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Valeu a pena? Tudo vale a pena 
Se a alma não é pequena. 

 
Quem quere passar além do Bojador 

Tem que passar além da dor. 
Deus ao mar o perigo e o abismo deu, 

Mas nele é que espelhou o céu. 
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This thesis is structured in eight chapters. In the first chapter, a brief 

description of Amyotrophic Lateral Sclerosis is presented, with special emphasis 

on description of functional impairments that influence communication. Chapter 2 

contains important concepts and definitions related to the field of Assistive 

Technologies. Moreover, this chapter describes the state-of-the-art of assistive 

technologies that support communication in ALS, during different stages of 

progression. Chapter 3 describes the objectives of the overall research presented 

in this thesis. Chapters 4, 5 and 6 describe the three studies performed in this 

research work, published in peer-reviewed scientific journals. Pertinent results of 

this research work are discussed in chapter 7, followed by a personal perspective 

on the presented contributions and future work, in chapter 8. After the References 

list, there are four appendices: appendix A, supports description of the study on 

speech monitoring; appendix B contains all the questionnaires used in the 

research; appendix C illustrates the use of ACD by some of the patients who 

participated in the research studies. Appendix D presents the facsimile of the 

published papers. 

Complementing this organization and presented in the initial pages of this 

thesis, there are the acknowledgments, list of figures, list of tables, list of 

abbreviations and a summary of this thesis, both in Portuguese and English. 
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Resumo  
 

A Esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa, 

sem cura e de causa desconhecida. É a mais frequente entre as doenças do 

neurónio motor, causando progressiva fraqueza e atrofia muscular nas regiões 

bulbar, torácica, abdominal e membros. Sem terapias que travem o implacável 

processo neurodegenerativo, a insuficiência respiratória é a principal causa de 

morte. A média de idade da ocorrência dos primeiros sintomas é de 58 a 63 anos, 

com sobrevida de 2 a 5 anos e maior incidência para o sexo masculino (1:1,4). 

Apenas 5 a 10% de doentes sobrevive por mais de 10 anos.  

As características de progressão da ELA podem variar, tendo um início 

focal com posterior difusão para outras regiões. Os doentes com ELA podem ser 

classificados pelos primeiros sintomas da doença: medular (afetando a função 

motora dos membros superiores e/ou inferiores), bulbar (afetando precocemente 

a fala e deglutição), respiratória (quando os primeiros sintomas caracterizam-se 

por dispneia), axial (afetando inicialmente os músculos do pescoço ou dorso) ou 

difusa (quando é difícil localizar os primeiros sintomas). Embora durante muito 

tempo se tenha considerado a ELA como uma doença que afetava apenas o 

sistema motor, há atualmente evidência de ser uma situação multissistémica. 

Estudos recentes indicam que cerca de metade dos doentes apresentam algum 

défice cognitivo quando avaliados por meios complementares; um reduzido grupo 

(2 a 15%) apresenta sinais clínicos de demência frontotemporal. 

Devido à crescente incapacidade motora, o doente perde autonomia para 

as suas atividades da vida diária. A maioria dos doentes experimenta graves 

dificuldades de comunicação, com consequências para a sua qualidade de vida. 

Devido ao envolvimento da região bulbar, que causa rápido agravamento da 

disartria, estudos indicam que cerca de 90% dos doentes com ELA sofre de 

dificuldade em comunicar através da fala (caracterizada por perda de 

inteligibilidade). Por outro lado, a progressiva tetraparésia causada pelo 

envolvimento medular impossibilita a escrita. O doente com ELA vê-se então num 

crescente isolamento (do qual é consciente) com graves dificuldades (ou mesmo 

impossibilidade) em comunicar as suas necessidades, sentimentos ou decisões. 



 

A falta de comunicação agrava a dependência entre o doente e cuidador, além de 

aumentar neste a frustração de não poder entender as necessidades do seu 

doente, com pressupostas consequências para a qualidade de vida de ambos.  

As dificuldades de comunicação dos doentes de ELA tornam imperativo o 

suporte das Tecnologias de Apoio à Comunicação (TaC), à medida que estes 

perdem a fala e a escrita. Desde os sintetizadores de fala (para transformar 

qualquer texto escrito em fala), atualmente presentes em qualquer smartphone, 

aos avançados sistemas de controlo pelo olhar ou as interfaces cérebro-

computador, as TaC possibilitam ao doente com ELA comunicar no seu contexto 

social, nomeadamente com o cuidador, familiares ou amigos e profissionais de 

saúde, independentemente da sua incapacidade motora e características da 

progressão da doença.  

Contudo, pelas suas características neurodegenerativas e rapidez de 

progressão, a ELA constitui um desafio a quem se dedica à investigação,  

desenvolvimento e aplicação de TaC: as características físicas do doente e as 

suas necessidades de comunicação alteram-se com o avanço da doença. A perda 

progressiva, mas não simultânea, da fala e da mobilidade nos membros 

superiores e inferiores faz com que seja necessária uma contínua avaliação das 

capacidades funcionais e das necessidades de comunicação do doente, para que 

a escolha e utilização de TaC seja adequada a cada fase da doença.  

Apesar dos enormes avanços nas TaC, durante a última década, persistem 

várias dificuldades em apoiar a sua utilização por doentes com ELA. Algumas das 

razões para estas dificuldades são: falta de evidência científica do benefício da 

utilização destas tecnologias para a qualidade de vida dos doentes e cuidadores; 

falta de ferramentas de avaliação, que permitam apoiar os profissionais de saúde 

na escolha atempada das tecnologias que melhor se ajustam às necessidades de 

comunicação e ao contexto de cada doente; e o apoio tardio, muitas vezes 

sugerido ou procurado apenas quando o cuidador já tem muita dificuldade em 

comunicar com o doente. Com frequência, em algumas fases da ELA, o doente e 

o cuidador têm de gerir complicações clínicas relacionadas com o suporte vital 

(nomeadamente, a disfagia e a insuficiência respiratória) que se tornam 

prioritárias e fazem com que o problema da comunicação seja negligenciado. No 

entanto, as graves limitações físicas do doente (logo, a elevada dependência das 

decisões do cuidador), bem como a crescente depressão ou sobrecarga do 



 

cuidador, tornam a adaptação às TaC muito difícil, quando adiada para fases 

avançadas da doença. Também relacionado com as dificuldades de apoio dos 

doentes para utilizar TaC, é discutido neste trabalho a perspetiva limitada que é 

colocada nestas tecnologias. As modernas TaC não devem ser consideradas 

apenas como alternativas à fala, mas como um importante meio tecnológico que 

potencia a integração dos doentes com ELA nos modernos paradigmas da Saúde. 

 

A presente tese tem como principal objetivo estudar o impacto que a 

utilização de TaC tem na qualidade de vida dos doentes e seus cuidadores, desde 

as primeiras dificuldades em comunicar através da fala. Como objetivos 

secundários, pretende-se (1) estudar novas ferramentas de avaliação e medição 

da capacidade de comunicação nos doentes com ELA, que possam contribuir 

para um melhor acompanhamento dos doentes ao longo das diferentes fases da 

doença; (2) validar a hipótese de que as TaC podem ser instrumentos para 

implementar ferramentas clínicas de telemonitorização, desde a casa do doente.   

Um grupo de 30 doentes com ELA e 17 cuidadores, de início bulbar, foi 

selecionado na consulta de ELA do Hospital de Santa Maria. Os doentes e 

cuidadores foram avaliados longitudinalmente, na consulta de Neurologia do 

hospital,  durante 2 a 29 meses. Em cada sessão de avaliação, os instrumentos 

utilizados para o estudo da qualidade de vida foram: para os doentes, o 

questionário McGill Quality of Life questionnaire (MQoL); para os cuidadores, o 

MQoL e o World Health Organization quality of life-BREF (WHOQoL-bref). Para a 

avaliação do desempenho na comunicação foi usada a métrica de número de 

palavras por minuto, e registaram-se as funções da fala e escrita (manual e num 

teclado). Para o estudo de novas ferramentas de monitorização, foi gravada fala 

dos doentes (utilizando o microfone de um computador) e os movimentos de 

escrita num teclado (através de um acelerómetro colocado na parte posterior do 

dedo indicador).  

Um grupo de 15 doentes (selecionados aleatoriamente) recebeu TaC 

baseadas em computadores tipo tablet, desde as primeiras dificuldades em 

comunicar.  Verificou-se que estes doentes aprenderam facilmente a utilizar as 

tecnologias, e melhoraram o desempenho de utilização da escrita com teclado. 

Observamos neste grupo de doentes um impacto positivo das TaC em alguns 



 

domínios específicos da qualidade de vida dos doentes (Psicológico e Bem-Estar) 

e seus cuidadores (Psicológico e Suporte). 

Estudamos a função do membros superiores, no que se refere ao 

desempenho na comunicação escrita. Observamos que as TaC podem suportar a 

comunicação dos doentes com ELA durante mais tempo do que a escrita manual, 

muitas vezes utilizada como única alternativa à fala (ficando o doente 

impossibilitado de comunicar quando perde a função motora necessária para 

agarrar a caneta).  

Com base na metodologia definida para registo da fala e da escrita no 

teclado, observamos em dois estudos exploratórios que as TaC podem ser 

utilizadas como ferramentas para monitorizar a progressão dos sintomas da ELA, 

nomeadamente os que dizem respeito à comunicação. Num primeiro estudo com 

19 doentes de ELA, observamos que o tempo médio que o doente demora a 

pressionar cada tecla do teclado pode ser utilizado como marcador precoce de 

disfunção nos membros superiores. Também verificamos que a aceleração dos 

movimentos ao premir e libertar as teclas indicam aumento da disfunção dos 

membros superiores na ELA. Num segundo estudo, baseado na análise 

longitudinal de fala gravada de quatro doentes de ELA, observamos a 

possibilidade de utilizar fala corrente para avaliação e detecção precoce da 

progressão da ELA. As metodologias utilizadas neste trabalho de investigação 

para o registo e avaliação da comunicação podem ser replicadas em ambiente 

doméstico, e fazem parte das contribuições desta investigação. A implementação 

de ferramentas de telemonitorização suportadas nas TaC, é discutida nesta tese.  

Com o objetivo de explorar novas ferramentas de avaliação e novos canais 

de comunicação em doentes que recebem apoio tardio na utilização de TaC, 

desenvolvemos uma ferramenta de deteção e controlo de movimentos residuais, 

simples de controlar. Foram testados movimentos captados por sensores de 

acelerometria, eletromiografia e força (que podem ser utilizados pelo doente para 

acesso a ferramentas de comunicação), em três doentes de ELA com grave 

incapacidade motora.  

Em conclusão, os resultados deste trabalho de investigação contribuem 

com ferramentas de Engenharia para a melhoria da comunicação e do 

acompanhamento dos doentes com ELA e seus cuidadores na utilização de TaC. 

As metodologias desenvolvidas para o desenvolvimento deste estudo podem ser 



 

aplicadas para estudar o impacto das TaC em outras doenças 

neurodegenerativas que afetam o controlo motor da fala e membros superiores.  
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Abstract 
Amyotrophic Lateral Sclerosis (ALS) is a progressive neuromuscular 

disease with rapid and generalized degeneration of motor neurons. Patients with 

ALS experiment a relentless decline in functions that affect performance of most 

activities of daily living (ADL), such as speaking, eating, walking or writing. For this 

reason, dependence on caregivers grows as the disease progresses. 

Management of the respiratory system is one of the main concerns of medical 

support, since respiratory failure is the most common cause of death in ALS. 

Due to increasing muscle weakness, most patients experience dramatic 

decrease of speech intelligibility and difficulties in using upper limbs (UL) for 

writing. There is growing evidence that mild cognitive impairment is common in 

ALS, but most patients are self-conscious of their difficulties in communicating 

and, in very severe stages, locked-in syndrome can occur. When no other 

resources than speech and writing are used to assist communication, patients are 

deprived of expressing needs or feelings, making decisions and keeping social 

relationships. Further, caregivers feel increased dependence due to difficulties in 

communication with others and get frustrated about difficulties in understanding 

partners’ needs. Support for communication is then very important to improve 

quality of life of both patients and caregivers; however, this has been poorly 

investigated in ALS. 

Assistive communication devices (ACD) can support patients by providing a 

diversity of tools for communication, as they progressively lose speech. ALS, in 

common with other degenerative conditions, introduces an additional challenge for 

the field of ACD: as the disease progresses, technologies must adapt to different 

conditions of the user. In early stages, patients may need speech synthesis in a 

mobile device, if dysarthria is one of the initial symptoms, or keyboard 

modifications, as weakness in UL increases. When upper limbs’ dysfunction is 

high, different input technologies may be adapted to capture voluntary control (for 

example, eye-tracking devices). 

Despite the enormous advances in the field of Assistive Technologies, in 

the last decade, difficulties in clinical support for the use of assistive 

communication devices (ACD) persist. Among the main reasons for these 



 

difficulties are lack of assessment tools to evaluate communication needs and 

determine proper input devices and to indicate changes over disease progression, 

and absence of clinical evidence that ACD has relevant impact on the quality of life 

of affected patients.  For this set of reasons, support with communication tools is 

delayed to stages where patients are severely disabled. Often in these stages, 

patients face additional clinical complications and increased dependence on their 

caregivers’ decisions, which increase the difficulty in adaptation to new 

communication tools.  

This thesis addresses the role of assistive technologies in the quality of life 

of early-affected patients with ALS. Also, it includes the study of assessment tools 

that can improve longitudinal evaluation of communication needs of patients with 

ALS.  

We longitudinally evaluated a group of 30 patients with bulbar-onset ALS 

and 17 caregivers, during 2 to 29 months. Patients were assessed during their 

regular clinical appointments, in the Hospital de Santa Maria-Centro Hospitalar 

Lisboa_Norte. Evaluation of patients was based on validated instruments for 

assessing the Quality of Life (QoL) of patients and caregivers, and on 

methodologies for recording communication and measuring its performance 

(including speech, handwriting and typing).  

We tested the impact of early support with ACD on the QoL of patients with 

ALS, using a randomized, prospective, longitudinal design. Patients were able to 

learn and improve their skills to use communication tools based on electronic 

assistive devices. We found a positive impact of ACD in psychological and well-

being domains of quality of life in patients, as well as in the support and 

psychological domains in caregivers.   

We also studied performance of communication (words per minute) using 

UL. Performance in handwriting may decline faster than performance in typing, 

supporting the idea that the use of touchscreen-based ACD supports 

communication for longer than handwriting. From longitudinal recordings of 

speech and typing activity we could observe that ACD can support tools to detect 

early markers of bulbar and UL dysfunction in ALS.  

Methodologies that were used in this research for recording and assessing 

function in communication can be replicated in the home environment and form 



 

part of the original contributions of this research. Implementation of remote 

monitoring tools in daily use of ACD, based on these methodologies, is discussed.  

Considering those patients who receive late support for the use of ACD, 

lack of time or daily support to learn how to control complex input devices may 

hinder its use. We developed a novel device to explore the detection and control of 

various residual movements, based on sensors of accelerometry, 

electromyography and force, as input signals for communication. The aim of this 

input device was to develop a tool to explore new communication channels in 

patients with generalized muscle weakness. 

This research contributed with novel tools from the Engineering field to the 

study of assistive communication in patients with ALS. Methodologies that were 

developed in this work can be further applied to the study of the impact of ACD in 

other neurodegenerative diseases that affect speech and motor control of UL.   
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Chapter 1  - Amyotrophic Lateral 
Sclerosis  

1.1 Introduction 
Amyotrophic Lateral Sclerosis is in the group of the motor neuron disorders. 

It was considered as a muscular condition until the French neurobiologist and 

physician Jean-Martin Charcot published, in 1869, a number of clinico-pathological 

studies identifying neuromotor degeneration as cause of muscle wasting (Goetz, 

2000). For his fundamental contributions, ALS is still known as “Charcot’s 

disease”.  

This motor neuron disease is distinguished by the combination of 

degeneration of upper and lower motor neurons (Figure 1). Upper motor neurons 

(UMN) are in the motor cortex and project down to connect to lower motor neurons 

(LMN). LMN reside in brainstem and spinal cord; they project to the peripheral 

nerves to connect directly to the muscle fibers. Spasticity is a well-known 

manifestation related to UMN involvement in ALS, while muscle weakness, muscle 

wasting and fasciculations are related to LMN degeneration that occurs in this 

disease. 

Symptoms are progressive weakness and wasting of bulbar, limb, thoracic 

and abdominal muscles. Most patients experiment a dramatic and progressive 

loss of muscle function. Motor neurons controlling the eye movements and 

sphincters are commonly spared, as also the sensory and autonomic nervous 

system. For a definitive diagnostic of ALS it is important to identify the presence of 

concomitant signs of UMN and LMN degeneration in multiple body regions (Shaw 

& Quinn, 2006; Brooks et al., 2000).  

ALS is rapidly progressive and fatal, with no available treatment to interrupt 

the motoneurone death; its cause is still unknown. The mean age of onset is 58-63 

years old in sporadic cases of ALS. Lifetime risk of developing ALS is 1 in 350–

500, for male sex (Miller et al., 2013); the incidence is higher for male sex (1:1,4) 

(Miller et al., 2013; Logroscino et al., 2010). Only 5% of cases have an onset 

before the age of 30 years (Haverkamp et al., 1995), but young-onset sporadic 

cases are increasingly recognized (Gouveia & de Carvalho, 2007). Due to fast 

progression, death occurs in average 2-4 years after the first symptoms, due to 
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respiratory failure, but 5-10% may survive for a decade or more (Andersen et al., 

2012; Miller et al., 2013).  

The management of ALS is supportive, palliative and multidisciplinary 

(Wijesekera & Leigh, 2009). Riluzole is the only approved drug that has been 

shown to have a modest effect in prolonging life (Bensimon et al., 2002; 

Bellingham, 2011).  

Respiratory failure and other respiratory complications account for the 

majority of deaths in ALS. Although respiratory function is a frequent late 

complication, it may be a presenting feature (de Carvalho et al., 1996). Several 

different factors have been shown to predict survival in ALS. The most consistent 

negative predictive factors for survival are: elderly age, low body-mass index, short 

diagnostic delay, bulbar and respiratory presentation, rapid clinical and respiratory 

decline (Pinto et al., 2009; Chiò et al., 2009).  

Non-invasive ventilation (NIV) is widely used to improve alveolar 

hypoventilation in ALS. Several studies indicate a longer survival when NIV is 

used. Health-related QoL is improved in patients under NIV, in particular in those 

with none to moderate bulbar dysfunction (Pinto et al., 2010; Bourke et al., 2006; 

Vrijsen et al., 2013).  Forced vital capacity, vital capacity, nasal inspiratory 

pressure obtained during a sniff, the size of the phrenic nerve motor response and 

mean nocturnal oxygen saturation have been considered as respiratory markers 

related to prognosis in ALS (S. Pinto & Carvalho, 2014; S. Pinto et al., 2009). 

Most ALS cases (approximately two thirds of patients with typical ALS) 

have a spinal form of the disease: symptoms may start either distally or proximally 

in the upper or lower limbs. Nearly 25% of the patients have bulbar-onset ALS: 

dysarthria as initial symptoms. In this group of patients, limbs symptoms can 

develop almost simultaneously with bulbar manifestations or, for most of the 

cases, will occur later within 1–2 years. All patients with bulbar symptoms will 

develop dysphagia and sialorrhea due to difficulty in swallowing saliva, as well as 

mild UMN type bilateral facial weakness, which affects the lower part of the face. 

'Pseudobulbar' symptoms such as emotional lability are seen in a significant 

number of cases (Wijesekera & Leigh, 2009). About 5% of cases with ALS present 

with respiratory weakness without significant limb or bulbar symptoms (de 

Carvalho et al., 1996). These patients present with symptoms of respiratory failure 

or nocturnal hypoventilation (dyspnea, orthopnea, disturbed sleep, morning 
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headaches, excessive day time somnolence, anorexia, decreased concentration 

and irritability or mood changes) (Polkey et al., 1999; Wijesekera & Leigh, 2009). 

Bulbar-onset is more common in women and in older age groups; 43% of 

patients over the age of 70 present bulbar symptoms, compared to 15% below the 

age of 30 (Forbes et al., 2004; Haverkamp et al., 1995). In general, death is due to 

respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for spinal 

onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, 

and of these 10-20% have a mutation of the SOD1 gene and about 20-40% have 

mutations of the C9Orf72 gene, in Europe (Wijesekera & Leigh, 2009; Cooper-

Knock et al., 2015).  

The deterioration of the neuromotor system involved in respiration, 

phonation, swallowing, and lingual and oro-facial muscle functions leads to a 

rapidly progressing dysarthria in ALS. Dysarthria occurs in more than 80% of 

patients and is manifested as an early symptom in patients with bulbar-onset, 

often leading to anarthria. It also affects 70% of patients with spinal onset; 25 to 

30% of patients have dysarthria within initial symptoms (Tomik & Guiloff, 2010). 

Dysphagia is a common symptom of ALS, leading to malnutrition, weight 

loss, dehydration and the need of aspiration (Kühnlein et al., 2008). Percutaneous 

endoscopic gastrostomy is the standard procedure for alternative feeding; 

evidence suggests that it should be placed before vital capacity falls below 50% of 

predicted (Wijesekera & Leigh, 2009).  

ALS is characterized by functional decline related to muscle weakness, 

affecting most activities of daily living (Cedarbaum et al., 1999). Dependence on 

caregivers grows as disease progresses (Brownlee & Bruening, 2012). Increasing 

dependence and general dysfunction of patients with ALS cause strong negative 

social and economic impact. Patients and caregivers may suffer from depression 

and anxiety, from diagnosis and as disease progresses. Psychological support 

and palliative care should be offered to the families since early symptoms (Averill 

et al., 2007). Most patients will experiment dramatic decrease of speech 

intelligibility and great difficulties in writing due to increasing muscle weakness. For 

this reason, one of the concerns of persons with ALS is the fear of losing ability to 

communicate (Gruis et al., 2011).  
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Figure 1 – Pathways of Upper Motor Neuron and Lower Motor Neuron systems (in (Shaw et al., 

2006), p.2) 

1.2 Functional progression 
ALS may be identified by the functional involvement of one or more central 

nervous system region (bulbar, cervical-upper limbs, lumbosacral-lower limbs or 

thoracic-diaphragmatic) evaluated by manifestations of weakness, wasting or 

spasticity. First symptoms spread to other contiguous anatomic regions, in a 

progressive order. Time of progression can vary according to survival rates, and 

be influenced by clinical, demographic, and genetic features (Simon et al., 2014).  

Brownlee & Bruening (2012) describe ALS as a disease of losses. In fact, a 

dramatic decrease in patients’ autonomy is caused by a cascade of functional 

losses. ALS Functional Rating Scale revised (ALSFRS-R) (Cedarbaum et al., 

1999) is a widely applied tool for research and routine clinical evaluation, that 

measures in a single score the severity of the functional status. The ALSFRS-R 

measures bulbar function, gross motor tasks, fine motor tasks, walking, and 

respiratory function. Maximum score (48) corresponds to normal function; this 

score declines as disease progresses (minimum is 0). Quality of life is correlated 

to ALSFRS-R scores, indicating that function is important in the QoL of ALS 

patients and their caregivers (Bourke et al., 2006; Cedarbaum et al., 1999). This 

score has been used as a self-report form (Montes et al., 2006), for telephone 

administration (Kaufmann et al., 2007; Kasarskis et al., 2005) and online 

assessment (Maier et al., 2012). For these characteristics, this tool was used for 
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clinical functional assessment in this research, and is further described in section 

4.2.4. 

A staging system proposed by Roche et al. (2012), characterizes ALS 

progression in four stages: (1) Symptom onset (involvement of one single region); 

(2) Involvement of a second region; (3) Involvement of a third region and (4) A- 

Need for gastrostomy, B- Need for respiratory support (non-invasive ventilation). 

Quantitative outcome measures of functional progression in ALS, used in clinical 

trials, mainly rely on muscle strength assessment, respiratory and bulbar function 

tests as well as on general functional rating scales (Brinkmann et al., 1997). 

Emerging imaging technologies are contributing to further insights of the disease, 

in particular related to the study of UMN abnormalities in ALS (Simon et al., 2014).  

1.3 Upper and Lower limbs dysfunction 
Symptoms of ALS include difficulties of movements and reduced strength in 

upper and lower limbs. Due to lower limbs dysfunction, patients may fall and 

progressively become unable to walk. Loss of physical independence related to 

upper limbs dysfunction is characterized by progressive difficulties in performing 

most activities in daily living, as handwriting, handling utensils and dressing 

(Cedarbaum et al., 1999). 

Figure 2 depicts a simplified model for dysfunction, considering a simplified 

linear progression: walking with autonomy, moving on a wheelchair and, finally, 

living mainly at home. For the scope of assistive communication devices in ALS, 

this simplified model represents three stages where significant changes in 

communication needs and individual social contexts can occur.   

 

 
Figure 2 – A suggested model of the progression of limbs dysfunction, considering a simplified and linear 
progression of ALS. Three stages where significant changes in communication needs and individual social 
contexts can occur are represented: (i) the patient can walk normally (with independence for most ADL), (ii) 
the patient moves on a wheelchair and has difficulties in moving upper limbs (becomes more dependent on 
the caregiver and loses autonomy for several ADL) and (iii) finally, the patient is severely impaired and 
dependent on the caregiver (lives mainly at home, on a chair or bed).  
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1.4 Speech dysfunction 
Different types of dysarthria occur in ALS, according to systems that are 

affected. Frequently it has mixed characteristics due to multisystemic involvement. 

Degeneration of LMN results in flaccid bulbar palsy with denervation of muscles of 

face, oropharynx, larynx and tongue (muscle wasting and weakness with 

proportional slowness of movements). Involvement of cortical areas and 

corticobulbar tracts (UMN) causes spastic bulbar palsy (slowness of movement 

with variable weakness and no wasting) (Darley et al., 1969). Figure 3 resumes 

dysarthria characteristics in ALS disease, as suggested in (Tomik & Guiloff, 2010).  
 

 
Figure 3 – Type, mechanisms and clinical signs of Dysarthria in ALS (from Tomik & Guiloff, 2010) 

 

Decline of functional speech is characterized by decrease in speech 

intelligibility. Patients experiment progressive difficulties in being understood by 

others, increasing need to repeat words, reduction of the group of listeners who 

understand their speech, until they are unable to use speech for communication. 

In a longitudinal analysis, Beukelman et al. (2007) observed that 80 to 95% of ALS 

patients were prevented from communicating without any alternative strategy, in 
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some stage during disease progression. Ball et al. (2004) studied 158 patients, in 

3 months intervals, since diagnosis until death concluding that speech rate is a 

valid predictor for decrease of speech intelligibility. According to Ball et al. (2007), 

a speech rate of 125 words per minute (65% of normal speech rate) is a valid 

marker for rapid decline in speech intelligibility. 

1.5 Cognitive impairment 
It is now evident that ALS disease affects multiple systems, with a 

significant impact for cognitive deficits. High incidence of mild cognitive impairment 

(up to 50%) has been reported (Phukan et al., 2007; Lomen-Hoerth et al., 2003; 

Barson et al., 2000); frontotemporal dementia (FTD) is found in a reduced group of 

ALS patients (with prevalence ranging from 15 to 41%) (Strong et al., 2009). 

Although cognitive impairment manifestations are heterogeneous, its decline has 

been described by personality change, irritability, obsessions, poor insight and 

pervasive deficits on frontal executive functions (i.e. verbal fluency, mental 

flexibility, attention, working memory, planning, and abstract reasoning) (Phukan et 

al., 2007; Cipresso et al., 2012). Different longitudinal studies indicate that 

cognitive decline is slow in the absence of dementia (Phukan et al., 2007; 

Robinson et al., 2006), but progresses more rapidly in bulbar-onset patients, when 

compared to spinal-onset (Schreiber et al., 2005). Motor and speech impairments 

raise difficulties for studying neuropsychological aspects of the disease. In stages 

where patients have lower functional scores, assessment with neuropsychology 

tests need modifications that accommodate physical impairment and the possibility 

to use ACD to answer to digital modified neuropsychology test. However, 

heterogeneity of physical impairment and difficulty in collecting large samples are 

obstacles to validation of these test modifications (Hill-Briggs et al., 2007). Some 

authors suggested the use of Brain-computer interface (BCI) or eye-tracking 

systems to assess cognition by neuropsychological tests in patients with severe 

motor impairment. Nevertheless, the lack of research in test modifications adapted 

to different devices reduces the possibility of studying cognition in later stages of 

ALS disease (Cipresso et al., 2012; Iversen et al., 2008).  
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Chapter 2  - Assistive Technologies for 
Communication and Control in ALS 

2.1 Definition of Assistive Technology 
The term Assistive Technologies is defined by Cook & Polgar (2013) as a 

broad range of devices, services, strategies and practices that are conceived and 

applied to ameliorate the problems faced by individuals who have disabilities. In 

the same perspective, Cowan & Turner-Smith (1999) define Assistive 

Technologies as “any device or system that allows an individual to perform a task 

that they would otherwise be unable to do, or increases the ease and safety with 

which the task can be performed”.  

According to Rehabilitation Engineering Society of North America (RESNA), 

the term AT Device (ATd) means “any item, piece of equipment, or product 

system, whether acquired commercially, modified, or customized, that is used to 

increase, maintain, or improve functional capabilities of individuals with 

disabilities”.  This definition is adopted from Assistive Technology Act of 2004, P.L. 

108-364 (http://www.gpo.gov/fdsys/pkg/STATUTE-118/pdf/STATUTE-118-

Pg1707.pdf). The same document defines AT Service as “any service that directly 

assists an individual with a disability in the selection, acquisition, or use of an 

assistive technology device”. AT services include evaluation of individuals’ needs 

(which includes functional evaluation), support in acquisition of ATd, customization 

and technical support for ATd, coordination between the use of ATd and 

rehabilitation services; training users, professionals and caregivers; among others.  

2.2 Assistive Communication Devices (ACD) 
Different ATd are developed to assist different functional disabilities. 

Assistance in communication, mobility, cognition, manipulation, vision, audition 

and tact are the targets of the ATd (Cook & Polgar, 2013). For example, a 

wheelchair is developed and used to improve patients’ mobility; an infrared 

transmitter that is controlled by eye-tracking system can allow a severely motor 

disabled patient to choose TV channels from the bed; an application in a 

smartphone that alerts for daily tasks can help a person with memory problems; 

screen readers in the computers help individuals with vision impairment to access 
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to information; auditory prosthesis allow individuals with auditory impairments to 

improve listening performance; an electromyographic interface can allow a 

severely disabled individual with motor speech impairment to write on a screen 

keyboard and use text-to-speech to communicate with others. All these examples 

refer to ATd that are developed to assist in different functional needs.  

The present work is devoted to AT for support in communication. In this 

scope, the term ATd will be replaced by assistive communication devices (ACD). 

We refer to ACD as any device or system that enables an individual to 

communicate when they would otherwise be unable (or have difficulties) to do it, 

due to functional impairments. A unique reference to the field of Augmentative and 

Alternative Communication (AAC) is done in this paragraph. According to ASHA, 

“Augmentative and alternative communication includes all forms of communication 

(other than oral speech) that are used to express thoughts, needs, wants, and 

ideas.” In fact, all the present research work is in the scope of the field of AAC. 

However, a special focus is given on the technology (electronic devices) and 

effects of the use of ACD. 

In this context, ACD aim at enhancing communication of those patients who 

have difficulties in speaking or writing. In ALS, as also in several other neurological 

conditions, difficulties in communication appear due to physical dysfunction in 

speech and in upper limbs. Depending on physical dysfunction and individual 

needs, different technologies can support communication, as tablet devices or 

computers with software-based communication tools (e.g. speech synthesis), 

simple devices that record and reproduce voice, eye glasses with embedded gaze 

control or even intracortical brain computer interfaces.   

It is important to note that, in opposition to most clinical equipment, which is 

controlled by the professionals, ACD are to be used by patients. This fact makes 

them distinct from other technologies for clinical support and has important 

implications: 

i) expertise in the use of ACD belong to the patient. 

ii) outcomes from the use of ACD are difficult to obtain in clinical settings, 

as these technologies are designed to enhance patients’ function in daily living, 

out of the clinical environment. 

iii) use and selection of ACD must follow a patient-centered approach 

(Stewart, 2001), taking into account the individual context and decisions of each 
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patient. As Gosnell et al. (2011) advocate, while ACD must “represent a 

reasonable match to the strengths and needs of some individuals, it is important 

that the needs of an individual be considered on a case-by-case basis using a 

thorough and clinically based approach.”   

2.2.1 Input devices 

As aforementioned, ACD are operated by the patient. Operation is done 

using an input device (most commonly named as access interface), i.e. a mean of 

interaction between the body functions (input signals) and the ACD. Most 

commonly, interaction between a person and a personal electronic device is done 

through motor control of upper limbs. For example, touchscreens or keyboards are 

input devices that are used by the patient (requiring motor control of upper limbs) 

to access to an ACD (Figure 4).  

 

 
Figure 4 – Input devices (accessibility tools) are controlled by body functions and translated into 

commands for controlling communication tools of the AT device. 

 

Input devices have particular importance in ALS in the context of patients 

with upper limbs impairment. In a neurodegenerative process of losing motor 

control, as is the case of ALS, use of upper limbs to control a device may become 

limited or impossible. As disease advances and functional limitations increase, 

patients’ support in Communication includes searching for alternative resources 

(body functions and input devices) to access to ACD. Miyasaka et al. (2013, 

p.165) illustrate an example where they observe the finger joint movements 

required to perform a left click on a computer mouse input device and problems 

that arise as ALS progresses: 
“To click the left mouse button, the hand rests on the mouse while maintaining a 

longitudinal and lateral arch in the palm and the four fingers and thumb envelop and grip the 

mouse. Then, with the distal interphalangeal and proximal interphalangeal joints of the left-side 

finger slightly flexed, the angle of each joint is maintained and the metacarpophalangeal (MP) joint 

is flexed to perform the clicking operation. After clicking, the flexion of the MP joint is relaxed to 

cease the clicking operation. Clicking the left mouse button thus involves the complex operation of 

simultaneously holding the mouse and clicking the button, which requires the coordination of 
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several joint muscles. Because muscle strength throughout the body deteriorates as ALS 

progresses, input methods, such as the mouse, requires the use of multiple muscles and therefore 

become unusable after the early stages of the disease.” 

As these same authors refer, as disease progresses, input devices that 

minimize the number of joint movements are selected. Figure 5 illustrates body 

sites and input signals that are most commonly used by ALS patients for access to 

ACD, depending on disease symptoms and stage.  

 

 
Figure 5 - Body sites and signals commonly used to control input devices by ALS patients. 

 

2.2.2 Access Methods 

Depending on the input signals (Figure 4) and the body functions that are 

used to access to ACD, two main access methods may be used: 

(i) Direct selection – in this access method, patient can choose a function 

in the ACD directly. For example, when using a keyboard with finger selection or 

an eyetracking system with eye control, the patient can select any letter at any 
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instance. Motor control allows the user to reach any option in the keyboard 

directly. 

(ii) Scanning method – when physical disability prevents the patient to 

access to all functions in ACD, an alternative method must be used. For example, 

a patient with ALS may not be able to move upper limb to reach all keys in a 

keyboard, thus be able to press a switch using hands or head movements, as 

depicted in Figure 6. A single switch (a simple 0/I signal) may be used to select a 

device with a scanning method: all options in an onscreen keyboard are 

highlighted in a sequential order and defined frequency (e.g. 1 option/sec). When 

the desired option is highlighted, user will press the switch and select that option 

(Figure 6). Scanning process continues for further selections. Despite of being a 

slow process 

 
Figure 6 - (left) Switch being used by a patient with ALS for accessing to communication tools in an 

ACD using a scanning method. (right) Scheme illustrating scanning method (in Encarnação et al. (2015), 
p.61). 

 

of selection, scanning method is used by many ALS patients, with the support of 

acceleration techniques (e.g. text prediction or different scanning sequences). It is 

important to refer that, in particular for patients in late stages of ALS, easiness for 

setup and learning of the input device may be more important for the patients than 

the communication rate. Birbmauer (2006) describes difficulties to find volunteers 

for implanting intracortical brain computer interfaces: “Even when informed about 

the possibilities and advantages of the surgical implantation, 16 patients refused 

the procedure and preferred the slow and error-prone noninvasive device. An 

important argument of patients was that time is not an issue if one is completely 

paralyzed”. In fact, acceptance of assistive technologies is dependent on other 

factors than velocity, as is discussed in chapter 4. 
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There is also another specific scanning method that is used on some brain 

computer interfaces. In this specific case, which further described in section 

2.3.2.3, scanning is not sequentially driven. Instead, options are highlighted in a 

random order and patients have to look at their option until it highlights.  

2.3 Assistive communication and dynamic needs in ALS 
When assessing to communication needs in ALS, and generally in 

progressive neurological conditions, three important aspects should be 

considered: 

(i) Communication support must include assessment of input devices and 

ACD (access and communication tools). In ALS, both speech and upper limb 

functions are severely affected. As so, patients will need communication tools (for 

example, a speech synthesizer) and specific access tools to compensate 

functional impairment in upper limbs (for example, an input device to access a 

keyboard using eye movements) (Fager et al., 2012).  

(ii) Time and characteristics of symptoms and progression deeply influence 

communication and access needs. Some characteristics that are specific of ALS 

are determinant for the specification of ACD that should best match to patients’ 

communication and control needs. It is then especially important to estimate the 

rate of progression and know the stages of the disease, to plan ACD according to 

expected advance of the symptoms.  

(iii) Communication needs depend on each patient’s individual needs and 

context and may not be restricted to replacing speech dysfunction. Communication 

needs of the patients may go beyond dysfunction of speech. Solving 

communication problems in today’s digital world requires consideration of multiple 

functions, depending on the age, circumstances, interests, and preferences of 

each person. Interpersonal communication, information, online services, 

entertainment, education, health and safety, are different functions of present 

communication tools, services and facilities (Shane et al., 2012).   

In the following sections, we describe the state-of-art of assistive 

technologies that are used for supporting communication in ALS. Firstly, we 

describe technologies that are used in initial phases of disease progression 

(depending if main disability is in bulbar or upper limbs), and then those 

technologies that are used when patients are severely affected.  
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2.3.1 ACD in moderately affected patients 

2.3.1.1 Initial speech impairment 
When patients experiment speech intelligibility decay, though keeping 

functional upper limbs, the most inexpensive communication aids are pen and 

notepad (handwriting) or printed boards, as depicted in Figure 7. Though, 

generation of tablet devices is having a tremendous impact on the possibilities of 

communication for these patients (McNaughton et al., 2013; RERC, 2011). Simple 

and inexpensive applications can allow a patient to communicate with others, for 

example by using a simple touchscreen-activated keyboard and voice output 

(based on text-to-speech technologies). The possibility of using Internet 

applications as communication tools included in any tablet device is also an 

opportunity for patients to avoid social isolation caused by decreased speech 

intelligibility (Shane et al., 2012).  

Handwriting and pointing to printed alphabetic boards are communication 

tools that are limited to peer-to-peer communication and can be used until 

functional impairment in upper limbs does not definitely prevent its use (Figure 7 

and Figure 8). Digital ACD, such as the tablet devices, have the advantage of 

allowing the patient to use the same communication tools, as new input devices 

can be connected to these devices, to adapt to functional changes imposed by 

disease progression. Moreover, patients may be able to write using direct 

selection on a keyboard for more time than handwriting (as described in Chapters 

4 and 5). Several authors defend the use of handwriting or printed boards in 

parallel to digital ACD, for being practical instruments, easy to use in any context 

(Brownlee & Bruening, 2012; Bongioanni, 2008; Kühnlein et al., 2008; Miyasaka et 

al., 2013).   

2.3.1.2 Initial upper limbs impairment 
When muscle weakness first affects UL function, patients may experiment 

early difficulties in using writing (handwriting or typing in an electronic device) or 

grabbing/controlling devices (for example, difficulties in using a cell phone). These 

difficulties may occur before any perceived symptom of dysarthria. One of the 

main overwhelming problems of losing UL function is loss of autonomy in daily 

living and consequent restricted participation in social and leisure activities (Sveen 

et al., 1999; Bongioanni, 2008). 
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Figure 7 - Alphabetic Board printed in paper; the user points to the desired letters, words, phrases or 

pictures to communicate. This alphabetic board can also be used when patients are severely disabled: the 
caregiver points to the letters and patient indicates the selection by eyeblink or other gesture. In Encarnação 

et al. (2015), p.89.  

 

 

      
Figure 8 – (Left) Example of handwriting as a replacement of speech function. (Right) This note was 

written by a patient with ALS (bulbar onset) participating in this study; due to low intelligibility of speech, this 
woman wrote about her symptoms to communicate with her neurologist. 

 

As muscle weakness increases, the use of alternative input devices for 

accessing communication tools becomes progressively important, as depicted in 
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Figure 9. Lack of understanding of UL functional progression in ALS, in what refers 

to access to ACD, limits support in early stages (Londral et al., 2013). Instead, 

access tools that do not rely on UL movements have been extensively explored in 

ACD research. In section 2.3.2, we describe input technologies that have been 

developed for ALS patients with severe UL dysfunction. 

 

   
Figure 9 – One of the participants in this research: (left) she could type on the keyboard using both hands; 

(right) six months later, the same patient could not perform more than slight movements with left hand fingers 
(with the hand closed). 

 

Wicks et al. (2009) proposed an extension for ALSFRS-R, in which there is 

a new item related to ULs and the use of assistive devices: 
Compared to the time before you had symptoms of ALS, has your ability to use your 
fingers been affected when using the keys of a computer, speech device, remote 
control, or environmental controls? 
4: no change; able to type or press buttons quickly with any finger 
3: can press buttons or type but at a reduced rate  
2: can only press some buttons or type very slowly  
1: can only activate one key or switch at a time 
0: Am unable to activate any key or switch with fingers 

 

When accessing to keyboards or switches, some difficulties may be 

observed:  

(i) Increasing difficulties in pressing or releasing a button or key. When this 

happens, it is important to allow patients to press the key or switch for a longer 

period, by eliminating the function of repetition (often, pressing for a longer time 

will activate the command to repeat the command; this option should be turned-

off), as illustrated in Figure 10.  
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Figure 10 - Repetition of letters in a typing task of an ALS-patient participating in this research. Repetition is 
caused by abnormal delay in releasing the finger from the key 

 

(ii) Patients may have difficulties in raising and moving the arm to point and 

select items on a keyboard or an alphabet board. Some patients may use arm 

supports to augment distal function of upper limbs (Londral et al., 2009): if forearm 

is supported higher that the keyboard, the hand will drop over the keyboard and 

patient will be able to select and press the keys (Figure 11).   

 

            
Figure 11 – (left) A patient who participated in our study is using the left hand to support his right 

forearm and enhance upper limb function in typing; (right) Representation of the distal function of UL when 
forearm is supported. 

 

2.3.1.3 Voice banking  
At this early stage, when bulbar symptoms are not perceived, ALS patients 

have the opportunity to anticipate speech dysarthria. Voice banking is an 

increasing practice for communication support in ALS. Patients record 

speech/voice for later incorporation in assistive communication device. Recorded 

voice allows personal and more authentic expression, when comparing to the 

inexpressive voice of speech synthesizers (Costello & Dimery, 2014).  Guidelines 

for voice banking of patients with ALS are available online (for example in 

http://www.alsforums.com/guides/documents/Voice-Banking-Guidelines.pdf).  

A very promising technology for ALS patients is the personalized speech 

synthesis. Voice features are extracted from the user and combined with a 

surrogate voice, generating a synthesizer with vocal identity of the user (Mills et 
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al., 2014; Yamagishi et al., 2012; ACAPELA, 2014). Despite voice banking should 

be done while ALS patient has no perceived speech disorder, there are techniques 

in which disordered speech can be repaired after recorded to be used in 

personalized synthesis; voice banking from familiar voices was also proposed to 

be used as a complement of patient’s voice (Yamagishi et al., 2012).   

2.3.2 Input signals and ACD in severely disabled patients 

2.3.2.1 Eye movements 
Advances in eye tracking technologies were responsible for the outbreak of 

eye-gaze input devices occurred in last two decades, also denominated by 

eyecontrol. Generalization of these devices brought new communication tools for 

those with severe upper limbs impairment, in particular ALS patients with 

decreased upper extremity motor function.  

Many different methods have been developed to detect and track eye 

movements. The first methods were developed more than 100 years ago for 

research of reading. Initial methods for tracking the location of eye fixations 

involved direct mechanical contact with the cornea (Javel, 1878). Non-invasive 

techniques development to track eye movements started in the first half of 20th 

century. The first attempt was based on the use of light reflected from the cornea 

and recorded onto a photographic plate; further techniques based on combination 

of cornea reflection and motion picture techniques were developed by several 

scientists interested in studying eyes movements. Jacob and Karn (2003) describe 

in detail the history of eye-tracking systems, since the pioneer study with cornea 

reflection (Dodge & Cline, 1901) until precise and accurate systems of our days. 

The discovery that multiple reflections from the eye could be used to dissociate 

eye rotations from head movement (Cornsweet & Crane, 1973) improved tracking 

precision and also prepared the ground for further developments that today allow 

greater freedom of movements from users. 

Most of the commercially available eye-gaze input devices are based on 

optical methods to measure eye motion, particularly one called “corneal-

reflection/pupil-center” (Poole & Ball, 2005). This method is based on an infrared 

light that is generated by a LED in a camera (usually this camera is below the 

computer screen). Infrared is used for being invisible to humans eye. It is directed 

to the eyes, to create a strong reflection. Two images are captured by the camera 
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of the eye tracking system: the pupil is captured as a large bright dot and the 

cornea reflection (the first Purkinje image1) is detected as a small glint (as 

depicted in Figure 12). Vector formed from the center of the pupil and the corneal 

reflection gives accurate information on the eye position (point-of-regard). 

Techniques using multiple reflections from the eye, firstly proposed by Cornsweet 

and Crane (1973), increase accuracy by allowing to dissociate eye rotations from 

head or camera movements (Kolakowski & Pelz, 2006). 

 

    
Figure 12 - Most common method for detecting eye movements for computer control in ACD are 

based on two images: the pupil and cornea reflection.  

 

Using eyes as an input device (i.e. eyecontrol) for an ACD has some 

inherent difficulties. As Jacob & Karn (2003) describe in detail, the eye moves very 

differently from the intentional way the hand moves to perform a voluntary 

movement.  Idea of using eye movements to choose options on a screen (e.g. 

choosing letters in an onscreen keyboard) and performing other pointing tasks is 

not as trivial as it may seem. On one hand, eyes can be used as a high-speed 

pointing device with no need for training, since brain dominates the control of this 

input. On the other hand, eye gaze is a sensory input that is related to complex 

cognitive tasks - eyes movements are often performed non-intentionally and not 

consciously. Typically, the user looks at the target on the screen and fixes gaze for 

a specific time (dwell time). This time acts like a threshold for a selection. As this 

input device is always “turned on” (a problem denominated as Midas Touch2) it 

can be frustrating and fatiguing to use it as input device for a specific task (for 

example, writing in the computer). Some methods were implemented in these 

input devices to avoid this problem. For example, using a different input device to 

perform selection (a switch or eye blink), instead of fixing eyegaze; another option 

                                            
1  Also named Purkinje-Sanson images due to Czech anatomist Jan Evangelista Purkyně (1787–1869) and 

French physician Louis Joseph Sanson (1790–1841). 
 
2 Everywhere you look another command is activated; you cannot look anywhere without issuing a command. 

(Jacob e Karn, 2003, pp.589-590) 
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is to use a mode of “standby” that user can activate and deactivate using eye-gaze 

based commands.   

Good cognitive capabilities, few involuntary movements and absence of 

motor neuron degeneration in ocular motor nuclei related to eye muscles makes 

ALS patients one of the most important target group for eye-gaze access 

technologies. Input devices based on these technologies are small cameras that 

are placed on the screen of the computer, to track eye movements and translate 

them as a pointer to select any item in the screen. Recent advances in eye 

tracking devices integrated in augmented reality glasses are promising wearable 

communication tools for ALS-patients who are severely disabled.  

Nevertheless, there are some drawbacks. Despite that muscles related to 

eye movements are usually spared in ALS, there can be problems with reliability in 

using eye-gaze access in late stages of ALS. Sellers et al. (2010, p.3) report the 

case of a patient who had a proficient use of the ACD: “However, as his eye 

movements weakened, the device became unreliable, and he and his family 

despaired of his being able to continue the independent communication essential 

to his quality of life and to his professional productivity”. Problems in system 

calibration or the need to repeat it often, difficulties due to inexperience in the use 

of a keyboard, previous vision problems, too many head or body movements or 

the need to have an ideal positioning (body and camera positions) were reported 

in other studies as difficulties in using this technology with ALS patients (Ball et al., 

2010; Calvo et al., 2008). For its technological complexity, eye tracking systems 

may need more support for troubleshooting than other systems, which is a 

drawback for those patients living in long-term care facilities, where support for AT 

is scarce (as discussed in Chapter 6 ).  

 

Technologies to detect eye movements that are based on non-optical 

methods are less used in the context of ALS patients. Electro-oculogram (EOG) is 

one of these non-optical technologies. It is based on detecting electrical muscle 

signals from the eye movements, as depicted in Figure 13. This technique has 

been developed by many researchers and proposed as input device for those with 

no upper limbs movements. As advantages, EOG signals have relatively high 

amplitude (when comparing to EEG), relationship between EOG and eye 

movements is linear, and eye movements are simple to detect (Lv et al., 2008). 
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Advantages that are related to the use of biosignals are further discussed in 

Chapter 6 . The EOG is the electrical signal obtained from potential difference 

between a positive pole, the cornea, and a negative pole, the retina (where there 

is a large number of nerve cells) and the cornea. Signal from this ocular dipole can 

thus be estimated by measuring the voltage induced across a system of 

electrodes placed around the eyes.  

 

 
Figure 13 – Picture of an input device based on EOG capture (in Fricke et al. (2014), p. 196). 

 

As the eye gaze changes, EOG can vary from 50 to 3500 µV, with a 

frequency range of about 100 Hz DC. It varies practically linearly for gaze angles 

of ±30º (Barea et al., 2002; Siriwadee et al., 2012). The amplitude of pulse will be 

increased with the increment of the rolling angle. EOG signals have certain 

patterns for each kind of eye gaze movement (horizontal movements: left, right; 

vertical movements: up, down; blink or wink) (Uşaklı, 2012). Several authors 

suggest EOG techniques for communication of ALS patients with severe motor 

impairment (Tsai & Chen, 2009; Dhillon et al., 2009; Park et al., 2005; Murakami et 

al., 2012). Using classification of different patterns in the EOG signal 

(corresponding to different eye movements), various methods are suggested, as 

writing on an onscreen keyboard by moving a cursor in two directions or blinking 

for switch input. Uşaklı (2012) developed an EOG system to ALS patients, 

reporting better accuracy, speed, applicability, and cost efficiency, when 

comparing their EOG system with a P300-based BCI system. In spite that EOG 

has been suggested as accurate input devices and potentially useful for patients 

with ALS or other severe motor disorder, results reported from experimental 

research were performed in healthy persons. 
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Miyasaka et al. (2013) refer to systems using this technique as having the 

advantage of detecting eye movements regardless the positioning of the patient or 

the opening angle of eyelids. Nevertheless, main problems of this technique are: 

the setup, as depicted in Figure 13, is not practical to implement in real scenarios 

of ALS and it is dependent on movements’ speed to detect an input signal. 

Furthermore, occulomotor dysfunction, as slower saccades, vertical gaze palsy or 

abnormal eyelid movements have been observed in ALS patients (Okuda et al., 

1992; Abe et al., 1995).  

2.3.2.2 Head and neck movements 
Although it is observable that slight head and neck movements are 

generally preserved until late stages, in the majority of patients, these are not 

evaluated for a functional perspective. However, Wicks et al. (2009) suggest a 

new item to add to ALSFRS-R:  

 
To what extent have there been changes in your ability to move your head?  

4 - no change; can move head in all directions from a vertical position without head support  
3 - can move head in all directions from a vertical position with head support  
2 - can move head in all directions from a reclined or tilted back position with head support, 
and can nod or tilt head  
1 - can move head from left-to-right from a reclined or tilted back position with head support 
but have a very limited range of motion 
0 - cannot move head 
 

Frequently, when patients cannot use ULs to access communication tools, 

they are still able to control head movements to activate a head mounted switch 

or, in some cases, a headmouse.  

The switch activated by head movements is often used by ALS patients 

with no UL movements (as depicted in Figure 14). Despite that this input device 

relies on scanning method (section 2.2.2), which is slower than other input devices 

(for example, comparing to eye-tracking input devices), it has the advantage of 

being simple and easy to use and to setup. Especially for those patients with lack 

of support for AT use, for example if a patient is living in a long-term care 

residence, the head mounted switch is a valid, feasible and efficient input device to 

use communication tools.   
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Figure 14 – A patient with severe dysfunction of upper limbs (ALSFRS-R-ul=0) using a head 

activated switch to control a keyboard based on the scanning method. 

 

A headMouse is an input device that tracks head movements. Most 

common systems use a camera with an infrared transmitter, placed below or 

above the computer screen. Users wear a small and discrete infrared reflector (like 

a small dot) that is placed on the forehead, glasses or hat (Figure 15). As user 

moves their head, the camera tracks head’s movements and translates them to 

pointing (mouse) control. Selections (mouse clicks) are performed either by a 

dwell time or by an external switch, as similar to eye-gaze input devices. Other 

approaches for headmouse use computer vision methods to visually track body 

features from real-time video. Eye, nose, lip, chin, thumb or dark light tracking 

were suggested by Betke et al. (2002) as body segments that can be used for 

tracking head movements to voluntary control a pointing input device.   

 

 

Figure 15 – (up) A man with ALS (who cannot move his upper limbs to control a computer mouse or 
to type) using an input device based on head movements. (down) Picture of the computer screen showing a 

virtual keyboard that this patient can use by head movements. 
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Despite the high sensitivity of head tracking, the necessary range of neck 

motion and the potential fatigue may reduce performance, when comparing to eye 

tracking systems. Bates and Istance (2003) found, in an experiment with healthy 

participants, that headmouse had shorter learning times and required lower 

workload with higher comfort to low experienced users, when compared to eye 

tracking pointing devices. Though, uncertainty in time of use due to the disease 

progression is the reason for preference of eye-tracking systems for ALS patients. 

Despite the lack of studies on the effectiveness of headmouse devices in ALS, 

these input devices are mentioned in various sources in Internet related to ALS, as 

ALS Associations websites or reports of patients’ testimonials (for example in Wolf 

(2007), a patient testimonial refers: “because of its flexibility and the excellent 

support (…), the HeadMouse served me well for about three and a half years”. Ball 

et al. (2010) refer to the example of an ALS patient who progressively did 

transition from head mouse to eye tracking due to extensive fatigue when using 

head movements. 

2.3.2.3 Brain activity 
A BCI is an input device that is controlled solely by brain activity. In last two 

decades, there was a rapid growth in BCI research, motivated by the hope that 

this technology can be a new communication channel for those who are severely 

disabled and cannot rely on muscle control for communication. Brain signals are 

recorded by BCI and transmitted as a control signal to an ACD, to external 

prosthetic devices or even directly to muscles (Figure 16). 

Invasive BCIs use brain signals that are recorded from inside the body 

including: (1) action potentials from nerve cells or nerve fibers (2) synaptic and 

extracellular field potentials, and (3) electrocorticograms. Noninvasive BCIs are 

those that record brain signal with sensors placed out of the body. The brain 

signals recorded by this type of BCI are: (1) slow cortical potentials (SCP) of the 

EEG, (2) EEG and MEG oscillations, mainly sensorimotor rhythm (SMR), also 

called mu-rhythm, (3) P300 and other event-related brain potentials, (4) BOLD 

response in functional magnetic resonance imaging, or (5) near-infrared 

spectroscopy (NIRS) measuring cortical blood flow (Birbaumer, 2006; Marchetti & 

Priftis, 2015). 
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   Figure 16 - Brain computer interface (McFarland & Wolpaw 2011, p.62). 

 

Mainly those ALS patients who opt for artificial respiration may reach a 

state of locked-in state, with sparse (or any) voluntary muscle control. Visual P300 

and SMR are the brain signals that showed better results in ALS (Birbaumer, 

2006), but the first is the most mentioned in studies related to use of BCI by ALS 

patients. When patients have vision problems, auditory stimuli are an alternative to 

visual stimuli in P300-BCI (Nijboer et al., 2010).  

Despite the promising results of this technology and the effort in developing 

simple and reduced cost devices and other applications than spelling (Holz et al., 

2013; Schreuder et al., 2011; Bai et al., 2010; Münßinger et al., 2010; Mugler et 

al., 2010), some drawbacks persist. Training periods are long, professionals need 

to give continuous support due to its complex setup; signal-noise ratios are low; 

several electrode and skin problems occur due to long recording times; spelling 

speed is slow; choice of communication tools that can respond to individual needs 
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of BCI users is reduced; and ultimately, it demands high effort from the user, who 

must be very focused during spelling and spend many hours in training until they 

reach a reasonable success rate (Blain-Moraes et al., 2012; Sellers et al., 2010; 

Birbaumer, 2006).  

Invasive BCI are attractive because using subdural implanted electrodes, 

signal to noise ratio is higher and success rate may improve significantly. 

Nevertheless, experiments with ALS patients or other in locked-in states (LIS) 

have been scarce and not successful, in part due to lack of persons in such 

conditions who agree to go through surgical implants. Wilhelm et al. (2006) report 

that 16 in 17 ALS patients in late stages (using invasive ventilation) rejected to 

implant macroelectrodes, even after being informed on the advantages of invasive 

BCI. Those patients preferred to use a slower input device for communication than 

going through surgical implantation. Furthermore, it is still not clear the influence of 

the disease and its progressive conditions in BCIs performance, when comparing 

patients with ALS in late stages to LIS due to other neurological conditions. Slow 

and inconsistent responses from ALS patients in late stages observed in invasive 

BCI may be caused by deterioration of cognitive functions or other disease 

constraints, as episodes of anoxia (Sellers et al., 2010; Birbaumer, 2006).  

Combination of non invasive BCI with other input technologies, as eye 

tracking, headmouse or switch input devices, in multimodal or combined 

approaches have been reported as methods to reduce error rate, improve user 

performance and increase user acceptance as ALS disease progresses (Gürkök & 

Nijholt, 2012; Cincotti et al., 2008; Zander et al., 2010).  

2.3.2.4 Other input signals 
Mouth and tongue movements. Mouth-controlled text input devices (Cheng-

Hong et al., 2003; Wu et al., 2010) and tongue-operated computer input devices 

(Huo et al., 2008; Yousefi et al., 2011) were proposed to the severely impaired. In 

spite that patients with ALS are referred as eligible candidates for these 

technologies, we found no reports on experiments with these patients.  

Electromyography and other biosignals. Input devices based on 

electromyography have been proposed by several authors, for interaction with 

computer. These methods are attractive because sensors can be placed in any 

part of the body where minor muscle activity exists. Also, the effort to generate 
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voluntary EMG signal is lower than for pressing a mechanical switch. These have 

also been proposed as input signals for rapid selection (like a mouse click) in eye-

tracking pointing devices (Surakka et al., 2004; Chin et al., 2008). As main 

problems of the EMG-based input devices are the noise from involuntary muscle 

activity that may generate false commands, difficulties related to sensors fixation 

or complex setup procedures (Pinheiro et al., 2011). In ALS, muscles in upper 

limbs and face may be good candidates for EMG control, despite lack of research 

studies on electrodes position for EMG control in ALS. Nöjd et al. (2008) 

presented a study on optimal position of electrodes for facial EMG and EOG, 

although results were performed with healthy subjects. As ALS is a neuromuscular 

disease, EMG control must be assessed for each patient, since there may be no 

general conclusions on optimal body region to place the electrodes. Moreover, it is 

expected that neurodegeneration process will lead to the need to change body 

region to place the electrodes. Concerning other input biosignals, Moore & Dua 

(2003) report the development of an input device based on the Galvanic Skin 

Response. This input device was tested in one patient with ALS. Mariano et al. 

(2014) developed an input device based on accelerometry to detect residual 

movements in severely disabled patients, though experiments were undertaken 

with healthy subjects.  

2.4 Impact of cognitive impairment on the use of ACD    
Until recently, ALS patients were elected as ideal candidates for assistive 

communication because it was thought that patients had no cognitive deficits. 

Despite that cognitive functional decline has been identified in the last two 

decades, its influence in AAC acceptance is still not clearly understood.  

Some studies identify difficulties in the use of AAC possibly related to 

cognitive impairment. Ball et al. (2004) considered that primary reason for AAC 

rejection was early FTD symptoms, as observed in 2 (out of 50) participants in 

their study. Rejection was associated to spinal onset and rejection was not just in 

technological solutions but in any kind of communication support. These authors 

pointed-out resistance to change, inflexibility of thought and rigid personality trait, 

reported by Lomen-Hoerth et al. (2003) and Strong et al. (2009), as the main 

limitations for AAC acceptance. In another study, Cipresso et al. (2012) concluded 

that poor concentration, distractibility, and short-term memory difficulties, should 
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be taken into account, in order to adequately plan and realize AAC sessions to 

ALS patients for the use of P300-BCI technology. 

However, other studies report that cognitive deficits in ALS seem to have a 

negligible effect in the use of technological devices for communication. Beukelman 

et al. (2011) prospectively analyzed a database of 87 patients supported in the 

same hospital. Multidisciplinary clinical screen revealed 18.4% and 4.6% patients 

with mild cognitive impairment and FTD, respectively; 77% did not reveal cognitive 

impairment. According to the authors, just 2 patients with mild cognitive 

impairment and 2 patients with FTD were not successful in the use of AAC. The 

same authors report that, while their ALS clinical team manifested concern on 

patients’ cognition when referring to communication support, this seem to have not 

affected those patients’ acceptance and successful use of AD to meet their 

communication needs.  

 Brownlee & Bruening (2012) pointed-out to the fact that executive function 

interferes with decision-making – a resource need when selecting the AAC device 

or in the learning/training process for using the device or for deciding new access 

strategy. However, in accordance to results in the study of Beukelman et al. 

(2011), it is critical to distinguish between cognitive impairment scores resulting 

from neuropsychological standardized assessment and functional cognitive skills 

in daily living. Each individual with ALS reacts to the loss of communication in a 

unique way and may change over time, depending on many personal, physical or 

social factors. A close support to the patients in their decisions and in anticipating 

their relevant impairments is essential.   
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Chapter 3  - Rationale, objectives and 
methods 

3.1 Rationale 
Recent mass marketing of tablet and smartphone devices, as well as 

advances in novel input technologies (such as touchscreens, eye tracking devices 

or BCI) observed in the last decade, represent a new generation of ACD with 

enormous potential impact in support of patients with ALS and other neurological 

conditions (McNaughton et al., 2013; Fager et al., 2012b; Beukelman et al., 2011). 

These ACDs provide not just an alternative to speech, but also communication 

tools connected to a new generation of Internet services that may remotely 

support patients in health and social care (Shane et al., 2012; van den Broek et 

al., 2009). As reported by INTEL (2008), “technologies that can improve and 

enhance [patients’ and caregivers’] social connectedness will be at an advantage”. 

For example, using the internet for online assessment of ALSFRS-R, as 

suggested by Maier et al. (2012), or using the computer for supporting advanced 

care planning, as suggested by Hossler et al. (2011), are examples of the potential 

benefits of modern ACD as tools to access to clinical support. Further, as the 

benefits of home telemonitoring of non-invasive ventilation have been 

demonstrated for ALS (A. Pinto et al., 2010), ACD could potentially augment these 

benefits by allowing remote communication between health professionals and the 

patient, along the whole course of the disease.  

Despite the technological advances, several main difficulties related to the 

support for ACD in ALS persist: (1) the lack of clinical outcomes that could confirm 

the expected positive impact related to the use of these technologies; (2) the lack 

of clinical assessment tools to evaluate the progression of patients’ functional 

impairment that specifically affects the use of ACD; (3) late referral (when patients 

are severely disabled and extremely dependent on others’ decisions); and (4) a 

limited perspective on ACD, often solely considered as an alternative to speech.   

Communication is a concern in recent clinical guidelines for ALS 

management (Miller et al., 2013; Andersen et al., 2012), though lack of clinical 

evidence on the benefits of ACD for ALS patients may hinder its general use and 

funding. Two recent prospective studies indicated a positive impact of ACD in the 
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QoL of ALS patients. Körner et al. (2012) studied the impact of ACD on the mood 

and quality of life of a group of ALS patients who used ACD, compared with a 

group of patients who did not use ACD. Caligari et al. (2013) studied the impact of 

using ACD based on eyetracking interaction on the QoL of a group of ALS 

patients. However, there is limited evidence documenting how the use of ACD 

from the early stages of disease progression affects QoL of patients and their 

caregivers. 

As speech dysfunction increases, ALS patients move from speech to 

written communication (Murphy, 2004a). While speech has been extensively 

studied in ALS, in particular concerning characteristics and progression of 

dysarthria, written communication, in terms of function of UL movements, is not 

well characterized. Ball et al. (2001) indicated speech rate as a predictor of 

deterioration of speech intelligibility in ALS. However, taking into consideration that 

most of the ALS patients will have difficulties in using UL for handwriting or 

accessing to mainstream devices to write (e.g. a smartphone), further research on 

how long can a patient rely on UL movements for communicating is needed.  

Most of the studies related to the use of ACD rely on groups of patients that 

are already severely disabled. One example is the high enthusiasm from the 

research community for BCI specifically oriented for ALS patients. In fact, late 

referral is a common practice, since patients, caregivers and health professionals 

tend to postpone decisions on the use of ACD until no other alternatives are 

possible. Nevertheless, late referral has been studied as a difficulty for successful 

use of ACD by ALS patients (Beukelman et al., 2011; Brownlee & Bruening, 2012).  

Light & McNaughton (2014) refer to motivation and confidence as general 

psychosocial factors involved in the competence to using ACD. These factors may 

be affected in late stages of ALS (Nijboer et al., 2010), in particular when input 

devices are difficult to set up or need a significant time to learn. Further studies on 

the impact early support in the use of ACD are necessary to improve patients’ 

communication during the whole course of disease progression.  

3.2 Objectives 
The overall purpose of this PhD thesis is threefold: (1) to investigate the 

impact of ACD on QoL of early-affected patients with bulbar-onset ALS and on 

their caregivers; (2) to test the hypothesis that ACD can support tools for remote 
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functional monitoring; and (3) to identify novel methods to assess quantitatively the 

functional performance of patients in communication, in different stages of ALS. 
 

 Our contribution is expected to: 

 i) Reveal scientific evidence that early support with ACDs has a positive 

impact on the QoL of ALS patients and their caregivers, even in a population with 

poor experience with the use of computer devices; 

 ii) Identify novel methodologies to monitor UL function, related with the use 

of ACD.  

iii) Broaden the classical perspective of ACD as technologies with the single 

purpose of improving communication, by demonstrating its potential application as 

in-home clinical remote monitoring tool.  

 iv) Show how to explore the potential of input biosignals generated by 

residual muscular movements in the body, to enhance communication in very 

affected ALS patients.  

v) Contribute with methodologies for the development of new input devices, 

based on the concept that ACD should be changed over disease progression, 

taking into account the necessary flexible adaptation to the patient and caregivers 

conditions.  

3.3 Organization of the research 
The research work is organized in three chapters: chapter 4 - Quality of life 

in ALS patients and caregivers: impact of assistive communication; chapter 5 - 

Monitoring disease progression with assistive communication devices: speech and 

typing activity and chapter 6 - Communication during stages of severe dysfunction: 

development of a new input device to assess novel input signals. 

3.4 Methods 
Most research was based on longitudinal data collected from a 

homogeneous population of 30 early-affected bulbar-onset ALS patients followed 

at the ALS outpatient consultation of the Department of Neurosciences  (Hospital 

de Santa Maria-Centro Hospitalar Lisboa Norte), over a period of 29 months. As 

there were no previous studies including our outcomes, we could not calculate the 

number of patients required to attain the expected results. We estimated that 

recruitment of 30 patients would be appropriate to our goals.  
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Patients with bulbar-onset symptoms were selected for the following 

reasons: (a) they present early speech dysfunction; (b) this group is understudied 

(concerning the use of ACDs);  (c) they represent 25-30% of total number of ALS 

patients, in general with a faster progression rate. 

All data presented in this dissertation was collected in clinical environment, 

both by myself and by medical doctors in Neurology and Rehabilitation, co-authors 

in the main publications supporting this thesis.  

Quality of life, methodologies for assessment of communication 

performance and markers of disease progression were the main clinical outcomes 

in this research. Other outcomes related to behavioral dysfunction in the use of 

technology, assessment tools and new input devices are of interest for the 

engineering field, where new technological instruments should be developed. 
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Chapter 4  - Quality of life in ALS 
patients and caregivers: impact of 
assistive communication  

4.1 Introduction 
Recent recommendations for clinical management in ALS indicate that 

patients’ autonomy and ability to communicate should be promoted (Miller et al., 

2013; Andersen et al., 2012). Accordingly, communication has been rated by ALS 

patients as one of the most important domains for their own independence (Gruis 

et al., 2011).  

Severe dysarthria has great impact on the QoL of ALS patients, since most 

patients become unable to communicate through speech at some stage of the 

disease, in spite of speech therapy interventions (Tomik et al., 1999; Körner et al., 

2012).  

In bulbar-onset patients, early deterioration of speech intelligibility (Ball et 

al., 2001) leads to rapid replacing of speech by handwriting (often a pen and a 

notepad for peer-to-peer communication), until UL muscle weakness demands 

new strategies for communication (Brownlee & Bruening, 2012; Bloch & Clarke, 

2013). In any case, as the disease progresses, most patients must replace speech 

by communication based on text input (handwriting, use of computer or paper-

based letter board). 

Modern tablet devices used as tablet-based assistive communication 

devices, with touchscreen input, can allow bulbar-onset patients to maintain 

autonomy in communication, through simple applications with speech 

synthesizers. Nevertheless, its use is strongly dependent on the decision and 

expectations of patients, their caregivers and health professionals. As long as 

residual capacity for communicating through speech or handwriting is present, the 

use of communication devices may not be considered. When communication 

alternatives lack (severe dysarthria associated with severe UL dysfunction), 

technologically more advanced methods have to be explored. Timely referral and 

economic burden remain critical issues in decision-making for communication 

support in ALS. Besides, late referral is one of the main causes for low 

acceptance; indeed, the adaptation of patients with marked generalized weakness 
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to new strategies (e.g. eye-tracking or even brain-computer interfaces) can be a 

difficult process, especially when there is lack of experience or support for 

continuous training in the use of these ACD (Brownlee & Bruening, 2012; 

Beukelman et al., 2011).  

Particularly, when patients’ disability is severe, the use of ACD relies on the 

caregivers’ support for daily setup and maintenance. For this reason caregivers’ 

needs, skills and expectations must be considered as important factors in clinical 

intervention with ACD (Beukelman et al., 2011; Murphy, 2004b). Difficulty to 

understand patients’ needs and feelings is the chief caregivers’ motivation for 

supporting intervention with ACD (Fried-Oken et al., 2006). Furthermore, patient´s 

autonomy regarding communication has been reported as an essential family 

caregiver need that may influence their own quality of life (Williams et al., 2008).  

The main outcome of the present study is to explore, longitudinally, the 

impact of the introduction of tablet-based ACDs on the quality of life of early-stage 

bulbar-onset ALS patients and their caregivers. Secondary outcomes are self-

perceived communication and performance of writing (handwriting and typing) in 

order to monitor UL function regarding their use in ACD based on touchscreen 

input.  

4.2 Materials and Methods 

4.2.1 Patients 

ALS patients were included with the following inclusion criteria: probable or 

definite disease according to the revised El Escorial criteria (Brooks et al., 2000); 

bulbar-onset, as defined by initial symptoms of dysarthria and/or dysphagia; bulbar 

score of dysarthria of 3 or 2 (mild or moderate impairment) as given by the first 

question of the ALSFRS-R; informed consent. Patients with other medical 

conditions, respiratory symptoms or clinical evidence of dementia were excluded. 

Main caregiver was identified by the patient as the person providing daily support 

and accompanying them in the clinical visits (frequently the husband/wife or a 

sibling). The caregiver did not change over the duration of this study.  

The research was approved by joint Ethics committee Centro Hospitalar 

Lisboa Norte-Faculdade de Medicina de Lisboa and patients and caregivers gave 

written informed consent. 
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4.2.2 Procedure 

Patients were assessed three times: at entry (T0); 3-4 months later (T1); 7-

10 months after entry (T2). Caregivers were assessed 2 times, at T0 and T2. 

Assessments were made at our clinic, exceptionally at the patient’s home. At each 

visit, patient and caregiver were interviewed separately. The duration of the 

complete assessment was 30 minutes, approximately. At T0 patients were also 

randomized in 2 groups according to the intervention time (Group 1, G1 - Early 

intervention, patients received a ACD just after baseline assessment; Group 2, G2 

- late intervention, patients were followed and received communication devices 

according to the conventional approach in our centre (referral when dysarthria 

score is 0 or 1 on the ALSFRS-R, meaning anarthria or severe dysarthria). ACD 

consisted in a small and light touchscreen-tablet device (approximately 

200x130mm), commercially available in the market.  We used a software based on 

a simple onscreen keyboard for text-to-speech communication with text prediction 

(Figure 17). This software was commercially developed for the specific purpose of 

text-to-speech communication and is available to download from the internet; for 

our choice, an important feature was that this software included the possibility to 

be used with different access strategies, alternative to touchscreen. Patients and 

caregivers were trained and supported, during local clinical appointments, for 

using this ACD. Those patients who had internet connection at home were 

instructed to use email communication through the ACD. Email communication 

was tested and stimulated by sending emails (demanding reply) periodically, 

during the period of this study.  

 

  
Figure 17 – A participant of this study using an assistive communication device: writing on a 

touchscreen-accessed keyboard with speech synthesis. 

Patients underwent the following questionnaires: McGill Quality of Life 

questionnaire (MQoL), ALSFRS-R and modified Communication Effectiveness 
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Index (CETI-m). Caregivers completed the questionnaires MQoL and World Health 

Organization quality of life-BREF (WHOQoL-bref), related to their own QoL. All 

these tests have been used in ALS, as well as they have been translated and 

validated in Portuguese. 

Both patients and caregivers answered to a self-designed questionnaire, 

rated on a 0 to 5 Likert-type scale, to assess to previous experience with computer 

devices (Table 1).   

4.2.3 Quality of Life  

4.2.3.1 McGill Quality of Life questionnaire 
The MQoL (Cohen et al., 1995) consists in a questionnaire with 16 items, 

each rated on a Likert-type scale from 0 to 10. Questions include two health-

related domains (Physical symptoms and MQoL-Phys: Physical well-being), three 

non-health related domains (MQoL-Psych: Psychological symptoms, MQoL-Exist: 

Existential well-being and MQoL-Support: Support (related to the feeling of being 

cared), a single-index score (MQoL-SIS) and a descriptive section (MQoL-part D), 

where the inquired can list what had greatest impact (positive or negative) on their 

QoL in the past two days. This instrument has a total score (MQoL-tot) and 

subscores for each domain, range 1 to 10 (higher scores indicate greater QoL). It 

is sensitive to psychological, supportive and spiritual factors, more than to health 

related QoL measures (Epton et al., 2009). MQoL has been used in various 

studies related to QoL of ALS patients (Gauthier et al., 2007; Chiò et al., 2004; 

Robbins et al., 2001). 

4.2.3.2 World Health Organization quality of life-BREF (WHOQOL-BREF) 
WHOQOL-BREF (Skevington et al., 2004; WHOQOL Group, 1998) is a 26-

item questionnaire for measuring QoL in four domains: (1) physical health and 

well-being; (2) psychological health and well-being; (3) social relations; (4) 

environment (related to financial resources, health and social services, home and 

physical environment, among others). Items are rated on a 1 to 5 Likert-type scale 

and scores are calculated for a 100 points scale (greater scores correspond to 

better QoL). Ratings range from 1 (very poor) to 5 (very good). This questionnaire 

has been extensively used to investigate QoL of patients and caregivers in 
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different chronic diseases, including ALS (Baumann et al., 2012; Lo Coco et al., 

2005). 

4.2.4 Functional Measurements  

ALSFRS-R was applied at each visit. It is an instrument used for monitoring 

progression of functional disability of patients with ALS (Cedarbaum et al., 1999). 

Each question in ALSFRS-R (total of 12 questions) is rated from 4 (normal 

function) to 0, according to progressive functional impairment. We registered the 

total score (ALSFRS-R), which is rated from 48 (normal) to 0, and two subscores: 

bulbar function (ALSFRS-R-b) (Pinto et al., 2009)  and upper limb function 

(ALSFRS-R-ul) (Kollewe et al., 2011). Subscores are rated from 12 to 0 and were 

calculated by summing the first three questions and the fourth to sixth questions of 

ALSFRS-R, respectively. ALSFRS-R-b rates speech, salivation and swallowing 

functions; ALSFRS-R-ul rates UL function related to handwriting, handling utensils 

in daily activities and dressing.  

The modified Communication Effectiveness Index (CETI-m) (L. Ball et al., 

2004b) is an adaptation from the original CETI designed for persons with aphasia. 

It is a valid measure of functional communication and is sensitive to changes in 

performance over time (Lomas et al., 1989). The CETI-m rates self-perceived 

limitation of a person when communicating; it consists of 10 questions related to 

communication in different contextual situations rated on a visual Likert-type scale. 

Total score is given by the sum of the individual scores, presented on a 100-point 

scale, representing the minimum (0) to maximum (100) communication 

effectiveness.   

4.2.5 Performance measures  

To monitor performance of UL in written communication, at each evaluation 

session, patients were asked to write, sequentially, three different sentences with 

two different modalities: handwriting and using a keyboard (Figure 18). Both 

performance of handwriting and typing on a keyboard were calculated as the 

mean rate of the writing tasks, measured as words per minute (wpm).  
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Figure 18 - Assessment of performance in handwriting (left); assessment of performance in typing 

(right).  

4.2.6 Statistical Analysis 

Primary outcomes were scores from MQoL (single index item, total score, 

physical, psychological health, existential well-being and support) and WHOQoL 

scores (four domains: physical health and well-being; psychological health and 

well-being; social relations and environment). Secondary outcomes were 

ALSFRS-R total, ALSFRS-R-b, ALSFRS-R-ul, CETI-m, typing rate and 

handwriting rate. 

Descriptive statistics was used to characterize participants and results of 

the self-designed questionnaire. Pearson and Spearman correlation coefficients 

were used to examine associations among different variables, for normal and non-

normal data distribution, respectively. Changes in outcome variables, between T0 

to T2, were analyzed by paired sample T-test and Wilcoxon Signed Rank test. T-

Test and Mann Whitney U for independent samples were used to test differences 

between the two different groups (G1 vs G2). A p-value of <0.05 was considered 

for statistical significance. For each of the statistical analysis, we used Bonferroni 

adjustment of the p value for multiple comparisons. However, taking into account 

the exploratory profile of this study, we considered p<0.05 without correction for 

multiple comparisons as a trend that was worth reporting. 

4.3 Results 
Twenty-seven ALS patients with a mean age of 64.8 (SD=10.2; range: 39 to 

83) were included. From these, one declined immediately after baseline 

assessment and 5 were evaluated only twice due to rapid disease progression 

(Figure 19).  Only 17 caregivers were interviewed (4 patients came to clinical visits 

alone or with different persons; 6 caregivers declined to fill-in the questionnaires). 
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Most of patients were women (81.5%), the previous experience in the use of 

computers, rated by patients from 0 to 5, was, generally, low (median: 2). Low 

school education and poor previous experience with technology of most of the 

participants is in agreement with the demographic characteristics of the 

Portuguese population within this age group. Table 2 describes demographic data 

of participants.  

 

 

Figure 19 - Flowchart of the recruitment process. N, number of patients; Nc, number of caregivers.  

 

Patients in G1 started to use the ACD after baseline assessment (Figure 

17). There was no record of spontaneous use of assistive communication devices 

in patients randomized to G2. Table 3 presents mean scores of the outcome 

variables of this study, for each time of assessment.  

We analysed each domain of QoL questionnaires and compared scores 

between different assessments and groups of patients and caregivers. No 

significant result was found when considering the adjusted p-value for multiple 

comparisons (Table 3 and Table 4). However, we observed a trend in favor of the 

influence of ACD on the QoL.  
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Table 1. Questionnaires and tests applied and respective ranges. 

Test/questionnaire Range Time 

ALSFRS-R 0 (max disability) to 48 (normal) T0,T1,T2 

ALSFRS-R-b  0 (max disability) to 12 (no bulbar symptoms) T0,T1,T2 

ALSFRS-R-ul  0 (max disability) to 12 (no upper limitations) T0,T1,T2 

WHOQoL-BREF 0 (poorest QoL) to 100 (max QoL) T0,T2 

MQoL 
MQoL-sis (single item score) 

0 (lowest QoL) to 10 (highest QoL) 
0 (very bad) to 10 (excellent) 

T0,T1,T2 

Communication Effectiveness Index 
(CETI-m) 

0 (no communication) to 100 (normal) T0,T1,T2 

Performance in typing 
Performance in handwriting  

words per minute (wpm)  T0,T1,T2 

Self designed questionnaire for patients 
and caregivers: 
How much are you familiar to computer 
devices? 

 
0 (I never used a computer) to  
5 (I am an expert) 

 
T0 

 

4.3.1 Quality of Life  

4.3.1.1 Patients  
Mean values calculated for all patients (through MQoL) showed a decrease 

in total, physical and existential domains of quality of life (p<0.05), as described in 

Table 3. Single-index score, psychological symptoms and support domains did not 

change with time (p>0.05). In descriptive parts of MQoL (physical symptoms and 

part D), twenty three patients (88.5%) referred, in one or more assessments, to 

speech problems or difficulty to be understood by others, as negative factors in 

QoL; two patients in G1 referred to communication device as having a positive 

impact in QoL. 
 

Table 2. Characteristics of all participants at baseline (T0): patients and caregivers. 

 Patients Caregivers 

Total (N) 
Gender (f/m) 
Mean age (standard deviation)(range) 
Education 
- Primary school 
- Elementary/High school 
- University  
Relation of caregiver 
- Husband/wife 
- Sibling 
Previous computer experience  
(Level 0 to 5) median(mode) 
Internet access at home 

27 
22/5 
64.8±10.2 (39-83) 
 
12 (44.4%) 
10 (37%) 
  5 (18.5%) 
 
- 
- 
 
2(0) (range: 0-4) 
12 (44%) 

17 
6/11 
57.52±13.9 (26-81) 
 
5 (22.7%) 
6 (27.3%) 
6 (27.3%) 
 
10 
7 
 
3(4) (range: 0-5) 
- 
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Table 4 shows comparison between scores obtained for patients in G1 and 

those in G2, in the three periods of evaluation. Patients with early intervention with 

ACD had higher MQoL scores than the other patients, in particular for existential 

well-being domain at T1 (p=0.045), and psychological symptoms domain, both at 

T1 (p=0.047) and T2 (p=0.032) – when considering p-values without correction for 

multiple comparisons.  
Table 3. Mean values of dependent variables tested in this study, for the whole population of patients 
considering the time of assessment (T0, T1, T2) as the independent variable.  Statistical significance was 
calculated for adjusted p-value for multiple comparisons (Bonferroni method). However, p-values <0.05 
without correction for multiple comparisons were accepted as a trend.   

  T0   T1   T2     

  Mean SD MEAN SD MEAN SD p (T0,T2) 

ALSFRS-R  27.18 8.54 22.15 8.96 15.50 7.88 <0.001*† ‡  

ALSFRS-R-b 6.32 2.71 4.75 2.47 2.75 2.05 <0.001*‡ 

ALSFRS-R-ul 9.45 3.04 8.25 4 6.44 4.34 0.002* † ‡ 

Handwriting rate 16.2 6.6 14.1 9.8 10.7 9.8 0.002* ‡ 

Typing rate 9.2 5.2 8.5 5.4 6.7 4.9 0.317 

CETI-m 67.17 28.6 45.50 23.65 39.53 20.9 <0.001 ‡ 

MQoL-tot (patient) 6.64 1.18 6.32 1.12 5.75 0.95 0.010 ‡ 

MQoL-SIS (patient) 6.04 1.69 5.64 1.75 5.10 1.84 0.054 † 

MQoL-Phys (patient) 5.50 2.10 4.92 1.82 4.42 1.5 0.027 ‡ 

MQoL-Psych (patient) 5.06 1.96 4.91 2.02 4.35 1.57 0.141 

MQoL-Exist (patient) 7.15 1.76 7.03 1.41 6.12 1.62 0.025 ‡ 

MQoL-Sup (patient) 8.46 1.78 8.52 1.91 8.63 1.05 0.710 † 

MQoL-tot (caregiver) 5.64 1.48 NA NA 5.21 1.56 0.177 

MQoL-SIS (caregiver) 5.13 1.51 NA NA 3.73 2.12 0.030 ‡ 

MQoL-Phy (caregiver) 5.5 2.37 NA NA 5.21 2.36 0.675 

MQoL-Psych (caregiver) 4.76 2.12 NA NA 4.15 2.24 0.398 

MQoL-Exist (caregiver) 6.42 1.03 NA NA 6.16 1.67 0.624 

MQoL-Sup (caregiver) 5.92 1.81 NA NA 5.42 2.23 0.428 

WHO-phys (caregiver) 65.85 15.92 NA NA 49.74 19.59 0.009* ‡ 

WHO-psych (caregiver) 63.28 18.89 NA NA 54.72 18.89 0.038 ‡ 

WHO-social (caregiver) 60.42 23.86 NA NA 60.12 17.04 0.749 

WHO-envir (caregiver) 63.09 10.35 NA NA 48.75 13.3 0.003* ‡ 
 
* indicates statistical significance for adjusted p-value (Bonferroni method), paired-t test 
† indicates statistical significance for adjusted p-value (Bonferroni method), calculated for comparison 
between T0 and T2, by Wilcoxon Signed Rank Test;  
‡ indicates p<0.05, without correction for multiple comparisons (trend) 
NA = not applicable 
 

4.3.1.2 Caregivers 
Mean scores of caregivers’ quality of life (MQoL) (Table 3) decreased from 

T0 to T2, though just the single-index score (MQoL-SIS) attained a difference with 
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p<0.05. Mean scores of WHOQoL-bref showed a decrease (p<0.05) in all 

domains, from T0 to T2, except for Social Relations domain (p=0.749). In 

descriptive item of MQoL (part D), eight (47%) caregivers referred to patient´s 

speech problems as having a negative impact in their own quality of life; 5 out of 

11 (46%) caregivers of patients in G1 considered ACD as having a positive impact 

in their quality of life. 

 
Table 4. Mean values of dependent variables tested in the three evaluation periods (t0, t1, t2), comparing 
results between G1 and G2. There were no statistical significant differences between the two groups, 
considering adjusted p-value for multiple comparisons (Bonferroni method). Statistical comparisons with p-
value less than 0.05 are indicated in the table as significant. 

 T0     T1     T2     

 G1  G2  p G1  G2  p G1  G2  p 

 MEAN SD MEAN SD  MEAN SD MEAN SD  MEAN SD MEAN SD  

ALSFRS-T 25.86 9.30 29.50 6.99 0.207† 21.23 7.81 23.86 11.26 0.201 15.17 7.00 16.50 11.36 0.136 

ALSFRS-B 5.57 2.24 7.63 3.11 0.070 4.31 2.04 6.14 2.73 0.088 3.00 2.22 3.83 3.06 0.516 

ALSFRS-R-ul 9.21 3.47 9.88 2.23 0.192† 8.15 3.48 8.43 5.13 0.715 † 6.25 4.22 7.00 5.29 0.776 

Handwriting rate 16.67 6.86 13.4 2.96 0.326 14.28 9.53 8.51 8.06 0.831 11.8 9.97 10 8.96 0.778 

Typing rate 9.05 5.50 9.46 5.10 0.716† 8.34 4.68 8.80 7.10 0.337 7.99 5.02 7.09 6.53 0.761 

CETI-m 64.67 27.26 71.33 31.92 0.592 44.53 20.63 47.11 29.31 0.570 48.83 16.24 17.20 11.80 0.027‡ 
MQoL-tot  
(patient) 6.82 1.10 6.37 1.42 0.382 6.69 1.04 5.76 1.17 0.063 5.97 0.93 5.07 0.97 0.205 

MQoL-SIS  
(patient) 5.73 1.62 6.44 1.81 0.329† 6.00 1.84 5.00 1.73 0.255 5.00 1.81 5.40 2.70 0.792 

MQoL-Phys 
(patient) 5.45 2.16 5.53 2.13 0.927 5.00 1.92 4.82 1.78 0.811 4.50 1.51 3.80 1.30 0.774 

MQoL-Psych 
(patient) 5.34 2.21 4.68 1.57 0.405 5.61 2.20 4.01 1.39 0.047‡ 4.93 1.59 3.18 1.10 0.032‡ 

MQoL-Exist 
(patient) 7.25 1.60 7.00 2.03 0.728 7.52 1.37 6.40 1.24 0.045‡ 6.53 1.65 5.02 1.15 0.155 

MQoL-Sup (patient) 8.77 1.62 8.05 1.98 0.318 8.79 1.67 8.18 2.21 0.456† 8.54 1.10 8.80 1.15 0.639 

MQoL-tot 
(caregiver) 5.39 1.38 5.97 1.37 0.423 NA NA NA NA NA 5.10 1.57 5.37 1.68 0.766 

MQoL-SIS 
(caregiver) 5.00 1.48 5.33 1.37 0.650† NA NA NA NA NA 3.56 2.13 4.00 2.28 0.706 

MQoL-Phy 
(caregiver) 4.73 2.24 6.67 2.25 0.109 NA NA NA NA NA 4.00 1.93 6.83 1.94 0.019‡ 

MQoL-Psych 
(caregiver) 5.05 2.41 3.65 1.38 0.212 NA NA NA NA NA 4.23 2.09 4.05 2.62 0.892 

MQoL-Exist 
(caregiver) 6.05 0.84 6.80 1.17 0.148 NA NA NA NA NA 6.23 1.71 6.07 1.77 0.869 

MQoL-Sup 
(caregiver) 6.30 1.44 4.42 1.83 0.633 NA NA NA NA NA 6.71 1.41 3.92 2.13 0.016‡ 

WHO-phys 
(caregiver) 68.57 17.56 61.31 12.86 0.396 NA NA NA NA NA 44.44 16.76 59.28 22.53 0.184 

WHO-psych 
(caregiver) 62.08 19.09 65.28 20.18 0.756 NA NA NA NA NA 50.46 17.73 61.11 20.36 0.392 

WHO-social 
(caregiver) 60.00 26.87 61.11 20.18 0.932 NA NA NA NA NA 58.33 15.02 63.33 21.73 0.530† 

WHO-envir 
(caregiver) 63.13 10.91 63.02 10.35 0.662† NA NA NA NA NA 48.27 8.72 49.48 19.31 0.870 

† corrected p-value < 0.05,  by Mann-Whitney U Test and by t-test for independent samples 
‡ indicates p<0.05, without correction for multiple comparisons (trend) 
NA = not applicable 
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Comparing results from caregivers of patients in G1 vs G2, no statistically 

significant difference was found for the corrected p-values. However, considering 

the uncorrected p-value < 0.05 as a trend, we identified a higher quality of life in 

G1, for the following domains: physical well-being (p=0.019) and support 

(p=0.016) (Table 4). No differences between the two groups (p>0.05) were found 

in any of the WHOQoL-bref domains (Table 4).  

Caregivers’ MQoL scores and patients’ MQoL scores were not correlated in 

any of the periods (p>0.05). 

4.3.2 Functional Measurements 

As expected, evaluation of bulbar function (ALSFRS-R-b score) decreased 

significantly over time (Table 3); decline was linear as showed no difference in the 

percentage of change between T0-T1 and T1-T2. We found no significant 

difference between the two groups of patients, regarding bulbar score decline 

(Table 4). The higher the bulbar impairment (lower ALSFRS-R-b scores), the lower 

the self-perceived communication effectiveness index (CETI-m) of patients in G1 

(r=0.419, p<0.001) and G2 (r=0.809, p<0.001). However, when considering data 

from patients in G1, after they started to use ACD (T1 and T2), patients with lower 

bulbar functional scores did not necessarily have lower self-perceived 

communication (r=0.101, p=0.629).  

In general, we found positive correlations between patients’ quality of life, 

bulbar function and self-perceived communication: the higher the bulbar 

dysfunction (lower ALSFRS-b score), the lower the quality of life, both in total 

score (r=0.297, p=0.019) and in single-item score (r=0.280, p=0.028). Patients 

with higher scores in self-perceived communication effectiveness had higher 

quality of life, both in total score (r=0.268, p=0.027) and in psychological 

symptoms domain (r=0.265, p=0.029).     

No correlations were found between caregivers’ QoL scores and patients’ 

bulbar function (ALSFRS-R-b) or communication (CETI-m) scores, for the whole 

group of caregivers. However, when analyzing caregivers of patients who received 

early ACD intervention, we found that patients with higher self-perceived 

communication had caregivers with higher scores in quality of life, for 

psychological symptoms domain of MQoL (r=0.515, p=0.011).  
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4.3.3 Performance measures 

Performance of handwriting had a mean of 17.5 wpm (SD=8.1; range: 7.6 

to 36.4), at T0, and it decreased significantly (p=0.002) from baseline assessment 

to T2 (mean=12.4; SD=10; range: 0 to 27.4) (Table 3). The lower the UL function 

(ALSFRS-R-ul), the lower the measured performance of handwriting (r=0.693, 

p<0.001). Due to disease progression in UL, 5 patients were unable to perform 

handwriting at T1 or T2, although could still use ACD for typing. These patients 

had difficulties in grasping a pen but were able to use one finger to select on the 

keyboard or touchscreen.  

Performance in using a keyboard strongly varied among patients due to 

different previous experience of using computer devices (mean=9.2; SD=5.2; 

range: 2.4-18.7 wpm), at baseline assessment. During the period of this study, 

patients’ performance of typing had no significant changes in time, as described in 

Table 3. Interestingly, we could observe that 8 out of 11 patients in G1 with low 

experience (≤3) in the use of computers have improved typing rate, from T0 to T2 

(Figure 20). During the period of this study, decrease in UL function (ALSFRS-R-

ul) did not alter performance of typing (r=0.09, p=0.52), in contrast to performance 

of handwriting, which decreased with UL dysfunction.  

4.3.4 Internet 

Patients in G1 who had internet connection at home were able to learn how 

to use the email and replied to the emails sent by one of the authors (AL), 

independently of previous experience with email. Communicating with family (in 

particular siblings living abroad and grandchildren) was the main motivation 

expressed by patients to use internet.  

4.4 Discussion 
We present a longitudinal study on the effect of early intervention with 

assistive communication devices in quality of life of bulbar-onset ALS patients and 

their caregivers. Most studies regarding the impact of assistive communication on 

the QoL address ALS patients with severe UL dysfunction, but not much research 

focuses on its specific impact when introduced from early stages. 
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4.4.1 Quality of life 

In this study, when investigating on the effect of communication in patients 

and caregivers’ quality of life scores, we cannot ignore that other factors may have 

had impact on these scores; moreover, since we explored several scores and 

subscores of quality of life, statistical significance was not attained considering 

multiple comparisons between the two groups of patients. Nevertheless, our 

results support that communication difficulties affect quality of life and that early 

intervention with ACD has a positive impact on some of its domains.  

Problems in communication were reported as negative factors in quality of 

life, by both patients and caregivers, and some patients and caregivers referred to 

ACD as having a positive impact on their quality of life. Indeed, Körner et al. 

(2012) reported that the use of communication devices improves or stabilizes 

quality of life and mood of ALS patients with dysarthria. Accordingly, in our study 

we observed that in the second assessment, Psychological Symptoms and 

Existential well-being domains of quality of life were higher for patients using ACD. 

However, in the third period of assessment, differences between groups were 

reduced to Psychological symptoms. We hypothesize that, as disease progresses, 

Existential well-being domain of quality of life might be influenced by other 

symptoms related to disease progression. In particular, in this population of bulbar-

onset, patients’ dysphagia had a major negative impact in the period of the third 

assessment.  

In our study, quality of life of both patients and caregivers decreased 

overtime. Further, patients with lower bulbar function had lower quality of life. 

These results contradict other longitudinal studies that demonstrated 

independence of patients’ quality of life on disease symptoms progression 

(Robbins et al., 2001; De Groot et al., 2007; Olsson et al., 2010; Chiò et al., 2004) 

or stability of quality of life with time (Gauthier et al., 2007; Trail et al., 2003). This 

contradictory result may be related to the homogeneity of selected patients in our 

study. In particular, in bulbar onset ALS, rapid progression could influence quality 

of life in the early stages.  

General decrease in caregivers’ quality of life scores, which we observed 

between the baseline and the final evaluation, compares with other studies 

(Robbins et al., 2001; Lo Coco et al., 2005). In our study, the early intervention 
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with ACD had a positive impact on caregivers´ support domain of quality of life, 

indicating an increased feeling of being cared for and supported. Moreover, for 

caregivers in the group of early intervention, patients with higher communication 

effectiveness index had caregivers with higher psychological quality of life. We 

hypothesize that this result is related to a positive experience of support, due to 

training and specific follow-up of patients with ACD, as well as the experience of 

improvement of communication with the patients.  

Caregivers and patients’ quality of life scores were not correlated; they were 

higher for patients comparing with their caregivers. Accordingly, Lo Coco et al. 

(2005) suggest that patients and caregivers do not represent a single 

psychological entity. Following these findings, different motivation and 

expectations for the use of ACD should be considered between patients and 

caregivers, depending on each individual context.  

4.4.2 Caregivers 

A special attention to caregivers is important in intervention with ACD. 

Caregivers have an important role as primary facilitators in the use of 

communication devices (Ball et al., 2005); the use of ACD by patients is strongly 

dependent on caregivers’ support, in particular when patients’ disability is major. In 

agreement to the positive association between the psychological domain of quality 

of life and patients’ self-perceived communication (observed in the group with 

early support) it is expected that caregivers who are supportive of enhancing 

communication will raise patients’ confidence in the use of ACD. Nevertheless, we 

have observed that the initial expectations for the early use of ACD were generally 

lower in caregivers than in patients. Encouragement from researchers or siblings 

was an important factor in raising the motivation of both patients and caregivers, in 

particular those who had no past experience in technology.  

4.4.3 Evaluating the use of assistive communication devices 

One limitation of our study is that we did not quantify the number of 

hours/day of using the selected application in ACD. However, UL performance for 

using the ACD did not drop significantly overtime, even for patients with lower 

ALSFRS-R-ul scores, suggesting its persistent use. Despite the initial slower 

communication performance by typing when compared to handwriting, we 
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emphasize that some patients could still rely on typing using the touchscreen 

access after being unable to perform handwriting and speaking. Therefore, we 

suggest that touchscreen-based ACD preserves better autonomy in 

communication for longer periods than handwriting.  

Interestingly, we could observe improvements in the performance of typing 

in patients with early support for the use of ACD and with previous experience in 

using computers scored as lower than 3 (average age: 65.42±11.94 years). We 

hypothesize that improvement in performance was related to the process of 

memorizing key positions in the keyboard due to the regular use of ACD. Also, 

patients who had internet at home successfully learned to use email 

communication. This result indicates that, in this early period of the disease, 

patients can effectively learn and improve skills for using communication devices, 

independently of the disease’s progression. This period may be particularly 

important for patients with little experience with computer devices.  Another 

limitation of our study is that the selected population had a low education level and 

poor technology training, in general. This could limit generalization of the positive 

results. But, we would expect better or similar outcomes when applying early 

intervention in a more educated population (Czaja & Lee, 2008). Our population 

was formed by bulbar-onset patients, with a typical female gender predominance. 

Women tend to have a lower experience with technology. This later issue was 

associated with poor literacy and low pension income, which could be critical to 

interventions, like the use of ACD. The vast majority of our patients had no access 

to a computer, smart-phone or tablet devices. From our results we consider that 

even in this set of ALS population, timely intervention permit successful learning 

and adaptation to new communication tools, with positive impact on the quality of 

life. 

When studying intervention with ACD, it is difficult to assess how patients 

use the communication tools out of the research environment. Further, we cannot 

reject that, while possible, patients use handwriting jointly with ACD at the very 

early stage. In this study, we considered typing rate improvement and self-

reported communication effectiveness index as outcome measures for evaluating 

the use of ACD. As previously discussed, improvement of typing rate in 

inexperienced patients was most probably due to regular practice in the use of the 

communication device. Besides, patients using ACD reported higher scores in 
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communication effectiveness index, when comparing to patients with no early 

intervention. Indeed, after intervention with ACD, we found that the self-perceived 

communication of these patients was not related to their bulbar functional score. 

This can be explained by the effectiveness of ACD to compensate communication 

difficulties related to speech. In our perspective, it is not important to detail how 

each patient uses communication tools, since it may strongly depend on each 

person and their social environment, but to confirm the impact it has on self-

perceived ability to communicate. For example, some patients reported the use of 

ACD to participate in internet social networks and others just wanted to 

communicate with close family. Accordingly, we suggest that the evaluation of 

intervention with ACD should consider self-perceived ability to communicate an 

important outcome, from early stages.  

4.4.4 Duration of use  

Although there is a growing offer of communication tools based on 

touchscreen tablet devices that can be easily accessed by patients, anticipation of 

UL severe dysfunction raises the question on whether an ALS patient should be 

supported in communication with these devices. As an additional part of this study, 

we investigated on the duration of use of ACD based on touchscreen access, in 

our group of patients. We monitored the use of ACD in 14 of our participants after 

the end of this study, until the end of life or when they were unable to use 

touchscreen ACD due to severe muscle weakness in ULs. These devices were 

used for a mean duration of 11 months (SD=3.4, range: 2-24 months). Eight out of 

the 9 patients who have died were able to use ULs to communicate with the ACD 

(using the touchscreen) until the end of life; these patients had preserved UL 

function for access to a touchscreen-based keyboard, and did not need any other 

access strategy. Even for patients who had fast progression in UL dysfunction, 

shorter use of touchscreen was important for learning how to use assistive 

communication tools. Their transition to alternative access (patients used head 

movements or eye-tracking control), was easily learned and accepted as important 

by both these patients and their caregivers. We suggest that touchscreen access 

is valid for early intervention in communication, as long as communication tools 

are prepared to integrate other access strategies to accommodate UL dysfunction. 

Further research is needed on predictors for upper limb function that are relevant 
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to anticipate the need of new access strategies for the use of assistive 

communication devices. 

4.4.5 From early to late stages 

Research in advanced technologies that allow late-stage patients to 

communicate and control the environment has gained high relevance, indicating 

communication as determinant for patients’ quality of life (Caligari et al., 2013; Lulé 

et al., 2008) in those stages. However, late referral is still described as a common 

reason for low acceptance of technology in late stages of ALS (Brownlee & 

Bruening, 2012; Beukelman et al., 2011). Moreover, patients’ age or intrinsic 

motivation (which may be related to mastery confidence or incompetence fear) 

have been studied as factors influencing performance of ALS patients using BCIs 

(Nijboer et al., 2010; Silvoni et al., 2013) or as general psychosocial factors 

(motivation and confidence) involved in competence to use ACD ( Light & 

McNaughton, 2014). In our study, patients with early intervention for using ACD 

improved skills to use communication devices, particularly in those with low 

experience with informatics and low education. Both patients and caregivers’ 

motivation for using ACD was progressively higher. Text-to-speech and onscreen 

keyboard for writing are valid communication tools both in early and late stages, 

regardless of the need to adapt ACD for replacing UL function. Particularly in fast 

progression, early intervention may reduce negative factors that influence 

acceptance of ACD in later stages and potentially will improve communication in 

overall disease progression.  

4.5 Conclusions 
Our results suggest that assistive communication tools based on touch 

screen-tablet devices (including text input, speech synthesizer and internet 

access) should be introduced in early stages of bulbar-onset ALS, particularly 

when dysarthria score in ALSFRS-R is between 2 and 3. Our study indicates a 

positive impact of assistive communication on quality of life in early stages of 

bulbar-onset ALS, both for patients and caregivers. We suggest that early 

intervention will improve patients’ skills for using communication devices in later 

stages, when more complex alternative access strategies are necessary. Future 
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research is needed to investigate on the effect of early intervention on general 

performance of communication in later stages.  

 

4.6 New findings and their importance under research goals 
We found that ACDs show a strong trend towards a positive impact on the 

QoL on both early-affected bulbar-onset ALS patients and on their caregivers. This 

study was original in two ways:  

(1) we applied a randomized, prospective, longitudinal design to test the 

impact of ACD on quality of life in early affected ALS patients and their caregivers, 

which is contrary to previous studies that included advanced patients very affected 

regarding speech and UL function;  

(2) we demonstrated that early ACD support based on touchscreen input 

can preserve self-perceived communication for longer than handwriting, in bulbar 

onset ALS patients. 
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Chapter 5  - Monitoring disease 
progression with assistive 
communication devices: speech and 
typing activity  

Two studies were conducted including the following research goals: (1) to 

explore novel methods to objectively characterize disease progression in speech 

and in ULs function; (2) to test the hypothesis that ACDs can be used as tools to 

remotely monitor ALS progression.  

Typing activity and speech were collected during longitudinal assessments 

of ALS patients, in the same setup as for the study of quality of life (Chapter 4). 

For the purpose of testing this hypothesis with data that would be possible to 

collect in an in-home environment, procedure was designed to be simple and non-

exhausting. Typing activity and speech were recorded with a standard laptop 

computer. Length of recordings (both in speech and typing) was restricted to one 

short and well-known Portuguese 10-word sentence: Tudo vale a pena quando a 

alma não é pequena.  

5.1 Introduction 
Assistive devices usually rely on keyboards (physical or virtual). As disease 

symptoms progress, UL weakness leads to increasing difficulties in using a 

keyboard (either physical or touchscreen-based) until the use of input devices that 

do not rely on UL movements (e.g. eye tracking and brain computer interfaces) are 

needed for communication and environment interaction (Caligari et al., 2013; 

Lightbody et al., 2014). Moreover, speech intelligibility decreases until 

communication using natural speech is very difficult and frustrating (Green et al., 

2013). 

Identification of markers of disease progression is important to monitor ALS 

patients, with potential application in clinical trials (de Carvalho et al., 2005; Simon 

et al., 2014). As previously mentioned in section 1.2, ALSFRS-R is broadly used 

for assessment of ALS symptoms during the course of the disease. This scale 

includes a subscore for UL function (ALSFRS-R-ul) and Bulbar function 

(ALSFRS_R_b), as described in section 4.2.4. In spite that this scale can be 



88 

reliably administered remotely by patients or caregivers, over the phone or the 

internet by online assessment (Maier et al., 2012), two limitations of this 

assessment tool are addressed in our research: it does not give a continuous 

objective scoring (since it does not rely on physical examinations or instruments 

(Cedarbaum & Stambler, 1997; Tramacere et al., 2015) and it may not be enough 

sensitive to change, considering that it has been criticized for having a relatively 

small slope of decline (Wicks et al., 2009; Traynor et al., 2004). Bulbar motor 

dysfunction starts before perceived changes in speech intelligibility. For example, 

speech rate decreases prior to a perceived impact on speech intelligibility, but the 

first may be a marker for the later, as studied by Ball et al., (2001). In addition, 

results in section 4.3.3 showed that ALSFRS-R may be not sensible to functional 

decline in the use of UL for specific activities related to control of assistive devices 

(mostly involving movements to select, tap or press and release keys).  

The goal of this research was to develop new methodologies intended for 

the design of non-invasive instruments, supported on ACD, for early detection, 

monitoring of disease progression and clinical trial applications. We developed 

methodologies for objective and longitudinal functional assessment of speech and 

ULs, based on simple procedures for recording typing activity and speech. Our 

main objective is to contribute for the development of in-home monitoring tools (to 

be implemented in ACD) that can assist in-clinic assessment of communication in 

patients with ALS. 

5.1.1 Upper limb dysfunction and typing activity 

Typing activity with a computer keyboard has been suggested by Austin et 

al. (2011), as a surrogate for the finger-tapping test, which could be used as a 

continuous in-home tool. Finger tapping test has been widely used in research of 

several neurological conditions, for characterization and quantitative assessment 

of the UL motor function (Bowden and McNaulty, 2013; Shima et al., 2014; 

Buracchio et al., 2010; Jimenez-Jimenez et al., 2010).  

In the present study, we used a simple setup with inertial sensors to explore 

features related to UL function in typing activity. To keep independence of users’ 

experience in the use of keyboards for writing, frequency of typing (analogous to 

tapping frequency in finger-tapping test) was not considered. Alternatively, we 
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analyzed time and movement features related to key press and key release 

actions.  

Study aims related to typing activity were: 

(a) Characterization of UL impairment progression in ALS patients for using 

assistive devices, by analysis of finger movements in keyboard typing;  

(b) Identification of typing activity markers that could provide a new tool for 

disease monitoring. 

5.1.2 Bulbar dysfunction and biomechanical modeling of speech production 

The deterioration of the neuromotor system involved in respiration, 

phonation, swallowing, and lingual and oro-facial muscle function degenerates in a 

rapidly progressing dysarthria. As ALS progresses, speech movements become 

smaller in extent and slower in speed (Green et al., 2013). Perceptual and 

acoustic features of dysarthria in ALS have been well studied (Tomik & Guiloff, 

2010; Bongioanni, 2008).  

Turner et al. (1995) studied the relationship between speech rate, speech 

intelligibility and vowel space area (VSA) in a group of 9 patients with ALS.  These 

authors suggested that VSA was an important component of global estimates of 

speech intelligibility (accounting for 45% of the variance in speech intelligibility). 

The VSA and the Formant Centralization Ratio (FCR) are parameters defined to 

estimate the vowel span range and positioning produced by a given speaker 

(Sapir et al., 2011). In this exploratory study, we assume that the relative deviation 

of VSA and FCR in a specific patient with ALS, from a control or normative 

statistics, may be used to evaluate the distortion of the formant space, in terms of 

independent formant span ranges (∆F2 vs ∆F1). This deviation can be expressed 

as a vector in the formant space showing speech deterioration related to disease 

progression. We use a method based on speech articulation biomechanical 

modeling, from the level of signal processing to neuromotor activity inference 

(Gómez-Vilda et al., 2011). Estimated parameters in common speech are 

associated to specific neuromuscular complexes involved in articulation, more 

specifically the masseter, the stylo-glosus and the genio-hyo-glosus muscles - as 

described in Gómez-Vilda et al. (2015).  

We performed longitudinal study cases in patients with ALS, to study the 

evolution of the vowel space as disease progresses. We aimed at exploring early 
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detection and monitoring of speech dysfunction in ALS, based on running speech 

and low-cost voice recording instrumentation. 

5.2 Materials and Methods 

5.2.1.1 Materials  
For data collection of finger movements in keyboard typing, we used a 

wireless 4-channel acquisition system with a 3-axis accelerometer sensor (range 

±3 g, with a relation of 300 mv/g at the output) and a sample rate of 1KHz. The 

sensor was placed on the posterior part of the index finger of the dominant hand, 

as depicted in Figure 21. There was one exception: one patient used the non-

dominant hand due to severe dysfunction of the right upper limb. Data was 

acquired via Bluetooth to a common laptop computer, to be processed offline. A 

second laptop was used for the typing tasks. Due to its very low weight, the sensor 

did not interfere with the finger typing activity.  

For data collection of speech, we used the laptop where patients performed 

the typing task. Voice was recorded at 44 kHz and 16 bits. 

5.2.1.2 Methods  
ALS patients were assessed at study entry and every 2-6 months for a 

variable period depending on disease progression. Assessments were made 

during clinical appointments. At each session, patients were asked to record 

speech: reproducing a familiar Portuguese 10-word sentence “Tudo vale a pena 

quando a alma não é pequena” (Figure 21). Then, the accelerometer was placed 

on the participant´s index finger. Patients were asked to type the same 10-word 

sentence using just the finger with the accelerometer (Figure 21). All tasks were 

recorded throughout accelerometer signal acquisition, a video camera and a log 

text editor. A complete assessment session had the duration of 20 minutes. In the 

first assessment we asked each participant to classify previous experience in 

using a computer by applying a Likert-type classification of 0 (I have no 

experience) to 5 (I am very skilled in the use of computers).  

Typing and speech analysis was blind to the functional rating scores of the 

patients; ALSFRS-R scoring was done after recordings, on the same day, by an 

independent researcher. 
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Figure 21 - Experimental setup (up) speech recording in a simple voice recording system included in 
a common laptop. (down-left) An accelerometer was placed on the typing index finger of the subject. 
Accelerometer was connected to the acquisition module. Data was sent via bluetooth connection to a 

computer where it was saved. Participants did the typing tasks in a laptop using a simple text editor. (down-
right) The three axes of the accelerometer sensor were measured, as illustrated. 

 

5.2.1.3 Participants 
Nineteen ALS patients were consecutively recruited, with the following 

criteria: probable or definite disease according to the revised El Escorial criteria 

(Brooks et al., 2000), bulbar onset disease (as bulbar-onset patients presenting 

with dysarthria were previously included in a study evaluating the impact of 

communication devices in quality of life), no other neurological disorder (in 

particular no clinical signs of dementia or polyneuropathy), absence of mechanical 

limitation using hand or fingers (as associated with arthritis, edema or pain) and 

agreement to participate. The joint Ethics Commission of the Centro Hospitalar 

Lisboa Norte and Faculdade de Medicina de Lisboa approved this research and 

patients gave written informed consent. Four of these patients with low perceived 

dysarthria (Speech item in ALSFRS-R-b ≥3) were selected for speech longitudinal 

analysis.  
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Controls 
A total of 26 controls were included: six patients with other neuromuscular 

disorders causing moderate UL weakness (3 with demyelinating neuropathy with 

predominant motor impairment and 3 with spinal muscle atrophy) and 20 healthy 

subjects. The six patients with other neuromuscular disorders had ALSFRS-R-ul 

scores between 9 and 11.  

For reference of speech data, two of the healthy subjects were recorded 

under the same conditions described for the patients.  

5.2.1.4 Typing signal and outcome measures from typing activity 
For feature extraction we used the Euclidean norm of the 3-axis (ax,ay,az) 

acceleration signal (Equation 1).  

 

(Equation 1)        
 
  (m/s2)                    

 

We extracted four features from the acceleration signal (related to finger 

typing a keystroke), as described in Figure 22: mean keyhold time (t_hold) - 

mean time spent in holding down each key, in a typing task; time to press (t_p) – 

mean time spent between tapping a desired key and pressing it down, in a typing 

task; acceleration to press (accpress) – mean acceleration in the movement of 

pressing each key during the typing task; acceleration to release (accrelease) – 

mean acceleration in the movement of releasing each key during the typing task.  

anorm =

√

a
2
x
+ a

2
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+ a

2
z



 

93 

 
Figure 22 - Recording of finger movements in typing activity. (top) User finds and points to the 

desired key (A), touches the desired key (B), then presses it down (C) and finally, the user releases the key 
(D). (middle) Signal showing 20 seconds (17 keystrokes) of typing activity from a healthy participant. Vertical 

dotted lines indicate events of pressing (C) and re- leasing (D) a key. (bottom) Signal showing two 
consecutive keystrokes. Features extracted from the accelerometer signal are marked: t_hold: time from C to 
D, while user holds down the key; t_p: time delay between touching the key (B) and pressing it (C); accpress: 

maximum acceleration at key press (C); accrelease: maximum accel- eration at key release (D). 

 

5.2.1.5 Phonation modeling and outcome measures from speech 
Recordings were originally saved with 44kHz sampling rate and 16 bit 

resolution, on the laptop. For feature extraction of speech recordings, we used the 

formant-like pattern detection on LPC spectrograms produced from the speech 

signal using a Phonation Model Inversion (Gómez-Vilda et al., 2011). Recordings 

were undersampled at 8kHz before being processed; formant positions F1-F2 in 

each 2 ms were extracted using a 11-pole LPC lattice-ladder inverter to separate 

vocal tract and glottal source components (Gómez-Vilda et al., 2013). Segments 

with no phonation were removed from the estimations. A synoptic vowel triangle 
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similar to the one defined in Figure 26 was produced from the F1-F2 positions 

obtained from each utterance. 

Outcome measures, inferred from this Phonation Model Inversion, were: the 

vowel triangle (F1-F2), the formants span (∆F1 and ∆F2) in relation to an ideal 

vowel triangle, the modulus of the normalized formants span (MNFS), the vowel 

space area (VSA) and the formant centralization ratio (FCR) (see Appendix A). 

5.2.1.6 Statistical Analysis 
Pearson correlation was used to study association between variables. For 

the analysis of typing activity, unpaired and paired t-Test for dependent variables, 

and one-way ANOVA were used to test differences between groups. Repeated-

measures ANOVA was used in longitudinal analysis (three assessments) of each 

patient. For ANOVA, post-hoc analysis with Tukey HSD was used to find 

significant differences between pairs. A p-value lower than 0.05 was considered 

for statistical significance. 

5.3 Results 
Median age of the ALS population was 64 years (ranging from 38 to 81) and 

median disease duration was 14 months (ranging from 2 to 34). Healthy control 

subjects were matched for age and gender (p>0.05). Most ALS patients (84%) 

were women, due to specific clinical characteristics of this group of ALS patients 

(bulbar onset). Twelve healthy controls (60%) and 5 controls with other 

neuromuscular disorders had poor experience in using computers (score ≤2). Ten 

ALS patients (62.5%) were using a personal tablet or computer device for assistive 

communication, due to speech difficulties, during this study. ALS patients were 

followed during 2 to 20 months, in intervals of 2-6 months (2 to 6 assessments), 

the period of regular clinical appointments. Number of assessments performed for 

each patient varied due to progression rate of speech or UL function (fast 

progressors lost ability to type a few months after entry) or death (or late stage 

conditions).  

5.3.1 Analysis of typing activity 

Table 5 shows a summary of the ALS patients and assessments. Due to 

variability between patients in number of assessments, we selected 2 to 3 

assessments of each patient. For patients with more than three assessments, we 
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selected the baseline, the last and the assessment closer to the mean time within 

first and last assessments. 

 
Table 5. Characterization of patients and longitudinal assessments used for the study of typing activity 

P# Experience(a) ACD T_ASSESS Total time(b)   ALSFRS-R ALSFRS-R-ul Group 
1* 3 Y 4 12.5 26/17/14 10/7/5(c) W 
2 4 N 2 4.2 15/5 8/3(c) W 
3 0 Y 2 5.9 17/10 5/0(c) W 
4 2 Y 3 5.4 36/31/25 12(c)/11/10 N 
5* 2 N 5 13.2 30/22/15 11/10/6(c) W 
6 0 Y 6 14.9 36/27/22 12(c)/12/10 N 
7 4 N 2 2 35/31 12(c)/9 N 
8 0 Y 2 6.9 24/14 9/4(c) W 
9 4 N 3 5.6 6/7/3 3(c)/3/0 W 
10 3 Y 4 8.7 20/17/14 11(c)/9/8 N 
11 0 Y 6 19.7 32/16/14 12(c)/8/7 N 
12 4 Y 6 15.6 27/23/13 12(c)/10/8 N 
13 0 N 3 7 29/27/25 12(c)/12/12 N 
14* 0 Y 5 16 36/31/20 12(c)/12/9 N 
15 1 N 2 2.1 19/15 7/4(c) W 
16* 2 Y 3 7.6 26/28/23 9/9/7 - 
17 4 Y 2 3 22/15 9/2(c) W 
18 2 N 3 7.7 12/6/2 4(c)/1/0 W(d) 
19 2 N 2 6.2 32/27 12(c)/9 N 

        
ACD: using an ACD (Yes or No); T_ASSESS: Total number of assessments; ALSFRS-R = 
ALSFRS-R score (from 0 to 48, normal); ALSFRS-R-ul = ALSFRS-R upperlimbs subscore (from 0 
to 12, normal); N: nALS-normal UL (no UL dysfunction when performing typing task); W: wALS 
(marked UL dysfunction when performing typing task) 
* Patients evaluated for speech analysis 
(a) Experience with computers rated by the patient (0:min to 5:max). 
(b) in Months. 
(c) Assessments that were considered for comparison between groups Normal/ Weak UL function. 
(d) This patient used left hand for typing – as ALSFRS-R-ul was not sensitive to this function of the 
left hand, we followed video analysis to classify typing performance group. 
 

 

Outcome variables were calculated for each typing task as the mean value 

of all keystrokes. Average number of keystrokes performed in each typing task 

was 38.1 (SD=10.6) (variation on the number of keystrokes for typing the same 

10-word sentence depended on the spelling errors, missing spaces and 

punctuation). 
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5.3.1.1 Test-Retest Reliability 
Fourteen participants performed a second task: typing a free sentence (like 

writing their names or what they did during that morning). This second task was 

performed in the same evaluation session, after typing the standard 10-word 

sentence. Number of keystrokes in the second task was 31.6 (SD=18.62). 

Measurements obtained from the first task were highly correlated to those 

obtained in the second task, as presented in Table 6.  
Table 6. Test-Retest reliability comparing performance with a standard sentence vs free sentence 

Measure Mean±SD  
(task 1) 

Mean±SD  
(task 2) 

R Paired t-test 

t_hold 221.49±94 233.40±108.44 0.963* p=0.210 

Accpress 20.71±8.83 22.31±10.10 0.957* p=0.093 

Accrelease 13.26±3.84 13.58±4.09 0.841* p=0.635 

t_p 103.14±56.11 115.82±65.90 0.908* p=0.062 

R = Pearson product-moment correlation coefficient 
* p<0.001 

5.3.1.2 Test independence of user experience 
To test the independence of previous user experience (in the use of 

keyboards) on the measured variables, we tested healthy controls and ALS 

patients with no or mild UL dysfunction. Those who had a good experience in 

using computer or assistive communication devices (score >2, 11 subjects) were 

compared to those who had low experience (score ≤2, 13 subjects). There were 

no significant differences between both groups (Table 7).  
Table 7. Comparing subjects with vs without previous experience with computer or assistive communication 
devices.  

Measurement 
 

Mean±SD  
(experience)(a) 

Mean±SD  
(no experience)(b) 

T-test 

t_hold 182.10±80.57 179.32±65.69 p=0.920 

Accpress 24.17±9.15 21.33±8.99 p=0.425 

Accrelease 16.05±6.37 15.46±4.59 p=0.779 

t_p 63.13±55.21 60.06±48.46 p=0.885 

 
(a) 4 healthy controls and 7 patients; (b) 4 healthy controls and 9 patients. 
 

5.3.1.3 Sensitivity of measurements to test progression 
To evaluate the sensitivity of measurements in evaluating the progression 

of UL dysfunction, we compared data from patients with low and severe 

dysfunction in UL. We defined 2 subgroups of ALS patients: normal UL (nALS) - 

patients with no significant UL dysfunction (ALSFRS-R-ul subscore >10) and weak 
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UL (wALS)- patients with marked UL dysfunction (ALSFRS-R-ul subscore ≤ 6). All 

the assessments of each patient were classified in one of these subgroups. When 

one patient was classified in more than one group, the wALS was chosen for 

statistical analysis (indicated in Table 5).  

 
Table 8. Results from typing activity distributed by classification of upper limb dysfunction. Description of 
outcome variables (mean±standard_deviation). 

 HE (n=20) NM (n=6) nALS (n=109) wALS (n=9) p-value 

t_hold 
(ms) 110.5±43.79 222.86±37.35 173.26±70.80 304.88±40.35 

p(HE,NM)   >0.05 
p(HE,nALS) <0.01** 
p(HE,wALS) <0.01** 
p(NM,nALS) >0.05 
p(NM,wALS) <0.01** 
p(nALS,wALS) <0.01** 

accpress 
(m/s2) 25.71±6.49 16.11±7.40 29.83±6.49 13.08±6.69 

p(HE,NM)   <0.01** 
p(HE,nALS) >0.05 
p(HE,wALS) <0.01** 
p(NM,nALS) >0.05 
p(NM,wALS) <0.01** 
p(nALS,wALS) <0.01** 

accreleas
e (m/s2) 17.99±4.66 11.16±6.35 18.30±3.56 10.07±4.57 

p(HE,NM)   <0.01** 
p(HE,nALS) >0.05 
p(HE,wALS) <0.01** 
p(NM,nALS) <0.05* 
p(NM,wALS) <0.01** 
p(nALS,wALS) <0.01** 

t_p 
(ms) 26.11±25.36 15.56±3.83 52.83±35.27 161.13±76.20 

p(HE,NM)   >0.05 
p(HE,nALS) >0.05 
p(HE,wALS) <0.01** 
p(NM,nALS) >0.05 
p(NM,wALS) <0.01** 
p(nALS,wALS) <0.01** 

HE: healthy controls; NM: controls with other neuromuscular diseases; nALS: ALS patients with 
normal UL function; wALS: ALS patients with marked UL dysfunction. 

 

5.3.1.4 Keyhold time 
Mean values of t_hold, calculated for each group, are described in Table 8. 

Comparisons between groups indicate significant differences between healthy 

controls and all groups of patients (p<0.01) and between wALS and the other 

groups (p<0.01) (Figure 23). Mean t_hold from patients with other neuromuscular 

diseases was similar to nALS - Figure 23. 
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Figure 23 - Mean values of outcome variables in the different groups: HE (healthy participants); NM (other 

neuromuscular diseases); nALS (ALS patients with normal UL function) and wALS (ALS patients with marked 
UL dysfunction). 

 

5.3.1.5 Longitudinal analysis of keyhold time 
For the longitudinal analysis of t_hold in patients with slower progression in 

UL, we selected a subset of patients with three assessments (N=12) (Table 5). We 

observed significant differences in t_hold between assessments (p=0.008). 

Increase in t_hold was found between the first (mean difference of 64.0 ms, 

p=0.03) or middle (mean difference of 44.1 ms, p=0.04) and the last assessment, 
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but not significant between the first and the middle assessment (mean difference 

of 19.9 ms, p=0.211). Fig. 4 represents t_hold and ALSFRS-UL scores obtained 

for the three assessments.  

 

 
Figure 24 - Longitudinal assessments. Plots represent median values of t_hold and ALSFRS-UL 

scores, in each of the three assessments.  
 

5.3.1.6 Delay to press 
As ALSFRS-R-ul decreases, there is an increasing delay between touching 

the key and the movement for pressing it down (t_p). Figure 25 illustrates this 

increasing delay observed in 9 months on one patient and comparing it with a 

healthy control. This delay to press down the key (after touching it) was higher in 

the wALS group compared with nALS and controls (p<0.01) – Table 8 and Figure 

23.   

5.3.1.7 Acceleration in movements for pressing and releasing each key  
Mean values for acceleration at key press (accpress) and key release 

(accrelease) are described in Table 8. Both acceleration at key press and at key 

release decreased with UL dysfunction: accpress and accrelease were 

significantly lower in the group of wALS comparing with healthy controls or with 

patients with normal UL (p<0.05). We found no differences between healthy 

controls and nALS; patients with other neuromuscular disorders had lower 

acceleration amplitude for releasing keys, when comparing to ALS patients with 

normal UL (p<0.05) (Figure 23). 
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5.3.2 Analysis of speech production 

Speech of four ALS patients (all were women and are marked in Table 5) 

was recorded in 3 to 5 evaluation sessions, separated by 2 to 6 months intervals. 

Healthy controls were selected from the control set: two women with 36 (CF36) 

and 63 (CF63) years old. An ideal vowel triangle inferred from the control subject 

CF36, was defined for comparisons between different assessments of each 

patient (Figure 26). 

 

 
Figure 25 - Delay for pressing and releasing. Plots represent one keystroke in one healthy control (in 

dotted line) and two different assessments of the same ALS patient. There was an increasing delay in 
pressing the key (t_p) and for releasing it (t_hold) from the first assessment (1) to the last assessment 
recorded 9 months later (2). Acceleration also decreased from (1) to (2), either in key press and key release. 
Gray dotted lines indicate the events marked according to Figure 2 and the group of UL dysfunction. The three 
signals are aligned by the event of pressing down a key (C). 
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5.3.2.1 Formants (F1 and F2) and Vowel Triangle 
Results for each recording were compared against the ideal vowel triangle. 

Percentage of formant span reduction (∆F1n and ∆F2n) normalized with respect to 

the control CF36 are given in Table 9. 

 

 
Figure 26 – Formant positions on the F1/F2 Vowel Triangle of CF36. Vertices of the idealized vowel 

triangle are defined by thin circles (Vbl,Vtl,Vcr). 

 

The first recording (0) of PF1 shows a displaced and enlarged span for F1 

(∆F1n=120%), and a much-compressed span for F2 (∆F2n=47%). Recordings (1) 

and (2) show a moderately compressed ∆F1n (84% and 68%) whereas the ∆F2n 

is also shrinking progressively (35% and 27%). These results would indicate, 

according to the biomechanical model of speech presented in Appendix A, a 

severe loss of activity in the stylo-glosus and genio-hyo-glosus muscles, whereas 

jaw control is moderately impaired. 

 
Table 9. ∆F1/∆F2 in % relative to the control CF36, for each recording of the four ALS patients. The column 
under each patient (PF#) represents: (ALSFRS-R-B; Months after baseline evaluation) %∆F1/%∆F2. 

  CF36 CF63 PF1 PF2 PF3 PF4 
 Age 36 63 38 64 77 79 
 Record.0 100/100 69/80 (6;0) 120/47 (9;0) 92/47 (8;0) 84/80 (11;0) 72/68 
 Record.1 - - (5;4) 84/35 (6;3) 61/46 (5;3) 66/62 (9;6) 67/88 
 Record.2 - - (3;6) 68/27 (6;5) 60/58 (5;7) 80/51 (6;10) 72/44 
 Record.3 - - - (6;8) 54/28 (5;10) 55/37 - 
 Record.4 - - - (6;11) 50/29 (2;13) 39/23 - 
 
CF36: 36-year-old healthy control; CF63: 63-year-old healthy control; PF#: Patients 
(from 1 to 4) 
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The evolution of case PF2 has a larger number of recordings. It may be 

seen from the first recording (0) that the degree of affection of F1 is moderate 

(92%), its progression being apparently irreversible (61%-60%-54%-50%). On its 

turn the affection of the SG-GHG is already strong (47%) in the first recording (0) 

whereas progress is not steady in recordings (1)-(4), going through 46%-58%-

28%-29%.  

The third study case corresponds to an older patient (PF3, 77 years). The 

evolution for ∆F1n is 84%-56%-80%-35%-29%, which indicates a moderate initial 

affection, but a fast progression in the last recordings. The evolution of ∆F2n is 

80%-62%-51%-37%-23% is indicating a progressive control loss of the stylo-

glosus and genio-hyo-glosus muscles, and confirms the deterioration of jaw and 

tongue articulation functions in a similar way.  

The last case corresponds to a 79-year old female (PF4). The progression 

for ∆F1n is 72%-67%-72%, which indicates an initial relative deterioration of the 

MS muscle, which was not progressing significantly during 11 months; on its turn 

the progression for ∆F2n is 68%-88%-44%, which indicates an irregular slow 

progression to articulation deterioration.  

5.3.2.2 MNFS, VSA and FCR 
The evolution of MNFS and VSA for the four cases studied, compared with 

the two controls CF36 and CF63 is described in Figure 27 and Figure 28. It may 

be seen that all patients show a progressive decrease in MNFS and VSA, from the 

first to the last recording. MNFS was positively correlated to VSA (r=0.955, 

p<0.05) and inversely correlated to FCR (r=-0.913, p<0.05), as FCR is increasing 

as illness progresses (Figure 28). 
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Figure 27 – Vowel space area for recordings from the four study cases presented compared to 

controls CF36 and CF63. 

 

     
Figure 28 – (left) Modulus of the normalized formant span for recordings from the four study cases 

presented compared to controls CF36 and CF63. (right) Formant Centralized Ratio for recordings from the 
four study cases presented compared to controls CF36 and CF63. 

 

5.4 Discussion 

5.4.1 Markers of progression in typing activity  

The main aim of this study was to quantify UL impairment in ALS patients 

by using a keyboard. In addition, we aimed to identify a sensitive marker that could 

be explored as a tool to monitor UL functional impairment over disease 

progression.  

Inertial sensors were used for movement recording, with the advantages of 

being easy to place on the finger and without causing movement constraints. This 

kind of sensors has been proposed for motion tracking and quantitative 

assessment of UL function in many conditions (Uswatte et al., 2000; Lyons et al., 
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2005; Zhou et al., 2008; Bai et al., 2014). For our purpose, we used a simple setup 

with one miniaturized accelerometer, for recording finger activity related to actions 

of tapping, pressing and releasing keys in a short typing task.  

We observed that the mean delay between pressing and releasing keys 

(keyhold time – t_hold) increased in parallel with greater UL dysfunction. 

Moreover, in ALS patients with preserved UL function, this time was already 

increased. Possibly, this measurement could be a sensitive marker in early stages 

of ALS and a useful tool to monitor UL dysfunction over disease progression.  

Delay to press (t_p) is apparently not sensitive to detect early changes in 

ALS patients. Progressive UL weakness causes a significant increase in t_p when 

UL impairment is marked. However, this increasing delay for pressing a desired 

key is particularly relevant for functional assessment, since lack of efficacy to 

press down a key or a button (e.g. bed alarm switch) is often the reason for 

initiating support with the use of special interfaces for control of assisted devices. 

Mean acceleration of movements to release and press the keys were not 

sensitive to detect early changes in ALS patients with normal UL function, but did 

show significant decline over disease progression (UL dysfunction). Furuya & 

Altenmüller (2013) also found an association between duration of focal hand 

dystonia in pianists and slower and weaker tapping in piano keys. 

For the aim of this work, inter-key rate and its variability were not 

considered, despite of interesting similarity of these variables with finger-tapping 

tests. Decline in finger tapping speed in ALS, as observed by Kwan et al. (2013), 

could not be tested with our method as we found considerable variations between 

patients. Time between two different keystrokes was much dependent on users 

experience with computers and would have to be tested in overlearned tasks 

(Austin et al., 2011).  

Learning factors, as already described by Jobbágy et al. (2005) as a bias 

for finger-tapping test, must be considered in our study, since patients repeated 

the same typing task in more than one assessment. Nevertheless, results were 

robust to the influence of learning factors. We observed no differences due to 

previous user experience in using computers. Moreover, if a learning effect 

existed, it would be expected that users would improve performance in later 

assessments, due to increasing confidence on the task. On the contrary, patients 

tended to increase delays related to key press and release.  
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Although patients with clinical signs of dementia were excluded, we cannot 

exclude the influence of cognitive and behavioral factors. For example, we could 

identify some patients who often gesticulated with the hands during the task, 

especially those with severe dysarthria, as a way to communicate. Also, some 

patients were depressed or unconfident. However, other patients were 

enthusiastic in performing the tasks. Nevertheless, results from test-retest 

reliability, test of independence of user experience and longitudinal analysis of 

each ALS patient, raised confidence in our results.  

5.4.2 Markers of disease progression in speech 

Despite the low number of case studies (N=4) of this exploratory study, it is 

expected that the present methodology contributes to estimating ALS bulbar 

involvement, using quantitative and continuous evaluation techniques.  

 Both VSA and FCR are well-accepted parameters related with articulation 

degradation in Parkinson Disease (Sapir et al., 2011). The present cases show 

that these coefficients are well correlated with normalized formant spans, which 

are good indicators of neuromotor activity decay both in tongue and in jaw 

(Jürgens, 2002). In general, it may be said that the degree of affection observed in 

the stylo-glosus and genio-hyo-glosus muscles is always strong in the first 

recording (when bulbar dysfunction is already present), whereas the degree of 

involvement of the masseter muscle does not seem so significantly affected 

initially.  These results are according with Yunusova et al. (2008) who found, in a 

study with 9 patients with ALS, impairment of articulatory vowels speed more 

consistently present in movements of the tongue and, occasionally, of the jaw. In 

agreement, it has been studied that F2 slope reflects changes in tongue function 

with disease progression and it is linked to speech intelligibility (Yunusova et al., 

2012).  

A clear explanation for cases where articulation affection seems to be 

reversed (recording 1 in PF1, recording 2 in PF2 and PF3) should be further 

investigated. In future studies it is important to determine if the apparent recovery 

is reliable enough or is due to artifacts. A possible cause could be due to the 

presence of artifacts in the estimation of the pair datasets {F1(n), F2(n)}. 

Nevertheless this explanation does not seem consistent, as vowel triangles are 

estimated on large data distributions. For instance, as illness progresses longer 
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recordings are expected for the same sentence. Besides the expected decrease of 

speech rate, patients tend to speak slower to improve speech intelligibility, ranging 

in our sample from 3 s to 10 s, approximately, to say the same sentence. This 

means that at least from 1500 to 5000 formant pairs {F1(n), F2(n)} were available 

to build quantile statistics. It does not seem plausible that quantile estimates would 

be affected by large artifacts, which are not apparent in vowel triangle plots, as 

these estimates are considered robust to outliers.  

5.4.3 Age and gender 

Age and gender are relevant factors in studies of motor control (Ashendorf 

et al., 2009). Aging leads to reduced motor performance, with a decrease in 

movements’ speed (Bowden & McNulty, 2013; Campbell et al., 1973; Darling et 

al., 1989; Seidler et al., 2010). As a limitation of this work, due to specific 

characteristics of bulbar onset ALS patients, most patients were women above 60 

years. Healthy participants were also mostly women in the same age group of ALS 

patients, but further investigation with a more heterogeneous group of ALS 

patients is necessary to validate results.  

Concerning speech analysis based on biomechanical modeling, a ground 

reference is lacking, as patients were not evaluated prior to developing the 

disease. We chose a young control as reference for longitudinal comparisons in 

our study; however, the age of the controls is a controversial fact. Our choice was 

based on two arguments. Firstly, our elder control showed span reduction, which 

is also found in patients. We can speculate that this could be due to normal 

progressive voice aging processes or to unknown neurological abnormality under 

development. Secondly, young patients cannot be excluded from the analysis, no 

matter how seldom these cases may occur.  

5.5 Conclusions 
Considering ALS, the recording timeline is short, as the disease 

progression may be rapid and clinical assessments are limited to periodic 

appointments in the hospital settings.  

Electronic assistive devices for communication are used by a large number 

of ALS patients. This fact can be further explored as a tool for in-home monitoring 

of disease progression, particularly for assessment of Communication. Functional 
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evaluation of the upper limbs, measure of key hold time can be implemented just 

with software applications in electronic assistive devices. These devices can also 

support recording tools to continuously monitor running speech, even prior to 

communication difficulties.  

The methodology proposed in our study can be applied to the study of other 

progressive neurological conditions that affect speech or UL movements, such as 

Parkinson Disease. Using assistive devices as clinical monitoring tools has the 

advantage of collecting data remotely and non-invasively, in patients’ natural 

environment, on a continuous assessment. 

5.6 New findings and their importance under research goals 
We explored novel methodologies to quantitatively monitor UL and speech 

dysfunction in ALS, out of the clinical settings. Results from this study broaden the 

classical perspective of ACD as technologies with the single purpose of improving 

communication related to speech dysfunction. Conversely, we introduced a novel 

perspective on the potential contribution of ACD to the quality of life in ALS: we 

demonstrated that, in complement to its importance in improving communication, 

these technologies can be further explored for in-home clinical support, as tools to 

continuously monitor progressive neurological conditions.  
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Chapter 6  - Communication during 
stages of severe dysfunction: 
development of a new device to 
assess novel input signals 

6.1 Introduction 
In late stages of ALS progression, patients may experiment pervasive 

muscle weakness, with few functional body sites to access to communication 

devices. Patients may live at home or may have moved to palliative care settings, 

and spend most of the time lying in bed or in a comfort chair. In reference to 

severely disabled ALS-patients and on the use of BCIs, Birbaumer (2006) 

suggests “a general underestimation of the positive attitudes in this group of 

patients”. In Chapter 4, we suggested that improvement of quality of life was 

associated to a better self-perceived communication effectiveness of the patients. 

Moreover, effective strategies that support patients in maintenance of their social 

network, even in later stages, are needed to cope with the disease (Lulé et al., 

2009).  

Even the most severely impaired patients can benefit from communication 

tools (using specific input devices) to extend their communication functions to 

receive information, participate in social networks and make decisions (Light & 

Gulens, 2000; Nijboer et al., 2010; Smith & Delargy, 2005; Hossler et al., 2011). 

As illustrated in Figure 29, when using ACD, patients can establish social contacts 

beyond very simple “yes/no” responses. Appendix C includes texts extracted from 

interactions made by patients using ACD, during our research, either for 

interaction with family or caregivers, as also with medical doctors. 

Important factors for the success in assistive communication at these late 

stages should not be ignored: previous experience on using communication tools, 

easiness and robustness of assistive technologies, the motivation of the patient 

and the motivation of the caregiver to support the use of ACD (Ball et al., 2005; 

Beukelman et al., 2011; Londral et al., 2009; Brownlee & Bruening, 2012). 

However, when patients experiment general severe dysfunction, the most 
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important in supporting communication is to have input devices that can effectively 

capture input signals from the patient. 

 

 
Figure 29 – One patient participating actively on decisions regarding technology adjustments. She is severely 
impaired (no speech and few residual movements in the head) and was using a head-switch as input device 
(scanning method).  

  

Input devices that allow patients with severe physical dysfunction to access 

ACD are of utmost importance in this context. Finding the right input devices that 

fit to the physical conditions of the patient, and enabling him or her to efficiently 

generate input signals to access to an ACD, is sometimes a difficult task due to 

general muscle weakness. Input devices that can be used by patients in these 

conditions are described in section 2.3.2. Undoubtedly, recent development of 

eye-tracking technologies introduced important tools for patients in these 

conditions. However these must not be considered unique solutions. In fact, as 

already described in section 2.3.2.1, eye movements may be difficult to control in 

certain conditions.  

Biosignals captured from sensors placed on the body have been explored 

in various ways to access to communication tools. These have the advantage of 

capturing data directly from the body, reducing patients’ effort to control an 

external input device. Brain activity with EEG and other non-EEG signals have 

been extensively studied as input devices for ALS patients who are severely 

disabled, as is described in section 2.3.2.1. However, there are limitations in 
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existing input devices that are based on these biosignals: (i) Setup is complex and 

learning takes a long training process. Considering patients with severe 

neurological involvement, complexity may limit patients’ motivation (Nijboer et al., 

2010). Moreover, the use of ACD at these stages is closely dependent on 

caregivers’ support, which is hard to achieve if the technology is difficult to setup 

and learn, as previously discussed in Chapter 4. (ii) Lack of flexibility to use 

different sources of input signals in the device. If there is more than one possible 

input signal, an assessment tool could study those input signals that maximize the 

flow of information with the minimal physical and cognitive workload for the user 

(Abascal, 2008). Especially in progressive conditions, as it is the case of ALS, 

input devices should dynamically adapt to physical and psychological stages of the 

patients, along the course of the disease (Londral et al., 2009; Beukelman et al., 

2000). (iii) Many of the experimental results in the development of input devices for 

the disabled are obtained from non-disabled participants. Research where the 

target population participates can reveal usability factors that may be determinant 

for optimal design and effectiveness, when applying these technologies (Clarke et 

al., 2011).  

The aim of this study was two-fold: (1) to develop a tool to assess new input 

signals for patients with very few residual movements, which can be used for 

communication; (2) to develop an input device based on the possibility to use 

various body sensors and underlying biosignals, avoiding the aforementioned 

limitations of other studies.  

6.2 Materials and Methods 

6.2.1 Design Requirements 

Kintsch and Depaula (2002) have enumerated four important aspects to be 

considered in the development of any ACD: 1) it must be customizable; 2) it 

should be simple enough to set-up, customize and use; 3) it should be durable and 

robust; and 4) it must accommodate user’s preferences, namely adapt to the 

users’ environment and social context.  

Considering these guidelines, we developed a new input device with the 

following design requirements:  
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a) It supports different sources of input signals (biosignals), to accommodate 

users’ characteristics; 

b) It must be simple to setup and use in the daily environment of the user; 

c) It should be wireless and adaptable to different body sites, with reduced 

positioning constraints and flexible to follow progression of the disease symptoms; 

d) It must be easy to learn (considering patients and caregivers) and have minimal 

additional setup. 

6.2.2 System Description 

6.2.2.1 General overview 
We developed a platform that receives input signals from simple body-

triggered activations. The input signal (voluntarily controlled by the user) is 

detected by the sensors (placed on the body) that collect the underlying 

biosignals, and transmit them via Bluetooth® to the computer. Signals from the 

sensors are then processed in real time to detect voluntary commands (i.e. 

voluntary body-triggered input signals). When any command is detected, the 

software emulates a keystroke (for example, to control a virtual keyboard using a 

scanning method) or an input command to assistive communication software. 

Figure 30 illustrates the block diagram of the proposed input device. 

 

 
 

Figure 30 - Block diagram of the proposed system: (1) Data acquisition - user activates the sensor generating 
input signals; (2) Signal processing - input signal is sent via Bluetooth to the computer and processed to 

generate commands; (3) Switch-based control - when an event is detected, the system sends a command to 
an assistive communication software (e.g. a virtual keyboard) 

 

6.2.2.2 Data Acquisition 
For body signals acquisition we used a commercially available system 

(BiosignalsPlux™) with 4 analog channels. This system collects biosignals from 

different types of sensors and sends these signals via Bluetooth® wireless 

transmission to a base station (a computer). Its wireless transmission range of up 

to 100m is appropriate for the purpose of an input device. This system was setup 

for a sampling rate of 1000Hz and 12-bit resolution per channel. 
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6.2.2.3 Different sources of biosignals 
For our input device, we focused on three different body sensors, namely: 

sEMG (gain:1000; CMRR: 110dB; passing band filter: 25-500Hz; input impedance 

>100MOhm), accelerometer (ACC) (3-axial MEMS; range: ±3G), and force 

sensitive resistor (FSR) (range: 0-10Kg; response time <5µS).  

6.2.2.4 Signal Processing 
After collecting the input signal (biosignal), this is processed through an 

algorithm to generate a control signal. Online detection of commands is based on 

a threshold value for the amplitude of the control signal, which is defined in the 

calibration procedure. Input signal, control signal and threshold can be visualized 

on the screen, as depicted in Figure 31. 

Calibration. Before patient starts to control the system, there is a simple 

calibration procedure, where the user is asked to stay for 5 seconds at rest 

position. The power of the input signal is extracted from this “signal at rest” by 

calculation of the mean value of the input signal for the 5 seconds (5000 samples, 

fs=1KHz) (Equation 2). 

 

(Equation 2) 
 

xi : magnitude of the signal in sample i 
  

 
Treshold value (Th) for the detection of commands is defined in Equation 3, 

as the power of the input signal (as defined in Equation 2) plus the standard 

deviation error of the signal multiplied by a scale factor N, which we defined 

depending on the type of input signal used. This value can then be manually 

adjusted by the user, after the calibration procedure.	
 

(Equation 3)  
 

Control signal: algorithm of variance. When a user makes a voluntary 

activation, the input signal (movement acceleration, muscle contraction, or force) 

shows a corresponding variation (increase) in amplitude. For example: if a user 

strongly contracts the muscle, sEMG will have increased amplitude.  In our 

x =
1

5000
×

5000∑

1

xi

Th = power(signalrest)−N × stdev(signalrest)
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approach, the variance of an input signal contains information about voluntary 

control of the signal. To process the control signal, we used the maximum-

likelihood estimate of the local variance (Equation 4), computed for the windowed 

signal parts, in real time (Bonato et al., 1998). This function is analogous to a 

moving average window, except for a square term, which increases the difference 

between voluntary activation and no activation (Choi & Kim, 2007).  

 

(Equation 4) 

 
xi : magnitude of the signal in sample i  
n: number of samples defined for a data window  

 

Detection of commands. The onset of a command is detected as the first point in 

the control signal that surpasses the predefined Th for a minimum interval of 

100ms. This interval was defined to filter sporadic (involuntary) activations. Figure 

31 illustrates the detection of slight movements using an accelerometer. 

Variance analysis is particularly effective to detect voluntary activations for sEMG 

signals (Choi & Kim, 2007b). Further we found that the variance algorithm can be 

generalized to detect voluntary activations with other input biosignals. This 

algorithm was then used in our system for all types of studied input signals 

(accelerometer, electromyography and force). 

6.2.2.5 Visual Biofeedback  
We developed software for online visualization of input signal and control signal. 

Users can then visualize both signals in real time, learn how to voluntarily activate 

the input signal and how to generate commands, using biofeedback strategies 

(Figure 31). When the control signal rises above the line of Th, there is a visual 

feedback for the user, indicating the generation of a command.   
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Figure 31 - Visual biofeedback window developed for the present study. Both body signal and control 

signal (from the variance algorithm) are visually presented to the user. User learns to control the body signal 
by watching it on the screen. The objective is to raise the signal above the horizontal green line, to be able to 

generate a command. 

 

6.2.2.6 Commands and customization 
The software platform includes a customization panel. Customization is an 

important factor to accommodate variability among users, particularly different 

tasks to perform. In this panel, the user can choose which type of body action 

(corresponding to a specific sensor) will be performed for control and which third-

party application should receive the command events generated by the user. As 

an example, Figure 32 shows our system controlling an onscreen keyboard for a 

writing task. Threshold can also be manually adjusted, as aforementioned. 

 

6.3 Exploratory study 

6.3.1 Participants 

With the objective of qualitatively evaluating our system, we performed an 

exploratory study including three of the participants in our research. All patients 

were between 50 and 65 years old. The selection criteria were: severe motor 

impairment in UL (few movements that patient could control) and strong 

dependence on others. Table 10 summarizes the clinical and social context of 

each participant. 
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Figure 32 - Example of the developed platform, controlling an onscreen keyboard to perform a writing 
task in a ©WordPad (from Microsoft) document. In this example, when detecting a control signal from EMG 
generated by the user, the key “Enter” is sent by the platform to the application of onscreen keyboard. This 

command performs a selection using the scanning method. 

 

6.3.2 Procedure 

Experiments were performed in a single session per participant, in their 

usual daily environment (Residence in Table 10). The purpose and procedures of 

the study were explained to patients and caregivers, before informed consent. 

Participants and caregivers were asked to give their opinion on the system, after 

the assessment. Patients were asked to show movements that they could perform; 

sensors were chosen according to the physical characteristics of those 

movements (Table 10). 

 
Table 10. Selected patients included. For each participant, this table describes the place where they live, 
clinical condition, residual movements that were used for this study, speech preservation and the sensors 
tested. 

Participant Residence Clinical 
Condition 

Residual Movement(s) 
in Upper Limbs Speech Sensors 

P1 Home ALS Right hand (closed)  No speech ACC;FSR 

P2 Elderly  
residence ALS  

Slight movements of 
the left hand fingers 
and muscle 
contractions in the arm 

Moderate 
intelligibility 

ACC;FSR 
sEMG 

P3 Long term 
care clinic ALS Slight movements of 

right index finger No speech ACC, FSR 

FRS: force resistance sensor; ACC: accelerometer; sEMG: surface electromyography 

  

A computer screen was used to provide visual biofeedback of the input 

biosignal (both input signal and processed control signal) to the patient, in real-

time. For each setup, participants tried to voluntarily activate the input signal by 

visualizing it (and its corresponding control signal) on the computer screen. 

Patients explored the system for approximately 2 minutes, watching the input 
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biosignal and practicing simple cause-effect activities. Then, participants were 

asked to perform two tasks: (Task1) to generate 5 to 10 onsets of the signal; and 

(Task 2) to generate an onset and hold it for 5 seconds (not considered for ACC 

sensors). 

 

    
 

Figure 33 – (left) Accelerometer for detection of slight movements of index finger from the left hand; (right) a 
FSR sensor placed below the thumb finger from the right hand. 

Qualitative outcomes were: sources (input biosignals) with which users 

could fulfill the proposed tasks, types of sensors that best fit to different residual 

movements and main difficulties observed in fulfilling the proposed tasks. 

Quantitative outcomes were: duration and number of onsets performed in each 

task.  

6.3.3 Results 

None of the patients had previous training sessions. We assessed voluntary 

control of movements in the body, with the feedback of patients, caregivers and 

therapists (in the case of P3), as depicted in Figure 33. After selecting the body 

sites and sensors to generate input biosignals, in each participant, we started the 

tests. Results are described in Table 11. Patients were able to fulfill the first task 

with one or more input biosignals. P2 was the only one who could voluntarily 

perform a long activation (Task 2) of the control signal (5025.2 ms) with the FSR 

sensor. P1 and P2 could control more than one input biosignal using ULs. P3 

needed a longer time to deactivate the signal. Duration of activations in Task 1 is a 

measure for the ability to activate and deactivate a command in the control signal, 

equivalent to press and release a key or switch. Input biosignals corresponding to 

Task 1 are depicted in Figure 34, Figure 35 and Figure 36 for each patient tested 

in this study, respectively.  
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Table 11. Characteristics of the selected input biosignals for tasks T1 and T2 

Part.(a) Sensor Body placement Task 1 
onsets (b) 

Task 1 
Duration (c) (s) 

Task 2 
Duration (b) (s) 

P1 FSR Right thumb pressure 5 / 5 2.5±1.1  
(0.9 to 2.8) 

No control 

P1 ACC Right thumb movement 5 / 6 1.1±0.1  
(0.9 to 1.2)  

n.a. 

P2 ACC Left index finger 10 / 10 0.4±0.1  
(0.3 to 0.6) 

n.a. 

P2 FSR Left index finger  10 / 10 0.4±1.0  
(200 to 599) 

5.0 

P2 sEMG Left arm 
Biceps 

10 / 10 0.5±0.1  
(0.3 to 0.6) 

No control 

P3 FSR Right index finger 3/4 2.2±2.6 
(0.4 to 5.8) 

No control 

(a) Participant 
(b) Number of performed onsets / Detected activations 
(c) Duration of each signal activation: Mean±Standard Deviation (Range) 
FSR: force sensitive resistor; ACC: accelerometer; sEMG: superficial electromyography 

 

6.4 Discussion 
We developed a new input device for patients with severe functional 

impairments in upper and lower limbs. One of the main positive aspects of our 

proposed system was the flexibility to adapt to each user’s characteristics. Due to 

the option for using different sensors and body sites, participants in this 

exploratory study did not have to change their environment or position to perform 

the proposed tasks. Moreover, we could observe that visual biofeedback is an 

important tool for assessment and training control of residual movements. In our 

tests, this tool was used, both by the patients, to learn to control the biosignal, and 

by the caregivers, to analyze and give feedback to the patients in the learning and 

motivation process before the tests. 

Our input device showed to be a valid instrument to glean new sources of 

input biosignals captured on the body. In spite of the small number of patients and 

difficult physical conditions of our target population, results from experimental tests 

with these users are important to support further developments.  
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Figure 34 – Plots from two input biosignals for Task 1 performed by P1 (according to Table 11).  

 

 

 
 

 
Figure 35 – Plots from three input biosignals for Task 1 performed by P2 (according to Table 11) 

 

 

 
Figure 36 – Plots from one input biosignal for Task 1 performed by P3 (according to Table 11).  
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Functional evaluation of UL dysfunction in ALSFRS-R underestimate 

residual movements that patients can perform when muscle weakness is severe 

(Wicks et al., 2009). However, these residual movements can be important for 

support in communication. In this exploratory study, patients could use residual 

movements in fingers and arm to generate input signals. In particular, 

accelerometer should be further explored as a light sensor that can capture slight 

movements which cannot be used to press keys or switches. Input signals that are 

generated from those slight movements may be used with various purposes: to 

control an ACD with scanning method access, to perform a “select” command in 

eye-tracking devices, to activate a bed alarm or be connected to any other device.  

The more input signals that a patient can generate, the more possibilities 

they have to communicate. Our system allows the assessment of function in 

performing residual movements that can be used for communication. In ALS or 

other neurodegenerative conditions, regular assessment of input signals is 

important to follow disease symptoms and enhance patients’ function in accessing 

to communication tools. For the rapid progression and patients’ dependence on 

caregivers, assessment tools and input devices that are easy to learn and control 

will have better acceptance from patients and caregivers.  

As future work, tests must be performed on a broader range of users, 

exploring new algorithms for automatic detection of voluntary actions. More types 

of sensors to capture new biosignals on the body will also be tested with this input 

device. 

6.5 Conclusions  
We developed a novel input device for ALS-patients with general muscle 

weakness. The developed system allows the use of different sensors to detect 

residual movements that are not considered in clinical functional evaluation of UL 

(ALSFRS-R). We evaluated input biosignals from three different sensors 

(accelerometer, force and electromyography) on different body parts, in this 

exploratory study that included three ALS patients in their daily care context. From 

a qualitative analysis, we could observe that our system was easy to setup and 

learn; it was also flexible to robustly transduce residual movements from multiple 

sources in the body. Biofeedback is an important feature of this system: patients 

could explore residual movements, visualize them in real time on the computer 
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screen and learn how to control them. In particular, concerning neuromuscular 

degenerative conditions, our system is important for assessment of input signals 

that a patient can generate, during progression of disease symptoms. 

6.6 New findings and their importance under research goals 
We developed a new input device for the most severely impaired ALS-

patients. Novelty of this new input device is the possibility of being used as an 

assessment tool to detect sources of input signals that are not considered in 

clinical functional evaluation. We propose biofeedback as a tool for assessing and 

learning new input signals that can be controlled by the patient to access to 

communication tools.  

This work also contributes with design requirements that are necessary for 

the development of new input devices that are to be implemented in the context of 

ALS-patients in late stages, with no previous experience on using assistive 

communication tools.  
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Chapter 7  - Discussion 
7.1 General discussion of the overall work 

This work tested the value of ACD on improving the QoL in ALS, from early 

to late stages. We hypothesized that early support for the use of ACD has a 

positive impact on the QoL of ALS-patients (and their caregivers) and we 

developed a methodology to quantitatively measure functional performance of 

written communication in early stages. We investigated markers of disease 

progression in communication tasks (typing and voice recording activities), 

considering that ACD can be used as tools for this purpose. A framework to 

explore novel monitoring tools based on typing and speech activities, in early 

stages of ALS, and novel functional input biosignals, in late stages, was an 

important contribution of this research. 

7.1.1 On upper limbs functional performance for using assistive devices  

Progression of UL dysfunction varies among ALS patients. It depends not 

only on the onset symptoms, but also on time of progression and the specific 

pattern of disease progression. Functional progression of UL symptoms may be 

evaluated with ALSFRS-R, as described in section 1.2, which assesses function in 

different activities of daily living. In this research, we studied methodologies to 

measure and characterize progression of UL function that is related to the use of 

ACD.  

We found that handwriting performance is correlated to ALSFRS-R-ul, as it 

was expected since the function of handwriting is evaluated in this subscore of 

ALSFRS-R. It is interesting to note that our method to measure handwriting 

performance can be used as a quantitative method to evaluate handwriting, which 

is well correlated to a clinical tool that is broadly used in ALS (ALSFRS-R). 

Concerning the use of the computer to write, typing performance is very 

dependent on patients’ experience in using keyboards for writing. Performance of 

WPM relates to the number of keystrokes per minute, which depends on the 

memorization of the keyboard. For this reason, our results showed high variations 

of typing performance between patients. Still, we can conclude that typing 

performance is a measure of functional ability to use a keyboard and it can be a 
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quantitative measure of experience in use. Typing performance was not correlated 

to ALSFRS-R-ul, suggesting that ALSFRS-R may not be sensible to the function of 

using a keyboard or, more generally, an ACD. Results of this work are in 

agreement with the extension suggested by Wicks et al. (2009) for the ALSFRS-R, 

concerning control of assistive devices, as described in section 2.3.1.2. This 

extension should be used in the assessments for the use of ACD. 

By evaluation of features of keystrokes extracted from the acceleration 

signal in a typing activity, we found that it is possible to monitor UL dysfunction 

that is relevant for the use of ACD. As the disease progresses, the increasing 

delay in performing keystrokes, as well as decreased acceleration of movements, 

are quantitative measures for the increasing difficulties of ALS patients in using a 

keyboard or pressing a switch. Analysis of typing can then be used as a 

quantitative method to mark UL dysfunction in ALS and contribute for the 

anticipation of the need for alternative input devices in support for communication. 

7.1.2 On longitudinal data collection in ALS, involving patients’ interaction 

As ALS progresses, several factors, mainly related to the rapid aggravation 

of symptoms, difficult a long cooperation of the patient and their caregivers in 

longitudinal research studies that involve their active participation. We studied a 

group of ALS patients with bulbar onset. This group of patients represents 25% of 

all patients and has a more rapid functional decline, which raises a difficulty for 

longitudinal studies. Notwithstanding, rapid progression was also an advantage for 

the aims of the research, since it allowed faster observation of progression of 

symptoms and stages in ALS. 

We followed a total of 30 patients with ALS, who were included in data 

collection of the different studies in this thesis. The cooperation of patients and 

caregivers was needed to monitor the use ACD, fill-in the questionnaires and 

perform the tasks related to speech, handwriting and typing recordings. Dropouts 

and variation in the number of assessments between different patients were 

mainly related to death or decreased motivation of some patients or caregivers to 

cooperate due to fast progression. As dysfunction increased and new 

complications (mainly related to feeding problems) demanded decisions on 

complex clinical intervention (sometimes hospital admission), collaboration for the 

evaluation tests was interrupted or depreciated, mainly by the caregivers. As 
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stated in Bedlack et al. (2014) “studies of people with advanced ALS are possible, 

but subject retention and protocol adherence are challenging”.   

7.1.3 On the methodology for data collection  

The methodology developed to monitor disease progression is based on 

spoken and written material collection. Having hypothesized that ACD could be 

used for in-home monitoring, we developed techniques to extract features from 

data that was captured with simple tools: a simple laptop computer or tablet 

device. Despite the fact that most data from patients was collected at clinical 

settings, the methods that we developed can be used in the patients’ home 

environment. Voice was captured with a voice recorder that is embedded in the 

computer; handwriting and typing performance were calculated from the time 

duration of each task’s completion. Concerning data from the accelerometer, our 

procedure was simple and quick to set up. Furthermore, one of the features of the 

study with the accelerometer, the mean time while pressing down the keys of the 

keyboard, can be recorded using software tools (with no need to use the 

accelerometer or other additional equipment). 

In ALS, the complexity and duration of the tests is critical to longitudinal 

studies that are dependent on the motivated involvement of patients. We used 

simple and short sentences, contrary to other clinical tests that require long 

collaboration of patients and controlled settings.  

Simplicity of procedures and equipment used in our research methods 

contribute to asseverate further exploitation of the methodology of this research in 

studies for in-home monitoring with ACD. 

7.1.4 A patient or a user of technologies 

Assistive technologies are framed in the field of Rehabilitation. In this 

perspective, the emphasis on dysfunction, as focused in this research may raise 

controversy. In fact, assistive technologies were defined as services, products or 

strategies to enhance function (described in Section 2.1), which is in accordance 

to the International Classification of Functioning, Disability and Health (WHO, 

2001). In our research work, some methodologies were focused on the evaluation 

of dysfunction. Also, the focus on the subject patient may be controversial to those 

who consider assistive technologies in the framework of modern holistic models 
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for Disability. The specific case of ALS and some other neurodegenerative 

diseases must then be considered.  

In ALS, disease progression has no return. Vital support is needed from 

early stages in most of the bulbar onset patients. Symptoms manifest rapid 

changes in overall functionality, and demand close clinical support. For these 

facts, the user of assistive technologies in the context of ALS is always a patient. 

As so, decisions on support with ACD must not disregard clinical intervention in 

other areas than communication. On the contraire, ALS patients is a target group 

where the close work of the engineers with clinical professionals, patients and 

caregivers is absolutely necessary for the adequate and successful support with 

ACD.  

7.1.5 Benefits of early support in assistive communication 

As tablet devices and Internet tools became popular and accessible in the 

mass market, most patients are starting to use communication tools prior to clinical 

communication support. Many clinicians still consider handwriting as a preferable 

communication tool when patients claim decrease in speech intelligibility with no 

decreased function in ULs; or consider the use of ACD as an ultimate resource, 

when speech and ULs are no longer accessible. This arises particularly for 

patients with low school education or socio-economic levels. Despite the fact that 

there are various software applications that can be used as communication tools 

for ALS patients with severe dysarthria but high function in ULs, clinical 

intervention should intermediate the choice of these tools early, to help the 

patients to potentiate its use in further stages of the disease (Azevedo et al., 

2009). If patients start being supported to use communication tools that can be 

further used in later stages, it is possible to raise motivation and economize 

patient’s efforts to learn and adapt to new devices, as the disease progresses. As 

Miyasaka (2013, pp.165) remarks: “every time an input device is changed, not only 

does the patient have to learn how to use it, but the caregivers also have to learn 

how to install each new device. Therefore, change a communication device can 

become a major hindrance for maintaining continuous communication in ALS 

support”.  

Positive impact in early intervention of clinicians in assisting the use of ACD 

includes: (1) improved quality of life for patients and caregivers, (2) soft adaptation 
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to communication tools, since patients may start to use simple devices for learning 

how to use the software tools and adapt to new input devices as the disease 

progresses, with reduced effort for learning new communication tools (as 

discussed in Chapter 4); (3) decrease in the cost of equipment, since a planned 

strategy for communication reduces changes of devices as the disease 

progresses; and (4) the possibility of monitoring the disease progression 

continuously in daily living (as hypothesized in Chapter 5). 

7.2 Summary of Main Results 
This work focused on the use of assistive communication devices by 

patients with ALS, from early to later stages. We found that: 

1) Early intervention with communication tools has a positive impact on QoL of 

both patients and caregivers. A trend for positive impact was found on 

psychological, well-being and support domains of quality of life (Chapter 4).  

2) ALSFRS-R may not be sensitive to functional skills needed to assessment in 

the use of communication devices:   

a) Typing performance was not correlated to clinical functional assessment of 

UL (ALSFRS-R-ul); patients could perform typing for longer than 

handwriting, as ULs function decreased (Chapter 4).  

b) Main difficulties in using ULs for accessing to ACD are increasing delay for 

pressing and releasing buttons (or keys) and reduced acceleration of 

movements (Chapter 5).  

c) Despite decrease in functional scores of ALSFRS-R, patients with poor 

experience in using computer devices improved performance in typing, as a 

result of having learned how to use communication tools (Chapter 4).  

3) Assistive Communication Devices can be used as tools to monitor progression 

of ALS.  

a) We defined a methodology to collect typing activity and speech with a 

simple and fast procedure that can be replicated out of the clinical setup, 

using ACDs (Chapter 5). 

b) Typing activity and speech recordings of running speech, carried out in 

ACs, can be used as tools to monitor progression of symptoms related to 

communication, on a continuous mode (Chapter 5).  
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4) We developed a new tool for the assessment and control of input signals 

based on various biosignals captured on the body, in particular for patients in 

late stages of ALS, that are severely disabled (Chapter 6). 

7.3 Limitations of the study 
Measuring the effect of the use of ACD on the quality of life of patients and 

caregivers was a main objective of this research. Due to the exploratory nature of 

our study, we analyzed multiple domains of quality of life. Despite the fact that we 

found a trend for a positive impact in some domains, we could not find statistical 

significance in results when considering correction for multi-comparisons. 

Nevertheless, results indicate that psychological, existential well-being and 

support domains should be investigated in further research on the impact of 

communication tools in ALS.  

It is not possible to isolate the effect of a single variable in a disease that 

affects several physical functions in a progressive way. Quality of life may be 

affected by multiple other factors than communication. In the same way, the use of 

ACDs may be conditioned by physical dysfunction but also by multiple personal 

and social factors. Following these statements, the methodology based on 2 to 6 

months intervals for evaluation of the use of ACD may be insufficient to reach 

rigorous results on aspects related to the use of assistive devices.  

Another limitation of this study was that, in spite of the fact that all patients 

were a homogeneous group of ALS patients with bulbar onset, there was a 

considerable variability between patients. Main reasons were: different 

characteristics of progression, different disease stages and motivation, or 

difficulties in following patients due to their absence to scheduled clinical 

appointments (or for the fact that they moved from home to residential care units).  
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Chapter 8  - Perspectives and Future 
Work 

8.1 Impact of early support of ACD on longitudinal research for ALS 
Overall, studies performed in this thesis have exploratory characteristics 

due to multiple comparisons and reduced samples. Nevertheless, we developed 

methodologies and novel techniques that can be replicated in future projects on 

the use of communication tools in ALS. Further studies should include a larger 

sample of patients and controls are needed. 

We studied the effects of early intervention in the use of assistive 

communication. From results of this research we hypothesize that early 

intervention with ACD will reduce the cognitive effort of later support in 

communication. Those patients that gain skills for using communication tools in 

early stages will be more motivated to use those tools during the course of the 

disease. Further investigation is needed to study the impact of early use of ACD 

on patients’ motivation and acceptance of more complex technologies in later 

stages (e.g. the impact on the use of BCIs). 

Concerning the study of the markers of disease progression using UL and 

speech functions, future research is needed to test the proposed methodologies in 

a larger population of patients with ALS, using remote data collection. Continuous 

data from a large group of patients would improve the characterization of UL and 

speech dysfunction towards a better clinical support for the use of ACD.   

Most studies that involve the collaboration of patients are difficult to proceed 

when motor impairment is high. Methodologies that were developed in this 

research for the early use of ACD can be further explored for the development of 

new tools for assessing patients from home, from early to late stages. Evaluation 

instruments that can be accessed and filled-in by patients through communication 

tools can support novel longitudinal research, for example on cognitive screening 

or quality of life evaluation. 

8.2 Other populations that may benefit from the findings in this work 
Our results can be further explored in other progressive neurological 

conditions. While some aspects of the disease symptoms can be specifically 
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characteristic of ALS, methods and technologies used in this research work can be 

interesting in the study of disorders that limit communication but not language and 

consciousness (McCluskey, 2013). Methods that were developed during our 

research for using ACD as a tool to monitor speech and UL progression can be 

further explored for either progressive or potentially reversible disorders. Some 

examples are Parkinson’s disease, Muscular Dystrophy, Multiple Sclerosis or 

some stroke conditions. Moreover, the developed platform for the use of different 

input biosignals, based on biofeedback training, was generally designed for those 

who are severely disabled. We have performed another study with two patients 

with brainstem stroke and one with traumatic brain injury for the assessment of 

input biosignals, which demonstrates application of this novel platform to other 

conditions than Amyotrophic Lateral Sclerosis.   

8.3 Modern paradigms for Assistive Communication Devices  
Research on how people interact with technology is leading a more 

comprehensive approach on the design of technologies that engage patients, their 

caregivers and health professionals. While traditionally, technologies developed 

for Healthcare were exclusively for the use of health professionals (for example, 

tools for diagnostic, monitoring or treatment purposes), presently, technologies 

that are also used by the patients and improve the flow of information and 

communication between all parts (patients, caregivers and the care team) are 

providing novel integrated experiences of Healthcare (Ball & Lillis, 2001; Urmimala 

et al., 2014). 

In addition to the primary objective of ACD of compensating speech or UL 

dysfunction in ALS, we advocate that these devices are also valuable instruments 

to support the aforementioned novel integrated experiences in Healthcare. In fact, 

ACD are technologies to be used by the patients in their daily living environments 

to improve communication and social connections, enhance function in various or 

specific activities of daily living and preserve autonomy. Furthermore, in the frame 

of the neurological progressive diseases, modern ACD can give to ALS patients 

the access to a framework of new services, devices and strategies that is being 

developed with enormous impact in Europe: the Ambient Assisted Living (AAL)3 

                                            
3 AAL. The general objective of this new field of research (created in the context of European demographic 

changes) is to support mass research and development of information and communication technologies that enhance the 
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(Röcker & Ziefle, 2011). In line with the general objectives of AAL, assistive 

communication devices can be further explored as personal health systems 

(INTEL, 2008) playing a major role in connecting the patients to the health and 

social care professionals and services.  

  

 
 
 
 
 
 
 
 
 
 
 

  

                                                                                                                                    
quality of life, extend the autonomy and social participation of the elderly population and thus, reduce the costs of health and 
social care (Rashidi & Mihailidis, 2013; van den Broek et al., 2009) 
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Appendix A - Speech and phonation 
modelling 

This appendix includes a description of the methodology used in estimating 

formant positions, spans, area and centralization, to derive the indices for jaw and 

tongue neuromotor affection, as extensively described in Gómez-Vilda et al. 

(2015). 

Speech recordings were used to estimate a prototype of the vowel triangle 

(as in Figure 26) in the domain of the first two formants F2 vs. F1 corresponding to 

pairs {F1(n), F2(n)}, where n is the discrete time index. Formant distributions used 

to estimate the distribution quantiles were: 

 a) 

where γi(ν) is the probability density function of formant i in frequency ν, and 

θ is the specific quantile threshold (for instance θ=0.03 would correspond to a 3% 

quantile). In the present study the following definitions apply: θ1=0.03, θ2=0.5 and 

θ3=0.97.  

A.1 Ideal vowel triangle 
An ideal vowel triangle enclosing most of the pair estimates {F1(n), F2(n)} 

was defined (as illustrated in Figure 26) by the vertices given by 

 i) 

where Vtl, Vbl and Vcr are correspondingly the top left, bottom left and center 

right vertices, corresponding approximately to the positions tending to extreme 

vowels /i/, /u/ and /a/ on the standard vowel triangle.  

Triangle geometrical centroid Cg (intersection of angle bisectors), formant 

span centroid Cf, and the statistical centroid Cs, were defined as: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∫∫
∞

∞−

∞

=

θννγννγ
θν

θ ddq i
q
ii

i

)()(arg

Vtl = q1
θ1,q2

θ3{ }
Vbl = q1

θ1,q2
θ1{ }

Vcr = q1
θ3,q2

θ2{ }



148 

  

 

where the geometrical centroid coordinates f1g and f2g can be estimated as: 

 ii) 

A.2 Formant spans (∆F1 and ∆F2) 
The formant spans ΔF1 and ΔF2 are defined as the range swept by both 

formants referred to the vertices in the ideal vowel triangle. Their normalized 

versions are evaluated in reference to the geometric centroid { , } of 

female control subject CF36 as: 

 

 

 

A.3 Modulus of the normalized formant span (MNFS) 
The formant span may be seen as a vector with the modulus and argument: 
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Appendix B – Questionnaires of Quality 
of Life and Communication  
B.1 ALSFRS-R 

 
1. ARTICULAÇÃO VERBAL 

Discurso normal         ! 

Perturbações detectáveis no discurso      ! 

Inteligível com repetição        ! 

Discurso combinado com comunicação não verbal     ! 

Perda do discurso útil                                             ! 

2. SALIVAÇÃO 

Normal          ! 

Ligeira, mas com excesso de saliva na boca, talvez se babe durante a noite  ! 

Moderado excesso de saliva, um mínimo de baba     ! 

Marcado excesso de saliva: com alguma baba     ! 

Marcado excesso de baba: requer uso constante de lenço    ! 

3. DEGLUTIÇÃO 

Hábitos alimentares normais       ! 

Problemas prematuros ao comer, com ocasional sufocamento   ! 

Alterações na consistência da comida      ! 

Necessita de sonda para alimentação suplementar     ! 

Não se alimenta pela boca (alimentado exclusivamente por via  

parentérica ou entérica)         ! 

4. ESCRITA 

Normal          ! 

Lenta e irregular, todas as palavras são legíveis     ! 

Nem todas as palavras são legíveis       ! 

Capaz de agarrar a caneta, mas incapaz de escrever    ! 

Incapaz de segurar a caneta       ! 

5.a. CORTAR A COMIDA E MANEJAR OBJECTOS (doentes sem gastrostomia) 
Normal          ! 

Algo lento e desajeitado mas não necessita de ajuda    ! 

Pode cortar a maior parte da comida, embora lento e  

desajeitado, necessita de alguma ajuda      ! 

A comida tem que ser cortada por alguém, mas ainda se  

consegue alimentar lentamente       ! 

Necessita ser alimentado        ! 



150 

 

 

5.b. CORTAR A COMIDA E MANEJAR OBJECTOS (doentes com gastrostomia) 

Normal          ! 

Desajeitado, mas capaz de desempenhar todas as actividades independentemente ! 

Precisa de alguma ajuda para apertar e desapertar o botão da gastrostomia  ! 

Dá ajuda mínima à pessoa que cuida dele/a      ! 

Completamente dependente       ! 

6. VESTIR E HIGIENE PESSOAL 

Normal          ! 

Independente apesar da tarefa requerer esforço e ter eficácia diminuída  !   

Ajuda intermitente ou substituição de métodos     ! 

Necessita de auxilio para cuidado pessoal      ! 

Total dependência         ! 

7. VOLTAR NA CAMA E AJUSTAR A ROUPA DA CAMA 
Normal          ! 

Algo lento e desajeitado mas não necessita de ajuda    ! 

Pode virar-se sozinho e ajustar os lençóis mas com muita dificuldade  ! 

Pode iniciar mas não voltar-se ou ajustar os lençóis sozinho    ! 

Incapaz          ! 

8. ANDAR 

Normal          ! 

Prematuras dificuldades ambulatórias      ! 

Caminha com ajuda         ! 

Apenas movimento funcional não ambulatório     ! 

Sem movimentos úteis dos membros inferiores     ! 

9. SUBIR ESCADAS 

Normal          ! 

Lento          ! 

Moderada instabilidade e fadiga       ! 

Necessita assistência        ! 

Impossível          ! 

10. RESPIRAR  

Normal          ! 

Falta de ar para mínimo esforço (ex. andar, falar)     ! 

Falta de ar em repouso         ! 

Assistência ventilatória intermitente (ex. nocturna)      ! 

Dependente do ventilador         ! 

 

TOTAL:     
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B.2 MGill Quality of Life Questionnaire (in Portuguese) 
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B.3 WHOQOL-BREF (in Portuguese) 
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B.4 Communication Effectiveness Index (adapted and translated from 
Beukelman et al. (2000) 

 
 Com que eficácia comunica quando... 

 

1. conversa com pessoas familiares num ambiente calmo? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

2. conversa com estranhos num ambiente calmo? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

3. conversa ao telefone? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

4. conversa em ambiente ruidoso (ex: evento social, restaurante, centro comercial)? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

5. conversa com alguém a uma certa distância (entre divisões da casa)? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

6. fala para um grupo (ex: jantar familiar)? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

7. conversa com o seu médico? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

8. conversa com o seu cuidador? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

9. quer transmitir uma situação importante e urgente (p.ex., pedir ajuda)? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  

10. transmite necessidades e opiniões acerca de decisões importantes para a sua vida? 

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 
Não comunico    Faço-me entender muito bem  
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Appendix C – Transcription of 
communication from some patients and 
caregivers (in Portuguese) 
Patient A 

[An email from an ALS patient to the medical doctor, few weeks before she died] 
 

 
 
“a doença roubou-me quase tudo, o corpo, os amigos que afinal não existiam, 
toda uma vida... não me roubou a dignidade, os afectos, a relação com os outros 
é bom receber algo mais por mim. 
(…) que posso comunicar e estar ligada ao mundo que posso estar agora a falar 
consigo é tão bom dizer o que penso e exprimir os meus sentimentos sem ser os 
outros a falar por mim.(…)” 
“no dia oito de abril vou à gastro mostrar a peg porque tem comida agarrada ao 
tubo (…) já me custa respirar ainda metem uma boquilha e um tubo na boca…” 
 
 
 

Patient B 

[Saved on a text file (in the ACD) to present in the clinical appointment] 
 
 “BOA TARDE PROFESSORA ANABELA.  ESTOU A AGUARDAR NOVA CONSULTA ESTANDO 
NUMA SITUAÇÃo RAZOAVEL DE SAUDE COM OS LIMITES HABITUAIS ,MAS TENHO 
ULTIMAMENTE ALGUMAS DORES NO PESCOÇO TENDO  ALGUMAS DIFICULDADES 
QUANDO  ME MOVIMENTO PARA O LADO DIREITO. NA MOBILIZAÇÃO O LADO DIREITO 
ESTÁ MAIS FRACO, ESTANDO A FALA TAMBEM MAIS FRACA.APESAR DESTAS 
FRAQUEZAS MANTENHO-ME TRANQUILO NÃO SÓ PELO CONHECIMENTO DO 
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CONSUMISMO DA DOENÇA MAS TAMBEM PELA EQUIPA MEDICA QUE ME DÁ 
ASSISTENCIA  (PROFESSOR MAMEDE  E  PROFESSORA ANABELA), PELO QUE JA FICAVA 
FELIZ SE O CONSUMISMO FICASSE COMO ESTOU E ASSIM VIVER AINDA MAIS 
TRANQUILO. PROFESSORA ANABELA ,FUI RECENTEMENTE SURPREENDIDO COM UMA 
CONSTIPAÇÃO COM MUITA  ESPETURAÇÃO  A JUNTAR-SE Á QUE JA EXISTIA E TOSSE 
QUE ME ATACA MUITO Á NOITE O QUE ME LEVOU A NÃO CONSEGUIR COLOCAR A 
MASCARA ,FELIZMENTE VOU ESTANDO MELHOR PELO QUE ESTOU CONVENCIDO QUE 
DENTRO DE DIAS JÁ A  VOU CONSEGUIR COLOCAR,A QUAL,PARA ALEM DOS 
PROBLEMAS QUE NÃO TENHO CONSEGUIDO ULTRAPASSAR,ME DÁ QUANDO POSSIVEL 
ALGUMA TRANQUILIDADE DURANTE O SONO.ESSES PROBLEMAS QUE A PROFESSORA 
ANABELA JA CONHECE(FUGAS) QUE ME DÃO GRANDE TURBELENCIA E 
DESGASTE,COMPLICAM A NOITE.CONSULTEI O MEU DENTISTA O QUAL ME DISSE QUE 
NÃO É A PLACA DENTARIA QUANDO A TENHO COLOCADA ME PROVOCA ESSAS FUGAS E 
QUE ME ACONSELHA A NÃO DORMIR COM ELA COLOCADA. SUBLINHOU AINDA QUE 
ESSAS FUGAS PODEM TER ORIGEM DA FALTA DA PLACA MAS TAMBEM ESSA FALTA E A 
MAGREZA DA CARA SE JUNTAM NA ORIGEM DESSAS FUGAS,SENDO ATÉ 
POSSIVELMENTE A  MAGREZA A UNICA CAUSA DESSAS FUGAS.JÁ SEI QUE A MINHA 
ESPOSA CONTATOU A PROFESSORA ANABELA E QUE VOU TER CONSULTA NA PROXIMA 
QUARTA- FEIRA.”      

 

Patient C 

 [Typing on a keyboard using upper limbs. Using a speech synthesizer for the first 
time. Communication with her husband and with me.]  

    
“tenho de ir fazer compras. Ouviste? Agora estás tramado comigo. 
É tanta coisa é normal esquecer.. mas quem é que paga os computadores?  
tudo vale a pena se a alma nao e pequena” 
 
 
[Three months later, this patient is using a head switch for writing on a virtual 
keyboard, due to severe dysfunction of UL. She wrote:] 
“vamos ao decatlokn e ao oikea conpras roupa e almofadas que esta calor  a 
maria qpodia fazer sopa de ervilhas com ovo a maria pode vir as 10 h mané 
podias ir com o joão amanhã as compras a maria faz lista do que falta nao temos" 
 
[Her son after her mothers’ death:] 
“She wrote letters for everyone saying goodbye.” 
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Patient D 

 [A patient was telling me what her son told her, after she started using the ACD 
with speech synthesizer:] 
 
“don’t exaggerate[referring to the use of the ACD]. Keep talking” 
In the same session she expressed that the ACD was her “right arm”. 
 

  
 

Patient E 

[email that I received from a patient, about her computer:] 
“quarta-feira, 8 de Abril de 2015 
Se tudo na vida tem uma razão de ser, eu continuo a procurar explicação para um 
sem número de provações a que fico sujeita ... ! Estive nove dias sem me poder 
comunicar ..... já é penitencia bastante estar prisioneira em meu próprio corpo e 
estar privada de falar sem o único meio de comunicar que é o computador, é 
sentir -me enterrada viva só com os olhos de fora ! 
Como são importantes as palavras faladas para a própria sanidade mental ... ! 
porque quando se tem de ouvir sem a capacidade de fugir, argumentar e 
responder, fica uma tarefa muito ardua para um simples mortal !!! 
(…) que me ajuda a estar viva e conectada as palavras e ao Mundo !” 
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Patient F 
 
 [a patient living in a palliative care unit, explaining to me how to adjust ACD to her 
context:] 
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Appendix D - Published papers facsimile 
 

 


