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Supplementary Methods

1. Multi-view symmetric NMF algorithm
The multi-view symmetric NMF problem minimize the following objective function:

f(H(V),HC)z 3 Hx(v)_H(v)(H(v))T 2 - ﬁvHH(V)_HCHi 1)
Fov=sp

v=s,p

with the constraints H) >0 and H. >0, where XM isa symmetric matrix foreach v=s,p.

The objective function in eq. (1) is a non-convex function with respect to the entries of HW

and H,, and has multiple local minima. Therefore, it is unrealistic to design an algorithm to find
the global minimum solution. Thus, we derive the multiplicative update algorithm to find a local
minimum of this problem.

The computation of H® and H® are independent. Therefore, we use X and H to

represent X and HY) for brevity. Based on the simple knowledge of linear algebra, the
objective function JF can be reformulated as follows:

F=tr(XX" =2XHHT + HHTHH" )+tr[ 4, (HHT - 2HH{ + HCH] ) | 2)

We first fix H; and compute HY | Let #; be the Lagrange multiplier for constraint Hj; > 0.

KTT condition. The Lagrange I is
L =tr(XX") = 2tr(XHH" ) +tr(HH"HHT)
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where @ =[g;]. The partial derivatives of IL with respectto H is:

oL

aT_|=—2(X+XT)H+4HTHHT+2,1V|—|—2AVHC+<1> 4)
Since X is symmetric, eq. (4) can be rewritten as:
$=—4XH+4HTHHT+2/1VH—2/1VHC+(D (5)

Based on the KTT conditions ¢;H;; =0, we get the following equations for H;;:
#iHij :Z[ZXH—ZHTHHTJJ\,(H—HC)]” H;j =0 (6)

Then we can get the following updating rule:
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Second, we fix H™ for each v , we take the derivative of the objective F over H, and

obtain an exact solution:
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2. Synthetic networks

2.1 Synthetic networks #1
Firstly, we set M =30 networks and N =500 nodes. Each network has the same node set. We

generate each background network as matrix WO where t=1,2,---,30. The (i, j) element of
matrix W is defined as Wi(jt) =u,where u~ Unif(0,1). Then, we set five conserved modules

C ={C;,C,,C;3,C4,C5} , where C, ={x|x=80(k-1)+ j,j=12,---,80} . The underlying

modules in each network are generated as follows:

1, ifi,jeC
Wi(jl)’”',wi(jZS):{ ey

0, others

1, ifi,jeC
Wﬁl),---,wi(fo)= Jels

0, others

1, ifi,jeC
Wi(jl)""vwi(le): Jelj .

0, others

1, ifi,jeC
Wi(jl)v"'vwi(jlo): Jely

0, others

WEIONS & ifi, jeCs
e 0, others



Besides, there is only one random module of size 80 in each of W28 WD) .. \w(E0)

For each network, we randomly flip 1-«a (0<a <1) fraction of 1 entries in each matrix to
Oand g (0< g <) fraction of 0 entries to 1. To embed edge weight for each network, we set
min(wi(jt) +49,0), ifw) =0
wi) = :
max(wi(jt) —A(t),l), ifw) =1

where 4&” ~N(0.25,0.1). In the end, we let W) := 0.5x(W(t) +(W(t))T) and wV =0.

2.2 Synthetic networks #2
Firstly, we set M =15 networksand N =500 nodes. Each network has the same node set. We

generate each background network as matrix WO where t=1,2,---,30. The (i, j) element of
matrix W is defined as Wi(jt) =u, where u~ Unif(0,1). Then, we set two conserved modules

C={C,,C,} , where C;={x|x=12,---,50} and C,={x|x=401,402,---,440} . The

underlying modules in each network are generated as follows:

WD . wl®) 1, ifi,jeCyori,jeP®
: : 0, others

MOR
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where P s a set, which is randomly selected from {x|x=1,2,---,500 and x ¢ C;}, with size
10x(11-t)(t=1,2,---,10) , and Q(t) , Which is randomly selected from

{x|x=1,2,---,500 and x ¢ C, }, with size 5x(t—2)(t=6,7,---,15).

For each network, we randomly flip 1-«a (0<a <1) fraction of 1 entries in each matrix to
Oand g (0< g <) fraction of 0 entries to 1. To embed edge weight for each network, we set
min (wi(jt) +49,0), ifw) =0

(0 ._
wit) = ,
! max(wi(jt) - A(t),l), ifw) =1

where A" ~N(0.25,0.1). In the end, let W) := 0.5x(W(t) +(W(t) )T) and wV =0.
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Figure S1 The running time when varying the number of nodes from 2,000 to 10,000 and keeping the number of
networks as (a) 10, (b) 20, (c) 30 and (d) 40, respectively.
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Figure S2 The running time when varying the number of networks from 10 to 50 and keeping each network size as
(a) 2,000, (b) 4,000, (c) 6,000 and (d) 8,000, respectively.
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Figure S3 The percentage of modules which significant enriched into known cancer genes from CGC[1] and cancer
genes from NCG[2] respectively.
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Figure S4 Significant GO biological processes of the top five conserved modules in human brain tissue-specific

interaction networks.
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Figure S5 The average MCC on synthetic dataset #1 and #2 with ¢ =0.1 and « =0.3 respectively when

varying parameter A, (4, = A = /1p) from.107%. to 1. The optimal values appear when A, is around 0.01.
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Figure S6 The impact of parameters on cancer type-specific gene co-expression networks. (a) The f-score values of
ConMod when varying the number of candidate modules k from 40 to 300. Results on & =3,3.5 and 4 are
given. The f-scores have no significant increase after k =150 . (b) The average module size w.r.t. the number of
candidate modules. (c) The values with a descending order in the consensus factor matrix Hc . We select 6 = 3.5

to get module members with significant high values in each column of Hc matrix.
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Figure S7 The impact of parameters on brain tissue-specific PPI networks. (&) The f-score values of ConMod when
varying the number of candidate modules K from 50 to 250. Resultson @ = 3,3.5 and 4 are given. The f-scores
have no significant increase after k =120 . (b) The average module size w.r.t. the number of candidate modules.
(c) The values with a descending order in the consensus factor matrix Hc . We select & =4 to get module

members with significant high values in each column of HC matrix.
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