Soil moisture retrieval over a vegetation-covered area using ALOS-2 L-band synthetic aperture radar data

Y Gao, M Gao, L Wang, O Rozenstein - Remote Sensing, 2021 - mdpi.com
Y Gao, M Gao, L Wang, O Rozenstein
Remote Sensing, 2021mdpi.com
Soil moisture (SM) plays a significant part in regional hydrological and meteorological
systems throughout Earth. It is considered an indispensable state variable in earth science.
The high sensitivity of microwave remote sensing to soil moisture, and its ability to function
under all weather conditions at all hours of the day, has led to its wide application in SM
retrieval. The aim of this study is to evaluate the ability of ALOS-2 data to estimate SM in
areas with high vegetation coverage. Through the water cloud model (WCM), the article …
Soil moisture (SM) plays a significant part in regional hydrological and meteorological systems throughout Earth. It is considered an indispensable state variable in earth science. The high sensitivity of microwave remote sensing to soil moisture, and its ability to function under all weather conditions at all hours of the day, has led to its wide application in SM retrieval. The aim of this study is to evaluate the ability of ALOS-2 data to estimate SM in areas with high vegetation coverage. Through the water cloud model (WCM), the article simulates the scene coupling between active microwave images and optical data. Subsequently, we use a genetic algorithm to optimize back propagation (GA-BP) neural network technology to retrieve SM. The vegetation descriptors of the WCM, derived from optical images, were the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the normalized multi-band drought index (NMDI). In the vegetation-covered area, 240 field soil samples were collected simultaneously with the ALOS-2 SAR overpass. Soil samples at two depths (0–10 cm, 20–30 cm) were collected at each sampling site. The backscattering of the ALOS-2 with the copolarization was found to be more sensitive to SM than the crosspolarization. In addition, the sensitivity of the soil backscattering coefficient to SM at a depth of 0–10 cm was higher than at a depth of 20–30 cm. At a 0–10 cm depth, the best results were the mean square error (MAE) of 2.248 vol%, the root mean square error (RMSE) of 3.146 vol%, and the mean absolute percentage error (MAPE) of 0.056 vol%, when the vegetation is described as by the NDVI. At a 20–30 cm depth, the best results were an MAE of 2.333 vol%, an RMSE of 2.882 vol%, a MAPE of 0.067 vol%, with the NMDI as the vegetation description. The use of the GA-BP NNs method for SM inversion presented in this paper is novel. Moreover, the results revealed that ALOS-2 data is a valuable source for SM estimation, and ALOS-2 L-band data was sensitive to SM even under vegetation cover.
MDPI
Showing the best result for this search. See all results