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Supplementary Methods 

1. Multi-view symmetric NMF algorithm 
The multi-view symmetric NMF problem minimize the following objective function: 
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with the constraints ( ) 0v ≥H  and 0≥cH , where ( )vX  is a symmetric matrix for each ,v s p= . 

The objective function in eq. (1) is a non-convex function with respect to the entries of ( )vH  

and cH , and has multiple local minima. Therefore, it is unrealistic to design an algorithm to find 

the global minimum solution. Thus, we derive the multiplicative update algorithm to find a local 
minimum of this problem. 

The computation of ( )sH   and ( )pH   are independent. Therefore, we use X   and H   to 
represent ( )vX   and ( )vH   for brevity. Based on the simple knowledge of linear algebra, the 
objective function   can be reformulated as follows: 
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We first fix cH  and compute ( )vH . Let ijφ  be the Lagrange multiplier for constraint 0ij ≥H . 

KTT condition. The Lagrange   is 
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where [ ]ijΦ φ= . The partial derivatives of   with respect to H  is: 
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Since X  is symmetric, eq. (4) can be rewritten as: 
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Based on the KTT conditions 0ij ijφ =H , we get the following equations for ijH : 
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Then we can get the following updating rule: 
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Second, we fix ( )vH   for each v   , we take the derivative of the objective    over cH   and 

obtain an exact solution:  
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2. Synthetic networks 

2.1 Synthetic networks #1 
Firstly, we set 30M =  networks and 500N =  nodes. Each network has the same node set. We 

generate each background network as matrix ( )tW , where 1,2, ,30t =  . The ( , )i j  element of 

matrix ( )tW  is defined as ( )t
ijw u= , where Unif (0,1)u  . Then, we set five conserved modules 

{ }1 2 3 4 5, , , ,C C C C C C=  , where { }| 80( 1) , 1,2, ,80kC x x k j j= = − + =   . The underlying 

modules in each network are generated as follows: 
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Besides, there is only one random module of size 80 in each of ( ) ( ) ( )26 27 30, , ,W W W . 

For each network, we randomly flip 1  (0 1)α α− ≤ ≤  fraction of 1 entries in each matrix to 
0 and  (0 )β β α≤ ≤  fraction of 0 entries to 1. To embed edge weight for each network, we set 
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where ( ) (0.25,0.1)t
ij N∆  . In the end, we let ( ) ( ) ( )( )( ): 0.5

Tt t t= × +W W W  and ( ) 0t
iiw = . 

 

2.2 Synthetic networks #2 
Firstly, we set 15M =  networks and 500N =  nodes. Each network has the same node set. We 

generate each background network as matrix ( )tW , where 1,2, ,30t =  . The ( , )i j  element of 

matrix ( )tW  is defined as ( )t
ijw u= , where Unif (0,1)u  . Then, we set two conserved modules 

{ }1 2,C C C=  , where { }1 | 1,2, ,50C x x= =    and { }2 | 401,402, ,440C x x= =   . The 

underlying modules in each network are generated as follows: 
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where ( )tP  is a set, which is randomly selected from 1{ | 1,2, ,500 and }x x x C= ∉ , with size 

10 (11 )( 1,2, ,10)t t× − =  , and ( )tQ   , which is randomly selected from 

2{ | 1,2, ,500 and }x x x C= ∉ , with size 5 ( 2)( 6,7, ,15)t t× − =  . 

For each network, we randomly flip 1  (0 1)α α− ≤ ≤  fraction of 1 entries in each matrix to 
0 and  (0 )β β α≤ ≤  fraction of 0 entries to 1. To embed edge weight for each network, we set 
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where ( ) (0.25,0.1)t
ij N∆  . In the end, let ( ) ( ) ( )( )( ): 0.5

Tt t t= × +W W W  and ( ) 0t
iiw = . 



Supplementary Figures 
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Figure S1 The running time when varying the number of nodes from 2,000 to 10,000 and keeping the number of 

networks as (a) 10, (b) 20, (c) 30 and (d) 40, respectively. 
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Figure S2 The running time when varying the number of networks from 10 to 50 and keeping each network size as 

(a) 2,000, (b) 4,000, (c) 6,000 and (d) 8,000, respectively. 
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Figure S3 The percentage of modules which significant enriched into known cancer genes from CGC[1] and cancer 

genes from NCG[2] respectively. 
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Figure S4 Significant GO biological processes of the top five conserved modules in human brain tissue-specific 

interaction networks. 
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Figure S5 The average MCC on synthetic dataset #1 and #2 with 0.1α =   and 0.3α =   respectively when 

varying parameter  ( )v v s pλ λ λ λ= =  from . 310− . to 1. The optimal values appear when vλ  is around 0.01. 

 



θ=3.5

50 100 150 200 250 300

k

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ=3
θ=3.5
θ=4

Fs
co

re k=150

50 100 150 200 250 300
k

50

100

150

200

Av
er

ag
e 

m
od

ul
e 

si
ze

θ=3
θ=3.5
θ=4

a b c

 

Figure S6 The impact of parameters on cancer type-specific gene co-expression networks. (a) The f-score values of 
ConMod when varying the number of candidate modules k  from 40 to 300. Results on 3,3.5θ =  and 4 are 

given. The f-scores have no significant increase after 150k = . (b) The average module size w.r.t. the number of 

candidate modules. (c) The values with a descending order in the consensus factor matrix Hc . We select 3.5θ =  

to get module members with significant high values in each column of Hc  matrix. 
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Figure S7 The impact of parameters on brain tissue-specific PPI networks. (a) The f-score values of ConMod when 

varying the number of candidate modules k  from 50 to 250. Results on 3,3.5θ =  and 4 are given. The f-scores 

have no significant increase after 120k = . (b) The average module size w.r.t. the number of candidate modules. 

(c) The values with a descending order in the consensus factor matrix Hc  . We select 4θ =   to get module 

members with significant high values in each column of Hc  matrix.  
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