EMW

In order to load SBCL with a given environment, simply
run the following command:

sbcl --core path-of-image.core --script path-of-script.lisp

Since this system is operational, a non-comprehensive
work of adaptation of existing libraries from PWGL has
been made:

- Mikael Laurson’s PMC , the original constraint solver 9

from PatchWork (also known as PWConstraints);
- Jacopo Baboni Schilingi’s CMI, Profile (with Mikhail
Malt) and Constraints;
- Frédéric Voisin’s Morphologie, a set of tools for the
analysis of symbolic sequences, exploring various
paradigms.

Most of these libraries relied on several iconic functions
common to both OM and PWGL (and inherited from
PatchWork), such as flat-once, x-append or posn-match,
whose definitions were retrieved and adapted from
OpenMusic’s sources . Today an important part of this 10

shared lexicon, as well as the aforementioned libraries,
are available to use as an example binary core file provi-
ded with MOZ’Lib. Sources are accessible on simple
request for now, and will be included to an autonomous
Max package in a near future.

Another long-time development is in progress, in colla-
boration with the composers Örjan Sandred and Torsten
Anders, in order to make available the Cluster-Engine
library to Max with the same method. This new constraint
solver , initially developed by Sandred for PWGL, 11

allows to control several musical voices in parallel by
using a network of semi-independent constraint engines –
one for each parameter of each voice, including metrical
structure, pitches, and rhythms. The results of this
research, in terms of computational time and workflow,
are already very promising, and will be eventually the
object of a full publication.

3. 3. APPLICATIONS

3.1. Accessible CAC to teach composition

As already mentioned, the need for a suitable Lisp inter-
face in Max arose during the development of MOZ’Lib , 12

an experimental set of pedagogical tools, designed to
explore, at the same time, musical writing, creation and
computer programming.

The library includes several modules under the form of
bpatchers – inspired by BEAP and Vizzie modules in
Max 7 – and mainly based on the bach library for its
interface. Each of these modules represents a composition
idea or technique, allowing the user to interact through
various intuitive interfaces. Naturally, every modules can

be combined together, often in unexpected ways, to
imagine and realize new musical ideas.

Among those modules, several could not have been
achieved without the involvement of Lisp. For instance,
several techniques were directly borrowed from Jacopo
Baboni Schilingi's libraries (cf. above). Other parts used
Lisp as a shortcut to write functions that seemed too
complex or too specific to be handled only with bach
objects. This was the case for the rotations module (see
Fig. 3), which uses Mikael Laurson’s PMC solver to
produce easily a circular permutation of a melody that
maintains heuristically the overall shape of the original
input.

3.2. Renewing a practice with pre-existing code

The main interest of this approach, in my opinion, is to
extend the very usage of compositional techniques that
were initially designed for a work in “deferred-time”.
This is the case, of course, for most processes created
with PWGL and OM, but even more before PatchWork,
when the main interface was Lisp code itself.

A perfect example is a project realized in collaboration
with the composer Jean-Baptiste Barrière, around his
personal library Chréode [3]. The first version of the code
was written in the early 1980s at IRCAM, and ran on Le
Lisp (French implementation developed by INRIA) inside
the CHANT and FORMES environments. Chréode was
conceived with the ambition to realize « a grammar of
formal processes, a morphogenesis » [2], that could

 Here it must be noted that, since PWGL is free but not open-source, the code for the PMC is accessible only as a partial port realized by Örjan 9

Sandred for OpenMusic, under the name of OMCS.

 I take the occasion to thank the Music Representations team from IRCAM, for letting these sources accessible to the public.10

 The Cluster-Engine is the successor of Sandred's libraries OMRC and PWMC [6], for OM and PWGL respectively.11

 MOZ’Lib is currently maintained by the author in collaboration with the composer Dionysios Papanicolaou. It was initially supported by Ariane# 12

(funded by Franche-Comté region in East of France), an initiative focusing on extending pedagogy with the help of digital tools. For a general introduc-
tion to MOZ’Lib, cf. bachproject.net/2016/10/15/mozlib/

Figure 3. A simple patch using three modules
from MOZ’Lib: draw_notes, see_notes and rotations

91HEARING THE SELF

determine the whole behavior of complex sound synthe-
sis as well as instrumental scores.

This work started from an adaptation made by Kilian
Sprotte as a library for OM and PWGL. As a matter of
fact, the original code on Le Lisp was almost undeciphe-
rable because of its very specific syntax: Chréode is
mainly based on object-oriented programming, and its
interface was nothing comparable with the standardized
CLOS (Common Lisp Object System) that we know today.

In a way very similar to MOZ’Lib, Max-Chréode
consists of a palette of bpatchers. Each of them, just like
our example in Fig. 2, aims to generate a piece of Lisp
code dynamically. The user simply needs to connect
boxes together, according to the rules of the system. The
whole code is then sent to a pw.eval-box variant (eval-
chreodes), and the result can be observed as graphs
(plot~) or scores in real-time.

3.3. CAC for interactive installations and performances

A last example of application is related to the project
Pre-Tensio, by the composers Colin Roche and Jacopo
Baboni Schilingi. This project, situated at the thick border
between installation and performance, aims to represent
the creative tension felt by composers during their wor-
king process.

Developed in collaboration with Colin Roche, Le Livre
des Nombres (The Book of Numbers) heavily relies on

Max and Lisp for its interactive apparatus. The perfor-
mance, lasting 24 hours, was already presented at several
occasions in art galeries in Paris. The composer, equipped
with heart-rate sensors, writes music on his table, also
rigged with contact microphones. The audience is able to
listen, through headphones, to an amplification of the
composer’s heartbeat, as well as the various sounds
produced by his pen on paper.

In parallel, a Max patch records the evolution of the
composer’s heart rate over a long time span, and even-
tually triggers an analysis on SBCL, to reveal its general
tendencies. Afterwards, the script translates this morpho-
logy into a series of tempi modulating through time, and
the long resulting list is printed automatically on receipt
paper, as a metaphor of the cost in time spent by the
composer during his work. Fragments of these large
scores of silence are eventually transcribed by hand, in
standard notation, and offered to the audience.

Figure 4. A simple patch with Max-Chréode objects,  
on two parameters, showing code generators  

(with their output in a comment)
and visual representations of the result by plot~

Figure 5. Example of generated receipt and manuscript
transcription for Le Livre des Nombres (photo by kind

permission of the composer, © Colin Roche 2016)

92 2017 ICMC/EMW

4. EVALUATION
Several improvements to this approach will have to be

made. The lack of transparency for the ongoing process,
exacerbated by the use of a binary .core file as knowledge
repository, requires to dive into the sources to get a better
understanding. For the user, it implies, of course, a fami-
liarity with Common Lisp itself, but also with the more
specific functions that might be invoked.

An important effort of documentation and dissemination
would help a broader public to acquire these tools. As
already mentioned, a distribution as a Max package
would be a clear improvement to facilitate installation. A
standard way to access, directly within Max, the docu-
mentation string of any Lisp function involved, but also a
list of all the libraries loaded into the environment, would
also be very helpful, in order to minimize the “black box”
phenomenon.

Moreover, it is still relatively difficult to debug Lisp
code from Max. For smaller mistakes, it is possible to
retrieve the result of any print function from the first
output of the shell external, which is not used otherwise.
However, the SBCL debugger cannot be accessed to
understand deeply nested errors. It is therefore necessary
to work, on the side, on the terminal or on a dedicated
IDE such as Emacs or SublimeText, to identify where a
problem happens in a given temp file.

In any case, my own practice so far has been to make
prototypes directly in PWGL, before starting to translate
patches into Max with bach objects. Here lies an inherent
issue to this approach, which was pointed out by Jean-
Baptiste Barrière after his experience with Max-Chréode:
patching with code generators can bring a confusion
between the semantic and pragmatic aspects of a given
abstraction. While patching in PWGL seems very similar
to Lisp (since the lexicon and rules are broadly the same),
each box actually returns its own result after evaluation.
On the other hand, code generators return nothing but
nested Lisp code, which makes direct patching more
cryptic.

Also, the dependency to the shell external is still
problematic. Since there is no official support from
Cycling’74 for command-line interface, the future of this
approach is not guaranteed and relies, at least for now, on
the good will of the user community.

5. CONCLUSION
I presented a method to evaluate Lisp in a real-time
application such as Max, and shown the various benefits
of this additional language, not only for the existing users
of CAC but also to develop interactive applications requi-
ring the execution of high-level algorithms in the back-
ground. Many other possibilities than the ones covered in
this article could be imagined, for instance the control of
real-time audio processes, transformation or synthesis,
with the help of sophisticated Lisp code.

I belong to a small community of composers who is
really attached to CAC in general, and to PWGL in
particular, as a privileged working environment. This
development is clearly not aiming to replace OM or
PWGL, but on the contrary to make their inherent
possibilities accessible to different practices and contexts.

However, we can’t deny that Lisp environments dedica-
ted to CAC are today in a tight spot, compared to the rest
of computer music, and that they hardly survive in socio-
economic contexts that have little understanding of why
they matter. In the event they would come to disappear,
such an initiative could be seen as a measure of preserva-
tion for the legacy of generations of composers and
researchers.

Just as sketches, scores and recordings, computer
applications, whether they take the form of Max patches
or Lisp code, are a support for craft knowledge and
artistic expression, which must not be allowed to vanish.

6. REFERENCES
[1] Andrea Agostini & Daniele Ghisi, « Real-Time Com-
puter-Aided Composition with bach », in Contemporary
Music Review, 1(32), 2013.
 
[2] Jean-Baptiste Barrière, « L’informatique musicale
comme approche cognitive: simulation, timbre et proces-
sus formels », in La musique et les sciences cognitives,
Ed. S. McAdams & I. Deliège, Pierre Mardaga, Brussels,
1988.

[3] Jean-Baptiste Barrière, « “Chréode”: the pathway to
new music with the computer », in Contemporary Music
Review, 1(1), 1984

[4] Jean Bresson & Jean-Louis Giavitto, « A Reactive
Extension of the OpenMusic Visual Programming Lan-
guage », in Journal of Visual Languages and Computing,
4(25), 2014.

[5] Mikael Laurson, PatchWork: A Visual Programming
Language and some Musical Applications, PhD thesis,
Sibelius Academy, Helsinki, 1996.

[6] Örjan Sandred, « PWMC, a Constraint-Solving Sys-
tem for Generating Music Scores », in Computer Music
Journal, 34(2), 8-24, 2010.

[7] Julien Vincenot, « On “slow” computer-aided compo-
sition », in The OM Composer’s Book Vol.3, Ed. J. Bres-
son, C. Agon & G. Assayag, Éditions Delatour / IRCAM-
Centre Pompidou, Paris, 2016.

