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Abstract

Implementing machine learning in healthcare, especially for heart disease predic-
tion, is crucial for saving lives through accurate diagnosis. Yet, the effectiveness of
these models is constrained by a lack of extensive, annotated datasets, which are
crucial for training robust models. Additionally, there is an under-use of existing
knowledge graphs (KGs), which contain structured domain knowledge that could
improve the performance of models. To address this challenge, our study intro-
duces approaches that integrate KG embeddings with tabular data, with the goal
of improving the performance of machine learning algorithms for heart disease
prediction. We conduct a comparative analysis of various methodologies to merge
tabular data with KGs, focusing on heart disease, and evaluate the performance
of two embedding algorithms in augmenting datasets for more accurate machine
learning applications. Our methodology, which involves testing embeddings from
diverse KGs, has consistently shown improvements in model performance. Specifi-
cally, we increased the accuracy of the Feed-Forward Neural Network from 82%
to 85% and the F2 score for the K-Nearest Neighbors model from 71% to 80%.
This advancement offers a promising direction for leveraging semantic information
from KGs for knowledge-enhanced machine learning in healthcare.

1 Introduction

In the rapidly evolving landscape of Artificial Intelligence (AI), the fusion of symbolic reasoning
with machine learning (ML) has given rise to a novel paradigm known as Neurosymbolic AI (NeSy)
[5, 9, 20]. This convergence has the potential to overcome the limitations of traditional AI by
integrating the interpretability and logical rigor of symbolic AI with the adaptive learning capabilities
of ML methods. Central to this integration is the use of knowledge graphs (KGs), which serve as a
structured representation of domain-specific knowledge, enabling AI systems to process and interpret
vast amounts of data more effectively [2, 6, 8, 25].

Despite these advancements, ML models often lead to suboptimal performance, particularly in
domains where data can be sparse or of poor quality [18]. This is especially the case in the prediction
of medical diagnostics, where the inconsistency and scarcity of data significantly hinder the models’
performance [11].

Addressing this challenge, this paper proposes a novel approach that leverages the rich information
contained within KGs to supplement the data used in ML algorithms. By integrating background
knowledge from these sources, we aim to enhance the accuracy and F2 score of ML models in the
medical domain. Our research is guided by the following three research questions:

• RQ1: How can we best infuse KGs as input into a ML pipeline in order to enhance its
performance, in terms of accuracy and F2 score?
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• RQ2: In what ways do the size and structural variations of KGs affect performance gains
among various ML algorithms?

• RQ3: How do different ML algorithms perform when information from KGs is infused?

In order to answer these research questions, our methodology includes the following steps: (i)
enriching existing ontologies with specific instances from a dataset, then (ii) subsequently using two
different embedding techniques on those KGs to generate vector embeddings. Next, (iii) we combine
these embeddings with traditional tabular data, creating more comprehensive datasets that includes
additional features derived from the embedding space. Finally, (iv) we use these enriched datasets to
train ML models for the prediction of heart disease.

The main contributions of this research are as follows:

• We explore and compare methodologies for integrating KGs into ML pipelines, with a focus
on heart disease. We introduce an innovative feature engineering approach that enriches
datasets with KG insights. Our analyses evaluate the efficacy of two embedding algorithms
in merging KGs with tabular data, aiming to enhance ML models’ robustness. This work
addresses RQ1 by demonstrating various strategies for KG infusion in ML, highlighting
their potential in medical applications.

• We empirically demonstrate that incorporating KGs, with their diverse structures and sizes,
generally enhances ML model performance, notably in terms of accuracy and F2 scores. We
show a variation in how different algorithms benefit from KG integration; some algorithms
achieve optimal performance with smaller-sized KGs, while others excel when leveraging
larger graphs. This indicates that despite the size of the KG, its integration consistently
improves upon baseline models. This finding responds to RQ2.

• We compare the performance of various ML algorithms, both with and without the infusion
of additional knowledge derived from KGs. Our findings demonstrate the impact of this
integration on algorithms’ performance, effectively addressing RQ3.

The rest of the paper is structured as follows. Section 2 provides an overview of the related work,
this is followed by Sections 3 and 4, where we discuss the methodology used for our approach along
with the experiment setup in Section 5. Then in Section 6 we show and analyze the results of our
experiments, and we conclude our findings and discuss the future work in Section 7.

2 Related Work

We start by discussing the use of ML models for heart disease prediction, then, we examine existing
literature on the enhancement of ML predictions through the incorporation of semantic knowledge,
and finally, we discuss a broader field where sub-symbolic and symbolic techniques are combined,
known as Neurosymbolic integration.

Machine Learning for Heart Disease Prediction. The application of ML in healthcare, particularly
for predicting heart disease, has been an area of significant research interest. Early efforts in this
domain primarily relied on extensive tabular datasets, such as electronic health records and clinical
trial data. Studies such as those by Yadav et al. [24] and Shah et al. [21] demonstrate the effectiveness
of traditional ML algorithms in predicting heart disease, while Mohan et al. [16] combined two
different ML techniques to enhance prediction accuracy.

The performance of ML models is often hindered by the lack of data or data of suboptimal quality. In
the healthcare domain, ontologies, as discussed by [10, 17, 12], provide a structured and semantically
rich layer of information, that can be used to improve the contextual understanding of ML models.

Enhancing Machine Learning Predictions with Semantic Knowledge. To address the challenges
of ML methods, in terms of data-reliance, recent research has explored the integration of semantic
knowledge, such as ontologies and KGs, into the ML framework, in various domains. In their study
on opinion mining, Alfrjani et al. [1] merge semantic knowledge bases with ML to enhance data
analysis and classification accuracy. Their methodology involves constructing a "Semantic Feature
Matrix," capturing structured semantic information related to domain features in reviews. Similarly,
in the field of smart building management, Szilagyi et al. [23] examine an intelligent system that
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integrates ML and semantic knowledge, in the form of taxonomies, schemas, logic rules and so on.
This hybrid model optimizes building management, highlighting the synergy between data-driven
insights and rule-based knowledge. Taking a distinct approach, Ziegler et al.’s [26] research focuses
on enhancing neural networks with semantic knowledge using graph embeddings for the credit-card
fraud detection task. In their approach they used embeddings created for country nodes in DBpedia
[15] as well as they augmented the dataset further with information about public holidays and showed
that injecting semantic background knowledge improves the classification. Bhatt et al.[2] present
four case studies showcasing the application of KGs (in different forms) to enhance ML: sentiment
analysis, personalized news recommendation, machine translation and recommender systems.

The papers discussed above demonstrate that the integration of ML with semantic data yields
significant benefits. Therefore, in this paper, we aim to apply this approach within the domain of
heart disease prediction.

Neurosymbolic Integration The integration of symbolic and sub-symbolic AI techniques, known
as neurosymbolic, significantly advances the field of AI by integrating complex reasoning with
data-driven learning. There are different possibilities on integrating these two techniques. Henry
Kautz, in his 2022 lecture "The Third AI Summer" [13], identified various forms of these neurosym-
bolic aproaches, each offering unique approaches to combining symbolic reasoning with neural
networks. This classification provides a clear understanding of the diverse methodologies and poten-
tial applications of these hybrid techniques in AI. Similarly, Sheth et al. [14, 22] distinguished three
levels of knowledge infusion into neural models: shallow, semi-deep, and deep. Shallow infusion
involves the integration of syntactic and symbolic knowledge at the ML algorithm’s input level.
Semi-deep infusion incorporates this knowledge at the intermediate layers of the neural network,
while deep infusion, the most integrated approach, embeds knowledge directly within the neural
network, fostering a deeper interaction between knowledge and learning processes. Our research
aligns with the shallow infusion approach, utilizing syntactic and symbolic knowledge as integral
parts of the input to a ML algorithm. Our approach enriches the input data with semantic information,
thereby enhancing the model’s comprehension and processing capabilities.

Our research builds upon these foundations, using KGs as supplementary data sources to train ML
models. We introduce a novel approach in the heart disease domain, incorporating embeddings from
KGs into ML models, a method not previously explored, neither in medical prediction nor more
broadly in NeSy inputs. Additionally, to the best of our knowledge, we are the first to examine how
the size and structure of KGs, when used to train a ML model, affect its performance.

3 Problem Definition

This study aims to predict heart disease using ML techniques applied to clinical data. We focus on
the challenge of accurately diagnosing heart disease based on a range of patient health indicators,
highlighting the critical role of predictive analytics in improving medical outcomes.

Our primary data source is the Heart Disease dataset 1 from Kaggle, which includes information
on 303 patients. For example, consider a patient profile extracted from the dataset: a 41-year-old
female with atypical angina, a resting blood pressure of 130 mmHg, cholesterol levels at 204 mg/dL,
a normal fasting blood sugar, left ventricular hypertrophy on ECG, a maximum heart rate of 172 bpm,
no exercise-induced angina, a 1.4 mm ST depression, an upsloping ST segment, no major vessels
observed via fluoroscopy, and a normal thalassemia result. The goal is to predict the presence or
absence of heart disease. We refer to ’original’ dataset the experiments performed with only the
tabular data as shown in Figure 1a, using ML algorithms when no external knowledge is used.

4 Approach: Knowledge Graphs integration in ML models

In this section, we discuss our approach for integrating knowledge graphs (KGs) to augment the
data used to train ML models, aiming to improve its performance. Our methodology consists of
three steps: firstly, we generate KGs from existing ontologies; secondly, we apply KG embedding
algorithms to transform these graphs; and finally, we discuss various strategies that we used to utilize
these embeddings to augment tabular data, which are then used to train ML models.

1https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
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Figure 1: Approaches for medical diagnostic problem with variations of the input data: (a) Baseline
method (without KG), (b) KG embeddings as direct inputs, (c) KG embeddings combined with
tabular data, and (d) Feature engineering with distance metrics from KG embeddings.

Table 1: Details of the KGs for heart disease domain.
KG Logical Axioms Classes Object prop. Data prop.

Small 4637 29 6 10
Extended 6682 1664 6 10
Snomed 1963 80 24 10

Step 1. To enhance the predictive capabilities of the ML models, we have incorporated additional
insights from three distinct KGs, each offering a unique perspective on the features present in the
Heart Disease dataset. The KGs used we refer to as small, extended, and snomed. We obtained these
KGs by populating existing ontologies with data from the original dataset discussed in the previous
section. The small KG is created by populating the handcrafted ontology from Trepan Reloaded
[4], which represents the features from the heart disease dataset. The extended KG, is created by
populating an existing ontology 2, which we extended with the features from the dataset, and the
snomed KG, is created by the population of the extracted ontology from SNOMED-CT 3, with the
approach introduced by Chen et al. [3], that extracts ontologies from SNOMED-CT for specific
domain based on an input set of seed-concepts that need to appear in the output ontology.

In Table 1, the details of KGs are outlined through key components: logical axioms that ensure
the ontology’s consistency by defining class and property relationships; classes, which are the
ontology’s fundamental elements e.g., ’Patient’ or ’Disease’; object properties that link entities, such
as ’hasSymptom’ connecting ’Patient’ to ’Symptom’; and data properties that detail entities with
specific attributes, such as a ’Patient’s’ age.

Step 2. For the transformation of these KGs into a format readable by ML algorithms, we employed
two embedding algorithms: RDF2Vec [19] and Node2Vec [7]. RDF2Vec is specifically designed for
RDF (Resource Description Framework) graphs in the Semantic Web, using random walks to generate
sequences from RDF graphs, which are then converted into embeddings via Word2Vec models,
capturing both semantic and relational attributes. Node2Vec, on the other hand, is a more versatile
algorithm suitable for various graph types, whether labeled or unlabeled, directed or undirected.
It employs random walks with an adjustable bias parameter to explore different search strategies,
effectively capturing both the local neighborhood and global structure of the graph. Thus, while
both methods use random walks for generating embeddings, RDF2Vec specializes in the semantic
web domain, focusing on semantic relationships, whereas Node2Vec is adaptable to diverse graph
structures, emphasizing structural information.

2https://bioportal.bioontology.org/ontologies/HFO
3https://www.snomed.org
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Table 2: Parameter grid for ML methods
Method Parameter (Grid) Values

KNN n_neighbors [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
SVM C; kernel; probability [0.1, 0.2, ..., 2.1]; linear; True
XGB learning_rate [0.01, 0.02, ..., 0.20]

NN
layers; activation;

loss; optimizer
[32, 16, 1]; [relu, relu, sigmoid];

binary crossentropy; adam

Step 3. Leveraging the capabilities of RDF2Vec and Node2Vec, with the goal of enhancing ML
algorithm performance, we have created six datasets that use the rich semantic and topological
information encoded by these embeddings, either alone or in addition with the original dataset. Then
we used these augmented datasets to train ML models. These approaches include:

• Baseline: It represents the traditional approach for training a ML algorithm (shown in
Figure 1a), where as input is a tabular dataset, in our case original dataset.

• RDF2Vec and Node2Vec: These approaches involve training ML algorithms using datasets
exclusively composed of RDF2Vec and Node2Vec embeddings, respectively. These em-
beddings are obtained by converting the KG into a vector space, effectively capturing the
semantic and topological characteristics of the graph’s resources., shown in Figure 1b.

• Combined RDF2Vec and Combined Node2Vec: These approaches involve training ML
algorithms with datasets that are fusion of the original dataset with RDF2Vec and Node2Vec
embeddings, respectively, as additional columns (shown in Figure 1c). This ensures that each
instance (Patient) is represented not only by the original features but also by a corresponding
vector space representation. This augmentation of original dataset is intended to provide a
richer set of features to leverage both raw features and the semantic knowledge.

• FE_RDF2Vec and FE_Node2Vec: These approaches use datasets enhanced with RDF2Vec
and Node2Vec embeddings through feature engineering for training ML algorithms (shown
in Figure 1d). In addition to the original features, two extra features are incorporated
to further refine the sample representations. These new features are calculated based
on the Euclidean distances from the sample embeddings to predefined class centroids.
Specifically, for each patient in the dataset, two additional columns are introduced. The
first column represents the Euclidean distance between the patient’s embedding (generated
through RDF2Vec or Node2Vec) and the vectorial representation of the ’yes’ class centroid,
indicating the presence of heart disease. The second column, similarly, denotes the Euclidean
distance to the ’no’ class centroid, representing the absence of heart disease. By including
these distance metrics, the datasets are enhanced to more accurately reflect the proximity of
each patient’s data to the known class centroids, thus potentially improving the classification
performance in identifying whether a patient has or does not have heart disease.

5 Experiment Setup

The goal of our experiments is to evaluate the performance of ML models in predicting heart disease
by leveraging the integration of domain knowledge from knowledge graphs with the original dataset.

For our experiments we used fours different supervised ML models, these being: (i) K-Nearest
Neighbors (KNN), (ii) Support Vector Machines (SVM), (iii) eXtrem Gradient Boosting (XGB) and
(iv) Feedforward Neural Network (NN). We choose the first two models because they deal with
distances and since we are using KG embeddings, we expect a better performance, and the other
two to investigate applicability for other more complex models. As part of the training process, we
tuned the hyperparameters of the models using a grid search, for which the search spaces of the
hyperparameters are shown in Table 2.

To evaluate our approach, we used two evaluation metrics: accuracy and the F2 score. Accuracy is
defined as the proportion of correctly predicted instances relative to the total number of instances.
This metric provides a straightforward measure of overall model performance. Alongside accuracy,
we used the F2 score, which is a more advanced metric that combines recall and precision, with a
greater emphasis on recall. This choice of the F2 score is particularly pertinent in the context of
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heart disease prediction, where the objective is to maximize the identification of true positive cases.
Such an approach is crucial in medical diagnostics, as it prioritizes the detection of all potential true
cases, even at the expense of a higher false positive rate. This strategy ensures that fewer true cases
are overlooked, which is vital in a healthcare setting where the cost of missing a true case can be
significantly higher than the cost of a false alarm.

6 Results

In this section, we present the results from our evaluation, based on the methodology Sections 3 and 4
and setup discussed in Section 5.

6.1 Infusing Knowledge Graphs into Machine Learning Pipelines (RQ1)

Table 3 show the average accuracy and F2 scores for different models using different inputs and when
information from small, extended and snomed KGs are being used respectively. We can see that
using the distances of the instances to the target classes as additional features to the tabular data, to
train ML models, outperforms other datasets across all the models (KNN, NN, SVM and XGB) in
both accuracy and F2 score across all KGs. This indicates the effectiveness of feature engineering
combined with Node2Vec embeddings in enhancing model performance irrespective of KG modeling
and ML model. Notably, K-Nearest Neighbors (KNN) and Neural Network (NN) models exhibit the
highest performance gains with FE-N2V. For KNN the F2 score increases from 71% to 79%, 78%
and 80% with small, snomed and extended KG respectively, and for NN from 78% to 84%, 82% and
82% with small, snomed and extended KG respectively.

Additionally, these results indicate that models utilizing the FE-R2V feature engineering approach
show a decrease in performance when applied to extended KGs. This suggests that the distance-to-
target-class features added from RDF2Vec are less effective when dealing with larger, more complex
KGs, possibly due to overfitting or noise amplification. In contrast, Node2Vec, focusing on local
neighborhood structures, is likely less affected by the complexity of the KG, thus avoiding these
pitfalls and maintaining more consistent performance.

On the other hand, Combined RDF2Vec, and Combined Node2Vec approaches show similar perfor-
mance trends, suggesting that the addition of RDF2Vec or Node2Vec embeddings to the original
dataset maintains or slightly improves model performance. Whereas, RDF2Vec and Node2Vec
embeddings alone (without combination with the original dataset) generally lead to a decrease in
performance. This could be due to the loss of some critical features present in the original dataset.

Moreover we can observe that, even though RDF2Vec is designed specifically for KGs, its perfor-
mance relative to Node2Vec is lower for our case. Node2Vec’s ability to capture diverse structural
relationships and align better with our models contributes to its better performance. Additionally,
the effectiveness of adding embeddings as columns to the original dataset depends on whether they
provide non-redundant information. Node2Vec, focusing on preserving node neighborhoods, can
offer more informative additions compared to RDF2Vec, especially when the latter overlaps signifi-
cantly with the original data. Furthermore, in our feature engineering approach involving Euclidean
distances to class centroids, alignment with the ’heart disease’ vs. ’no heart disease’ division is
crucial. RDF2Vec may struggle in this regard due to the nature of the semantic relationships captured,
making Node2Vec-derived distance features more predictive.

6.2 Impact of Knowledge Graph Size and Structure (RQ2)

In Figure 2, we present the average F2 scores of various models under different inputs: the original
dataset with no KG and datasets enhanced with features from small, extended, or snomed KGs. The
graph demonstrates that the incorporation of KG features generally enhances model performance in
terms of F2 score, even if only slightly.

Notably, the neural network exhibits the best performance when trained on data augmented with
the small KG, indicating its effectiveness in extracting and using the extra features introduced by
this specific KG. In the case of the SVM, there is an interesting observation where both small and
extended KGs yield equivalent performance improvements. This suggests that the SVM is capable of
efficiently leveraging the added complexity and richness of these KGs to a similar extent. For other
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Figure 2: Average F2 Score for Different Models with no KG and Various KG-Modified Inputs.

ML models, including KNN and XGB, the extended KG emerges as the most beneficial in terms of
accuracy enhancement. This may be attributed to the more comprehensive nature of the extended
KG, which introduces a wider range of features and deeper semantic relationships into the dataset.

Table 3: Comparison of Accuracy and F2 Scores Across Models using various KG Inputs.
Original Rdf2Vec Node2Vec Comb-R2V Comb-N2V FE-R2V FE-N2V

Model Acc. F2 Acc. F2 Acc. F2 Acc. F2 Acc. F2 Acc. F2 Acc. F2

Small KG

KNN 0.81 0.71 0.51 0.34 0.72 0.59 0.81 0.71 0.81 0.71 0.65 0.53 0.83 0.79
NN 0.82 0.78 0.53 0.04 0.81 0.79 0.82 0.78 0.82 0.77 0.73 0.69 0.85 0.84
SVM 0.82 0.78 0.54 0.00 0.81 0.78 0.82 0.78 0.83 0.81 0.74 0.65 0.84 0.82
XGB 0.79 0.75 0.50 0.40 0.73 0.67 0.80 0.75 0.81 0.75 0.65 0.57 0.80 0.78

Snomed KG

KNN 0.81 0.71 0.54 0.34 0.76 0.66 0.81 0.71 0.81 0.72 0.65 0.53 0.83 0.78
NN 0.82 0.78 0.57 0.29 0.79 0.75 0.82 0.78 0.82 0.77 0.70 0.65 0.84 0.82
SVM 0.82 0.78 0.54 0.00 0.80 0.75 0.82 0.78 0.82 0.80 0.69 0.62 0.83 0.80
XGB 0.79 0.75 0.58 0.48 0.76 0.70 0.82 0.77 0.81 0.77 0.64 0.58 0.81 0.79

Extended KG

KNN 0.81 0.71 0.53 0.37 0.80 0.72 0.81 0.71 0.81 0.72 0.52 0.24 0.84 0.80
NN 0.82 0.78 0.54 0.05 0.80 0.78 0.82 0.79 0.83 0.80 0.55 0.26 0.84 0.82
SVM 0.82 0.78 0.54 0.00 0.79 0.76 0.82 0.78 0.83 0.80 0.56 0.22 0.84 0.83
XGB 0.79 0.75 0.53 0.43 0.77 0.73 0.82 0.77 0.81 0.77 0.54 0.41 0.82 0.80

6.3 Performance of Machine Learning Algorithms with Knowledge Graph Infusion (RQ3)

Table 3 show the consistency in the ranking of best-performing ML algorithms, regardless of the
specific KG used, indicates that inherent compatibility of each algorithm with the given data type
remains unchanged. NNs, being highly adaptable and capable of modeling complex non-linear
relationships, consistently outperform other models. SVMs, with their robustness in high-dimensional
spaces, follow closely. Lower complexity models such as KNN, despite improvements with the
additional embeddings, are outperformed by more complex models. This is likely due to their inherent
limitations in dealing with the augmented complexity introduced by the embeddings.

Figure 3 illustrate how F2 scores change across KNN, SVM, XGBoost, and NN models under various
parameters (shown in Table 2), with and without KG inputs. In most cases, parameter tuning do not
change the algorithmic performance ranking, regardless of the data input. However, KNN show a
linear F2 score increase with more neighbors when using node2vec embeddings, while a performance
decrease is noted with increased neighbors when using FE-R2V inputs.
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Figure 3: Average F2 scores over different parameters for (top-left) XGBoost, (top-right) NN,
(bottom-left) KNN and (top-right) SVM.

7 Conclusion and Future Work

In addressing RQ1, this study demonstrates the potential of integrating knowledge graphs (KGs)
with machine learning algorithms for heart disease prediction. The use of RDF2Vec and Node2Vec
embeddings to incorporate semantic and topological information from KGs into the machine learning
pipeline has led to enhancements in model performance. Specifically, the application of the Node2Vec
embeddings as extra features in the dataset has resulted in improvements in both accuracy and F2
scores. This underscores the value of advanced feature engineering through the infusion of KG-based
features, thereby providing a robust foundation for enhancing machine learning models in healthcare.

Concerning RQ2, the experiments reveal that the size and structural complexity of KGs influence
the performance gains across different machine learning algorithms. While neural networks tend to
favor features derived from smaller KGs, algorithms such as SVMs exhibit equal benefits from both
small and extended KGs. Conversely, models such as KNN and XGB show a preference for features
from extended KGs. These insights highlight the role of KG size and structure in optimizing machine
learning performance, emphasizing the necessity for strategic feature selection that aligns with the
algorithm’s characteristics.

In response to RQ3, the comparative analysis of machine learning algorithms, when augmented with
KG information, illustrates a universal improvement in performance due to the richer feature set
provided by RDF2Vec or Node2Vec embeddings. However, this enhancement does not change the
inherent performance ranking among the models, indicating that the optimal selection of a machine
learning algorithm remains dependent on its strengths and the specific nature of the dataset. This
finding points to the importance of the choice of machine learning model that complements the
characteristics of the KG-infused data.

Regarding future work, we plan to include various domains beyond heart disease, exploring the wider
utility of KGs in machine learning. It’s also important to investigate different embedding algorithms
to find more efficient ways for integrating domain knowledge, and use different advanced machine
learning techniques. We also plan to focus on measuring the data dependency of machine learning
algorithms and comparing this with the complementary contributions from KGs. This comparative
analysis would provide valuable insights into how the integration of KG can either reduce or shift
the data reliance in machine learning models, leading to a better understanding of their synergistic
potential and limitations.
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