
RTDROID: A REAL-TIME SOLUTION ON ANDROID

by

Yin Yan
September 1, 2018

A dissertation submitted to the Faculty of the Graduate School of the

University at Buffalo, State University of New York in fulflment of the

requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

Copyright by

Yin Yan

2017

ii

The thesis of Yin Yan was reviewed by the following:

Dr. Lukasz Ziarek, lziarek@buffalo.edu
Assistant Professor at Department of Computer Science and Engineering

University at Buffalo, State University of New York
Major Advisor,

Dr. Steven Y. Ko, stevko@buffalo.edu
Associate Professor at Department of Computer Science and Engineering

University at Buffalo, State University of New York
Committee Member

Dr. Karthik Dantu, kdantu@buffalo.edu
Assistant Professor at Department of Computer Science and Engineering

University at Buffalo, State University of New York
Committee Member

iii

mailto:kdantu@buffalo.edu
mailto:stevko@buffalo.edu
mailto:lziarek@buffalo.edu

Acknowledgments

My sincere thanks to Steven Y. Ko introduces me to Luke. Both of them helped
me to start the RTDroid project and guided me throughout my PhD comple-
tion. I would also like to thank Karthik Dantu, the other committee member,
for his support and patient, especially the help on my academic writing. From
Luke, Steve and Karthik I learned how to be a researcher with critical thinking,
responsible and detail-oriented towards research results.

My sincere thanks to Steven Y. Ko introduces me to Luke. Both of them
helped me to start the RTDroid project and guided me throughout my PhD com-
pletion. I would also like to thank Karthik Dantu, the other committee member,
for his support and patient, especially the help on my academic writing. From
Luke, Steve and Karthik I learned how to be a researcher with critical thinking,
responsible and detail-oriented towards research results.

I wish to thank Prof. Jan Vitek and Dr Ethan Blanton who provided external
technical guidance and support to the RTDroid project, as well as Prof. Antony
Hosking, my mentors during my internships at Data61, gave me a chance to
work at a world-class research lab.

Extra special thanks to the other students who were working with me to-
gether on my research projects, including Shaun Cosgrove, Varun Anand, Amit
Kulkarni, Sree Harsha Konduri, Chunyu Chen, Ji Zhang, Adam Czerniejewski,
Sai Tummala, Manish Jain. It was a very good time for the cooperation.

I am grateful to my parents and family for always encouraging me to pursue
my ideas and desires and for their unfailing support and love throughout this
long journey that now seems to have passed too quickly.

Lastly, I am eternally grateful for the love and support of my wife, Lan. She
helped me endure the many frustrations associated with the completion of my
PhD study. But most of all, she makes me very happy.

iv

Table of Contents

Acknowledgments iv

List of Tables viii

List of Figures ix

Abstract xii

Chapter 1
Introduction 1
1.1 Real-Time Application in Mobile Computing 1
1.2 Overview of Contributions . 2

1.2.1 System Architecture: RT OS, RT JVM and RT Framework . 3
1.2.2 Real-Time Programming Model 4
1.2.3 Real-Time Application Validation 5

Chapter 2
Background and Related Research 6
2.1 Background to Android . 6

2.1.1 The Linux Kernel and Java Runtime Environment 7
2.1.2 The Event-Driven Programming Model 9

2.2 Real-Time System . 11
2.2.1 Real-Time Tasks . 13
2.2.2 Real-Time Scheduling . 13

2.3 Real-time System Architecture on Android 15
2.4 Real-time Extensions to Android 17
2.5 Real-time Application Verifcation 18

v

Chapter 3
RTDroid’s System Architecture 20
3.1 Android Background . 21
3.2 Overview of System Architecture 22
3.3 Deployment Profles . 23
3.4 Real-time Building Blocks . 24

3.4.1 x86 PC and LEON3 . 25
3.4.2 Nexus S Smartphone . 25

3.5 RT Looper and RT Handler . 27
3.5.1 Android’s Looper and Handler 27
3.5.2 Real-Time Redesign . 29
3.5.3 Worst-Case Execution Time Analysis 30

3.6 RT Alarm Manager . 32
3.6.1 Android’s Alarm Manager 33
3.6.2 Real-Time Redesign . 34
3.6.3 Worst-Case Execution Time Analysis 35

3.7 RT Sensor Manager . 36
3.7.1 Android’s Sensor Manager 36
3.7.2 Real-Time Redesign . 38
3.7.3 Worst-Case Execution Time Analysis 39

3.8 Evaluation . 40
3.8.1 RT Looper and RT Handler Microbenchmarks 41
3.8.2 RT AlarmManager Microbenchmarks 44
3.8.3 Applications on Real-Time SensorManager 47

3.8.3.1 Fall Detection Application 48
3.8.3.2 jPapaBench . 50

Chapter 4
RTDroid’s Real-Time Progamming Model 55
4.1 Android-enabled Real-time Applications 57
4.2 RTDroid’s Application Components 58

4.2.1 Real-Time Service . 60
4.2.2 Periodic Task . 62
4.2.3 Real-Time Receiver . 62

4.3 Real-Time Communication Channels 63
4.3.1 Message Channels . 64
4.3.2 Broadcast Channels . 66
4.3.3 Bulk Data Channels . 66
4.3.4 Cross-Context Channels . 67

4.4 Memory Management . 68

vi

4.5 Evaluation . 73
4.5.1 Micro Benchmarks . 74
4.5.2 Comparison to Android and RTSJ 76

Chapter 5
Static Application Validation 81
5.1 Background . 81

5.1.1 Real-Time Components of RTDroid 82
5.1.1.1 Real-time Service 82
5.1.1.2 Real-time Receiver 83
5.1.1.3 Periodic Task . 84
5.1.1.4 Real-time Communication Channel 84

5.1.2 Task Model for RTDroid’s Application Validation 84
5.2 Application Validation and Bootstrap 85

5.2.1 Integration between RTDroid Manifest and Cheddar . . . 86
5.2.1.1 Timing Constraints in Scheduling Simulation . . 86
5.2.1.2 Feasibility Tests and Bounds Checking 87

5.2.2 Application Bootstrap . 89
5.3 Case Study: Cochlear Implant Application on RTDroid 89

Bibliography 93

vii

List of Tables

4.1 RTDroid’s Static Scope Check . 73
4.2 Task Execution Duration Statistics. 77
4.3 Code Complexity Measurements. 80

5.1 Real-Time Semantics of Timing Elements 86
5.2 Modeling between RTDroid’s Channel to Real-Time Entities . . . 87
5.3 Real-Time Properties in Cochlear Implant 92

viii

List of Figures

2.1 Simplifed Architecture in Android 7
2.2 The State Transition for Activity. 9
2.3 Basic notions concerning timing analysis of systems. The lower

curve represents a subset of measured executions. Its minimum
and maximum are the minimal observed execution times and
maximal observed execution times, resp. The darker curve, an
envelope of the former, represents the times of all executions. Its
minimum and maximum are the best-case and worst-case execu-
tion times, resp., abbreviated BCET and WCET. 12

2.4 Proposed Real-Time Android System Models. 16

3.1 Comparison of Simplifed Android and RTDroid Architectures . . 21
3.2 The Use of Looper and Handler . 28
3.3 Android’s Looper and Handler . 29
3.4 An Example of Looper and Handler in RTDroid. 30
3.5 An Example Flow of AlarmManager. 33
3.6 The Implementation of Alarm Execution on RTDroid. 34
3.7 Android Sensor Architecture . 36
3.8 RTDroid Sensor Architecture . 38
3.9 The observed raw latency of Looper and Handler on x86. 42
3.10 The observed raw latency of Looper and Handler on LEON3. . . . 42
3.11 The observed raw latency of Looper and Handler on Nexus S. . . 43
3.12 Observed WCETs of Message Passing Latency 43
3.13 RT AlarmManager Per Thread vs Thread Pool on x86. 44
3.14 RT AlarmManager - Per Thread vs Thread Pool on Nexus S. . . . 45
3.15 RT AlarmManager - Per Thread vs Thread Pool on LEON3. 45
3.16 Memory and Computation stress test for the Fall Detection Ap-

plication on Nexus S. 47
3.17 Memory and Computation Stress Test for Fall Detection Applica-

tion on LEON3. 48

ix

3.18 RT SensorManager Observed WCET of Sensor Data Delivery in
Fall Detection. 49

3.19 jPapaBench Task Dependency . 50
3.20 RT SensorManager performance base line 51
3.21 RT SensorManager stress tests on Nexus S 52
3.22 RT SensorManager stress tests on LEON3 52
3.23 RT SensorManager Observed WCET of Sensor Data Delivery in

jPapaBench Application . 53

4.1 Cochlear Implant . 55
4.2 Audio Confguration UI written in Android. 56
4.3 Audio Processing Service written in Android. 56
4.4 Architecture of Cochlear Implant Application. 59
4.5 RTDroid runtime architecture. 59
4.6 Bootstrap sequence. 59
4.7 An extended Android manifest. 61
4.8 Scope Structure for a Service. 61
4.9 Real-Time Service and Periodic Task. 62
4.10 Real-time Channel Declaration. 62
4.11 Real-time Message Passing Channel. 65
4.12 Message Passing Interface. 65
4.13 Real-time Intent Broadcast Channel. 68
4.14 Cross-Context Channel. 68
4.15 Transfer Scope with Data Copy Primitives 70
4.16 Transfer Scope for Real-Time Bulk Data Transfer Channel 72
4.17 Real-time Communication Channels: Baseline Scatter Plot for Mi-

cro benchmarks. 74
4.18 Micro-benchmarks for Real-time Communication Channels. . . . 74
4.19 Performance Measurements on Raspberry Pi. 76
4.20 CDFs of Performance Measurements on Raspberry Pi. 76
4.21 Performance Measurements on Nexus 5. 77
4.22 CDFs of Performance Measurements of the Cochlear Implant on

Nexus 5. 78
4.23 CDFs of Performance Measurements of the jPapaBench Stabiliza-

tion Task on Nexus 5. 79

5.1 Lifecycle management of RTDroid’s Real-time Service 81
5.2 Timing Constrains . 83
5.3 Memory Bounds . 83
5.4 Channel Access . 83

x

5.5 Real-Time Schema for RTDroid’s Components 83
5.6 Bootstrap Procedure of RTDroid Application 90
5.7 Cochlear Implant . 91
5.8 Scheduling Simulation of Cochlear Implant Application in Ched-

dar . 92

xi

Abstract

Since the introduction of the smartphone, mobile computing has become per-
vasive in our society. Meanwhile, Mobile devices have evolved far beyond the
stereotypical personal devices. Smartphones and tablets and have been em-
ployed in various traditional real-time embedded domains. Of the currently
available mobile systems, Android has seen the most widespread deployment
outside of the consumer electronics market. Its open source nature has prompted
its ubiquitous adoption in sensing, medical, robotics, and autopilot applications.
However, it is not surprising that Android does not provide any real-time guar-
antees, since it is designed as a mobile system and optimized for mobility, user
experience, and energy effciency.

Although there has been much interest in adopting Android in real-time
contexts, surprisingly little work has been done to examine the suitability of
Android for real-time systems. Existing work only provides solutions to tra-
ditional problems, including real-time garbage collection at the virtual machine
layer and real-time OS scheduling and resource management. While it is critical
to address these issues, it is by no means suffcient. After all, Android is a vast
system that is more than a Java virtual machine and a kernel.

This proposal goes beyond existing work and examines the internals of An-
droid. We discuss the implications and challenges of adapting Android con-
structs and core system services for real-time and present a solution for each
layer of the stock Android. Our system is unique in that it redesigns Android’s
internal components, replaces Androids Dalvik/ART with a real-time VM, and
leverages off-the-shelf real-time OSes. Additionally, RTDroid also provides an
event-driven programming model for real-time Android development, includ-
ing four major components: 1) real-time constructs to express application logic,
2) real-time extension to Android’s application manifest to specify real-time
confguration, 3) real-time communication channels to enable constructs inter-
actions with real-time semantics, 4) pause-less memory management for mem-

xii

ory guarantees with scoped memory.

However, the use of scoped memory introduces extra design complexity and
performance overhead for the management of scoped memory areas. One of our
ongoing work is to defne RTDroid specifc scope defnition with precise scope
lifetime. Likewise, since RTDroid’s programming model hides the scoped mem-
ory areas in its framework implementation, we are exploring the possibility of
simplifying the scope management at runtime with runtime techniques. Mean-
while, to test the portability of our system design, we are planning to enable
RTDroid’s application on a micro virtual machine.

xiii

Chapter 1
Introduction

1.1 Real-Time Application in Mobile Computing

As one of the most popular mobile system, Android has been evolved far be-

yond a mobile system, a number of real-time embedded applications have been

developed as Android applications (apps). For example, the medical industry

has attempted to use Android devices as a potential platform that facilitates

the development and the deployment of various medical applications, rang-

ing from the critical care for vital signs of patient monitoring [24, 15, 6, 1], the

handicap assistant [8, 2]. The defense industry is also exploring Android for a

variety of soldier support roles, including portable navigation systems [57, 58]

and wounded soldier detection [36, 78]. Similarly, the aerospace industry has

experimented with Android as a control system for satellites [81].

There are numerous benefts of developing these applications in Android.

From user perspective, the personalized device nature of Android smartphone

encourages users to keep their device with their body, while deploying the ap-

plications on a personal device reduces the number of user carry-on devices.

From the programming perspective, developers can leverage Android’s rich set

of APIs to utilize new types of hardware such as cameras, sensors and touch

screens. Additionally, Android’s well-supported development environment eases

the burdens of the application development, and many applications published

2

in the Google’s online store give an opportunity to incorporate creative func-

tionalities with less effort. However, all of these advantages co-exist with the

fact that Android does not provide substantial dedicated support for real-time

features or safety-critical concerns.

Many researchers have evaluated the real-time support on the stock An-

droid [59, 62, 65]. It is not surprising that Android doesn’t provide any real-

time guarantees since it is designed as a mobile operating system which aims

for smooth user experience, longer battery lifetime etc. To our best knowledge,

Maia et al. are the frst ones that propose system architectures for real-time An-

droid. They have suggested to utilizing a real-time system kernel and a real-

time Java Virtual Machine (JVM) for real-time tasks scheduling and predictable

garbage collection (GC), which are fundamental to make Android real-time [51].

A real-time extension of Android’s DalikVM has been developed by Kalkov

et al. that reduces GC pauses duration the execution of time-constrained con-

structs [40]. However, the fundamental question of how to add real-time sup-

port to Android has never been explored systematically.

This dissertation address this question as a whole system and presents the

solution as a real-time extention on Android, named RTDroid. The design of

RTDroid aims to provide bounded response times for the real-time task requires

strict timing guarantees, while still developers to use existing functionalities on

Android for non-real-time requirement in real-time applications.

1.2 Overview of Contributions

This dissertation makes three major contributions. First of all, RTDroid pro-

poses a system architecture for real-time mobile computing by utilizing a real-

time OS kernel, a real-time Java Virtual Machine (JVM) and redesigned real-

time constructs as core components in its framework. Secondly, RTDroid in-

troduces a real-time programming model that adds real-time semantics for real-

time application development, explores a pauseless region-based memory man-

agement techniques in its runtime and enables component interactions via its

real-communication channels. Thirdly, RTDroid provides a static application

validation mechanism which serves as a starting points to the support of down-

3

loading and installing new application at the system runtime. It check the

real-time confguration of a newly downloaded application with regard to the

schedulability of other apps present in the system.

From a system designer’s point of view, RTDroid makes the following con-

tributions as listed by each layer in its software stack.

� Kernel Layer:

• Enables real-time features on specifc device with real-time OS sup-

port: RT-Linux on Nexus S or RTEMS on Leon3 development board.

• Identifes incompatible kernel modules in RT-Linux.

� Runtime/VM Layer:

• Enables a real-time JVM, FijiVM [63], on Android-equipped smart-

phones.

• Implements data transfer mechanism for RTDroid channels.

� Framework Layer:

• Provides real-time components with scoped memory, i.e., real-time

service, real-time receiver and periodic task for the application de-

velopment.

• Implements real-time communication channels for various real-time

communication semantics.

• Extends Android’s manifest schema for real-time confgurations.

� Application Layer:

• Implements real-time system services for research needs, e.g., Real-
TimeAlarmManager, RealTimeSensorManager and RealTimeAudioManager.

• Integrate Cheddar with the compilation process for RTDroid’s appli-

cations for the validation of real-time confgurations.

1.2.1 System Architecture: RT OS, RT JVM and RT Framework

Our frst attempt is to analyze real-time capabilities of stock Android and its

limitations by examining the entire Android software stack. We have identifed

that not only the Android’s customized Linux kernel and Java virtual machine

4

(DalvikVM or ART) are needed to be replaced with real-time counterparts, but

Android’s internal constructs in the framework layer are also problematic. For

example, Android’s core communication constructs—Looper and Handler for

message passing—process their incoming messages in FIFO ordering, which

results in arbitrary processing latencies. RTDroid’s [86, 85, 84] propose a clean-

slate system architecture that leverages an existing real-time system kernel, an

“off-the-shelf” real-time JVM and redesigned constructs for a single real-time ap-
plication execution environment. It provides real-time predictability in terms of

timing, memory and resource management. Even focusing on a single real-time
application execution, this goal alone has many hard challenges associated and

still has broad applicability in utilizing smartphones for real-time usages such

as control, medical, and military devices. It is also a prerequisite to the further

development of RTDroid for later discussion of RTDroid’s programming model.

1.2.2 Real-Time Programming Model

From the programming perspective, RTDroid provides an event-driven pro-

gramming model with declarative constructs and pause-less memory manage-

ment. To preserve Android-like programming fashion, RTDroid’s constructs are

directly extended from Android’s application constructs. It also extends An-

droid’ manifest schema to express real-time properties for timeliness and other

resources requirement, so that it separates construct logic and real-time prop-

erties. Such separation decouples real-time requirement from the actual appli-

cation functionalityand reduces the complexity of app development. To enable

interaction between constructs, RTDroid’s programming model defnes three

priority-aware communication channels, including real-time message passing

channel, real-time intent broadcasting channel, bulk data transfer channel and

cross-context channel. These channels defne semantics of interactions between

real-time and non-real-time context. For real-time feature, RTDroid’s program-

ming model is enlightened lessons learned from the Real-Time Specifcation of

Java (RTSJ) as well, and adapts them to the realities of the Android ecosystem.

The past experience with real-time computing in Java [39] suggests that real-

time garbage collection works well when it is possible to predict and bound the

5

allocation rate of the program. RTSJ offers a way to avoid garbage collection

using the scoped memory API. The challenge with scoped memory was that it

was a pervasive change to the infrastructure which proved incredibly diffcult

to use with legacy code. RTDroid’s programming model uses scoped memory

for memory management but hides the complexity of using scoped memory

area in its framework implementation.

1.2.3 Real-Time Application Validation

Based on the real-time programming model, RTDroid provides an off-line vali-

dation mechanism for its application. It utilize real-time properties declared in

RTDroid’s application manifest for scheduling analysis and feasibility tests. RT-

Droid’s compiler converts its application manifest to a format that understood

by a real-time scheduling framework, named Cheddar [71]. We leverage Ched-

dar’s built-in scheduling simulation and feasibility tests to validate whether an

application is confgured correctly to meet its timing constraints in term of re-

sponse times, execution rates and the number of missed deadlines. Such vali-

dation mechanism serves two purposes: (1) It provides an automatic solution

for application developers to check if the application confguration is valid. (2)

It provides a starting point for investigating a hybrid method for the worst case

execution time, which is critical for deplying a newly downloaded app at run-

time.

Chapter 2
Background and Related Research

This chapter presents an overview of Android architecture and discusses exist-

ing research that has explored real-time capabilities in Android. Given Android

is a vast system, we limit ourselves to the work that is essential to understand

the topic of this dissertation, mainly focusing on the system architecture and the

application programming model. For the real-time system, we acknowledge the

contributions that have studied thoroughly on real-time theories and real-time

systems since the early 1990s and 2000s. Within the scope of this dissertation,

we emphasise on the latest relevant works targeting to use mobile systems in

the real-time context. This chapter is organized into two sections: The frst sec-

tion briefy introduces the architecture of the stock Android while highlighting

challenges of using Android for real-time systems. The later chapter 3 and 4

will discuss these challenges in details, respectively. Then, The rest of section

studies existing work that has been looking into enable real-time ability on An-

droid.

2.1 Background to Android

Since its inception, Android is designed as a mobile system, which builds upon

a modifed Linux kernel and executes applications in its Java Runtime Envi-

ronment. As a mobile system, Android is optimal for connectivity, mobility,

friendly user experience and long battery life etc, rather than the predictability

7

Applications

Application Framework

Android Runtime

Linux Kernel

Dalvik Virtual
Machine

Constructs and APIs System Services

Native Libraries

Figure 2.1: Simplifed Architecture in Android

or the deterministic. It is important to introduce necessary knowledge about

Android before we dive into the RTDroid project.

2.1.1 The Linux Kernel and Java Runtime Environment

Android’s system architecture consists of many layers from bottom to top, con-

sisting of an operating system kernel layer, a Java runtime environment (Davlik/ART),

an application framework layer and an application layer, as Figure 2.1 shows.

At the bottom-most layer, a modifed Linux is used as Android’s operat-

ing system kernel. Its kernel has been confgured for mobile devices. There

are a number of components are unique to the mobile system. For example,

the Android’s Linux kernel schedule uses a completely fair scheduler as the

default processes scheduler. Such scheduler aims to higher overall CPU utili-

8

sation while maximising interactive performance. Such scheduler defnes the

importance of a task as the activeness of tasks, instead of the priority of tasks.

Similarly, Android doesn’t have a swap partition. Instead, it has an out of mem-

ory (OOM) killer that enforces recycling memory by terminating less active apps
when the available memory is lower than a threshold.

Android executes its apps in separate JVMs. Rather than using the traditional

Hotspot JVM, Android has its own JVM, known as DalvikVM (DVM), which

replaced by ART [16] later. DVM is a register-based virtual machine [70] that

executes DEX bytecode [3] and uses just-in-time compilation (JIT) [10] to opti-

mize apps at runtime. Kalkov et al. [40] observed that DVM’s garbage collection

mechanism could pause all application thread until GC is fnished. To avoid

the suspension from GC, they have extended DVM’s GC with new APIs, which

allow developers to trigger GC as needed in their applications. Although this

design decision seamlessly integrates into applications, it and relied on devel-

opers to achieve predictability, which adds a layer of complexity to application

development. Since Android 5.0 (Lollipop), ART has replaced DVM as Android’s

new JVM. It is equipped with an Ahead-of-Time (AOT) compiler for the native

optimization and improved concurrent garbage collectors.

These optimisation aims for better performance in the average case, but

not the worst case which is essential to a real-time system. Many works have

evaluated the real-time capability on Android [59, 62, 65, 52]. They have con-

cluded that Android’s kernel and runtime implementation provide no real-time

guarantees and its garbage collector can arbitrarily stall application threads re-

gardless of priority, resulting in non-deterministic behaviour. Thus, it is well-

understood that the bottom two layers need real-time support to provide a pre-

dictable platform. However, it is still not suffcient to provide real-time capabil-

ity on Android even with the proper real-time features at the kernel and run-

time layers. This is due to the fact that the nature of Android’s event-driven

programming model in the application framework layer.

9

start

end

onCreate() onStart() onResume() Activity
Running

onPause()onStop()onDestroy() onRestart()

Figure 2.2: The State Transition for Activity.

2.1.2 The Event-Driven Programming Model

Android applications are an event-driven, all components are defned as a set

of callbacks and executed via messages. Its unique programming and execu-

tion model requires careful consideration as to how we can support Android

compatibility while providing real-time capabilities. This section focus on ex-

plains the characteristic of Android components while discussing challenges of

using them in real-time context at a high level. The later chapter 4.1 will details

challenges with a concrete example and more in-depth analysis.

Application Components: There are four main components for implementing

applications—Activity, Service, BroadcastReceiver, and ContentProvider—

which are essentially abstract Java classes that defne callbacks. An application

needs to extend and implement at least one of these four classes to run on An-

droid.

Briefy speaking 1, an Activity class controls the UI of an app. A Service

class implements tasks that run in the background, e.g., playing background

music for an app. A BroadcastReceiver class can receive and react to broadcast

messages sent by other apps or the Android platform; for example, Android

sends out a “low battery” broadcast message to alert apps that the mobile device

is running low on battery. Lastly, an app can have database-like storage by

implementing a ContentProvider class.

Each of these four main component classes defnes callbacks that an appli-

cation can implement. The Android platform invokes one of these callbacks at

an appropriate time depending on what state the application is in. For instance,

1Android Developers website has more detailed information (http://developer.android.
com/guide/components/fundamentals.html).

http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html

10

an Activity class defnes a number of callbacks such as onCreate, onStart,

onResume, onPause, onStop, etc. When an application starts for the frst time,

the Android platform invokes onCreate and onStart in that order. When an

application goes out of focus (e.g., when the user pushes the home button or

the app switcher button), the platform invokes onPause. When an app returns

to the foreground, the platform invokes onResume. Fig. 2.2 shows a simplifed

state transition diagram for an Activity. Likewise, all other components defne

a set of callbacks as entry points to an application.

System Services: Android also excels in supporting a wide variety of hard-

ware with different CPUs, memory capacities, screen sizes, and sensors. An-

droid’s APIs also ease the access of onboard devices in applications, such as the

touchscreen, Wi-Fi, GPS, Bluetooth, telephony, accelerometer, camera, etc. An-

droid mediates all access to its core system functionalities through a set of sys-

tem services. To name a few, these services include ConnectivityManager that

handles network connection management; PowerManager that controls power;

LocationManager that controls location updates through either GPS or nearby

cell tower information; and AlarmManager that provides a timer service.

As a concrete example, consider a health monitoring app that samples vi-

tal indicators of a patient and transfers data to a nearby caretaker’s device for

alter information via Android’s system service, BluetoothManager. Assume a

critical component, an Application Service, posts an alarm message to the care-

taker’s device via BluetoothManager when a vital indicator is below a threshold.

However, other non-critical components leverage the same BluetoothManager

to send messages as well. Thus, these non-critical can delay the delivery of

the emergency messafe for an amount of time required to process the pending

messages. Typically, to handle a message sent to BluetoothManager requires

creation of a packet and the transmission of the packet.

As the above senario, both of application components and system services

interact with others via messages and asynchronously execute the message pro-

cessing as callbacks. By default, system services run as separate processes, an

application component must leverage APIs for accessing them are implemented

via RPC—Android’s Binder calls. There are two main concerns that Android in-

troduces through its programming and execution models: 1) Android leverages

11

extensive usage of callbacks—a registered callback executes in the context of its

caller, which may lead to non-deterministic and unbound execution latencies;

2) The core communication of Android processes incoming messages in FIFO

order.

Given to these diffculties, most of the research that uses Android in the real-

time domain is limited to enable real-time guarantee in a specifc domain. For

example, Moazzami et al. [53] have built ORBIT as a smartphone-based sensing

platform using Android. Kim et al. [42] have established SounDroid that enables

a high degree of QoS for audio-based applications. The dissertation proposed a

general programming mode for the real-time development in the chapter 4. The

rest of this chapter discusses existing work relevant research in real-time mobile

systems.

2.2 Real-Time System

The real-time scheduling theory [49, 67, 46, 68] has been thoroughly studied

for the past several decades. It originates from the need to control physical

process in complexity from automobile ignition system or controllers for fight

system and nuclear power plants. Such systems are referred to as hard real-time

systems, where time constraints must be met at all cost. The violation of time

constraints may lead to human or material damage. On the other hand, if it is

desirable to meet a tasks deadline but occasionally missing the deadline can be

tolerated, then these systems are so-called soft real-time systems. For example,

the fight navigation for an avionics system, the sensor data processing in au-

tonomous vehicles, and the signal processing in radio communication systems.

The scheduler for these systems must coordinate resources to meet the timing

constraints of the physical system. This implies that the scheduler must be able

to predict the execution behaviour of all tasks within the system. This basic

requirement of real-time systems is predictability. Unless the behaviour of a

real-time system is predictable, the scheduler cannot guarantee that the compu-

tation deadlines of the system will be met.

To prove the satisfaction of time constraints, a scheduler needs to know the

upper bounds of execution times in dynamic systems. In fact, it is hard to obtain

12

Figure 2.3: Basic notions concerning timing analysis of systems. The lower
curve represents a subset of measured executions. Its minimum and maximum
are the minimal observed execution times and maximal observed execution
times, resp. The darker curve, an envelope of the former, represents the times
of all executions. Its minimum and maximum are the best-case and worst-case
execution times, resp., abbreviated BCET and WCET.

such upper bounds for programs. Otherwise, we would know how to solve the

halting problem. For a real-time system, we generally have a priori known num-

ber of tasks in the system, but the worst-case execution time is still not known

and hard to derive. It is a separate research topic which is out of the scope of

this work. The research is dedicated to exploring different techniques to pro-

duce task properties, e.g, worst-case execution times for timing analysis. As

Figure 2.3 shows, the execution times of a task has a range of spectrum depend-

ing on its input arguments as well as environment setups. For instance, all exe-

cution times is shown as the upper curve. The shortest execution time is called

the best-case execution time (BCET), the longest time is the worst-case execu-

tion time (WCET). In most cases, the state space of execution times is too large

to exhaustively enumerate all possible executions with different input data. For

timing analysis, this work focuses on system schedulability, feasibility analy-

sis and etc and uses worst-case response time since we have a mixed criticality

environment with shared resources.

13

2.2.1 Real-Time Tasks

In real-time scheduling, a real-time task can be categorized into one of three

types given to its release pattern and deadline [55]. A task with a regular release

time is a periodic task, which is commonly used to process data and update the

current state of the system on a regular basis. At the system runtime, an execu-

tion of the periodic logic of the task is considered as a job release, also known

as a release. The second type of task has an irregular release time, so-called an

aperiodic task, it is typically used to handle the processing requirements of ran-

dom events such as operator requests. The third type of task is a sporadic task,

it is an aperiodic task with a fxed release interval. As defnitation in [73], we

have the following three types of real-time tasks:

� Hard and Soft Deadline Periodic Tasks: A periodic task has a regular

interarrival time equal to its period and a deadline that coincides with the

end of its current period. Periodic tasks usually have hard deadlines, but

in some applications, the deadlines can be soft.

� Soft Deadline Aperiodic Tasks: An aperiodic task is a stream of jobs ar-

riving at irregular intervals. Soft deadline aperiodic tasks typically require

a fast average response time.

� Hard and Soft Sporadic Tasks: A sporadic task is an aperiodic task a min-

imum release time.

2.2.2 Real-Time Scheduling

Most of the real-time scheduling algorithm is based on the result of Liu et al. [49]

that shows any set of independent periodic tasks is schedulable by the rate

monotonic algorithm if the condition of Theorem 1 is met.

Theorem 1. A set of n independent periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all task phasings, if

C1 Cn ≤ n(21/n − 1) = U(n)+ ... +
T1 Tn

where Ci and Ti are the execution time and period of task respectively.

14

Liu et al. [49] present a scheduling bound for the rate monotonic algorithm

under the worst case scenario, but the set of periodic tasks must be statically

confgured. Later, Lehoczky et al. [48] performs stochastic analysis for the rate

monotonic algorithm in which the set of periodic tasks are randomly generated,

and conclud that the scheduling bound can be relaxed to approximately 88%

system utilization in the average case. Later, Sha et al. [69] propose a period

transformation method, and approved that the utilization threshold can close to

100% in theory. For instance, Borger et al. [75] demonstrated the Navys Inertial

Navigation System with a schedulable utilization level of 99%.

Another concern for scheduling algorithms is transient overload when pe-

riodic tasks are randomly generated, the stochastic execution can boost the de-

sired system utilization greater than its scheduling bound. Sha et al. described

their period transformation to guarantee the deadlines of critical tasks can be

met [66], for a randomly generated task set, if a set of given tasks with uti-

lization greater than the bound of Theorem 1, can meet its deadlines until the

conditions of Theorem 1 is checked. The theorem 2 provides the exact schedu-

lability criterion for independent periodic task sets under the rate monotonic

algorithm.

Theorem 2. A set of n independent periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all task phasings, if and only if & '

j=1 1 lTk∀i, 1 ≤ k ≤ i, min ∑ Cj ≤ 1
(k,l)∈Ri Tk Tji

where Ci and Ti are the execution time and period of task respectively. $ %

Ri = {(k, l)|1 ≤ k ≤ i, l = 1, ...,
Ti }
Tj

For aperiodic, Strosnider [77] greatly improved the average response time

for soft deadline aperiodic tasks by using a deferrable server algorithm. This is

compatible with the rate monotonic scheduling algorithm, in which soft dead-

line aperiodic tasks is polled into the deferrable server or background service

if there is free time slice while still prioritize periodic tasks with hard dead-

15

lines. For sporadic tasks, a sporadic server [73] is designed upon the deferrable

server algorithm. It guarantees deadlines for hard-deadline aperiodic tasks and

maintains a good responsiveness for soft-deadline aperiodic tasks. For shared

resources and precedence constraints, Sha et al. [69] developed a priority inher-

itance protocol for resources sharing, and Rajkumar et al. [48] derived a set of

suffcient conditions where allows the priority inheritance protocol using the

rate monotonic algorithm, and M. Spuri [73] proposed a method that integrates

both of the precedence constraint and the shared resource in the theory of the

real-time scheduling.

2.3 Real-time System Architecture on Android

Researchers have started to look into the real-time capabilities of Android. Maia

et al. evaluated Android for real- time and proposed the initial architectural

models [51]. Their proposed models are depicted in Figure. 2.4. The frst system

model (Figure. 2.4a) is built around a clean separation between Android and

real-time components, allowing for real-time applications to run directly on top

of a real-time operating system (RTOS). Although viable, this model prevents

the creation of real-time Android apps, instead opting for a system that can run

both Android apps and separate real- time applications. In addition, real-time

applications are prevented from leveraging the features offered by Android and

cannot include any Android related services or libraries. The next model (Fig-

ure. 2.4b) is similar to the frst, but instead of swapping the standard Linux ker-

nel for an RTOS, it introduces a real-time hypervisor at the bottommost layer.

In this model, Android runs as a guest operating system in one partition and

real-time applications in another. Thus, this model suffers from the same def-

ciencies of the frst. The last two models (Figure. 2.4c and Fig. 2.4d) permit the

construction of real-time Android apps by adding a secondary VM with real-

time capabilities or by extending DVM with real-time support (alternatively, re-

placing DVM with a real-time JVM) respectively. These two approaches provide

the ground work for predictability and determinism within the Android system

by replacing the standard Linux kernel with an RTOS as well as introducing

real- time features at the VM level. Notably, these models support real-time

16

Applications

Application Framework

Core

Dalvik VM
Libraries

RTOS Kernel

RT
Apps

Applications

Application Framework

Core

Dalvik VM
Libraries

RT Hypervisor

RT
Apps

Linux Kernel

Applications

Application Framework

Core

Dalvik VM
Libraries

RTOS Kernel

RT JVM

Applications

Application Framework

Core

RT JVM /
Extend Dalvik

Libraries

RTOS Kernel

(a) (b) (c) (d)

Figure 2.4: Proposed Real-Time Android System Models. 2

Android apps, the use of Android features, in addition to Android services and

libraries. The last two models, unfortunately, provide little or no insight on how

Android features, services, and libraries can themselves be extended to support

execution of real-time Android apps.

The overall performance and predictability of DVM in a real-time setting

was frst characterized by Oh et al. [59]. Their fndings mirror our general ob-

servation on Android that the internals of Android are not designed with pre-

dictability in mind. In the work of Perneel et al., they have also confrmed this

observation by evaluating the performance of different components [62]. Sim-

ilarly, Mongia et al. have also showed that deadlines were frequently missed

in Android with delays ranging from 1 ms to 500 ms [65]. Although they have

observed that Android provides reasonable performance in many other con-

ditions, the core system does not provide any guarantees, and the worst case

execution time is parameterized by other apps and components in the system.

Thus, to provide real-time guarantees, we need to alter the core system con-

structs, the libraries, the framework, and the system services built from them.

Mauerer et al. [52] proposed an approach that builds a partitioned system

with RTLinux kernel, and enabled communication channels between a real-

time partition and an Android partition. The authors evaluated real-time na-

tive process behaviors and their interactions. However, their approach does not

consider the internals of Android, such as Dalvik VM, runtime libraries, and

the communication mechanisms. Kalkov et al. [40] outline how to extend DVM

to support real-time; they observed that DVM’s garbage collection mechanism

2Shaded components represent additions or changes to the Android architecture.

17

suspends all threads until it fnishes garbage collection. This design is obvi-

ously problematic for apps that need predictability. The suggested solution is to

introduce new APIs that allow developers to free objects explicitly. While this

design decision does not require a redesign of the whole Dalvik GC, relying on

developers to achieve predictability adds a layer of complexity. These solutions

are in line with RTDroid’s system architecture, which utilizes a real-time kernel

and a real-time JVM, while also points out the problems inherent in Android’s

framework layer.

2.4 Real-time Extensions to Android

Moazzami et al. [53] built a smartphone-based platform for data-intensive, em-

bedded sensing applications, named ORBIT. ORBIT distributes processing/con-

trol tasks, sampling tasks, and complicated algorithms over smartphones, ex-

ternal peripheral boards, and cloud servers, and achieves energy-effciency and

timeliness requirements for sensing apps. Similarly, Kim et al. [42] implemented

SounDroid with low audio stream dispatching latency, which enables a high de-

gree of QoS for sound apps by introducing extra scheduling policies for audio

stream requests. However, both of them do not address the lack of real-time

support problems inherent in Android software stack. RTDroid redesigns and

re-implements necessary communicating components in RTDroid’s framework

layer. Moreover, RTDroid extends Android’s programming model by extending

Android’s basic application constructs and declarative manifest schema with

time and memory guarantees.

The memory guarantee of RTDroid’s programming model is based on region-

based memory management [80]. Scope memory was introduced in the RTSJ [34]

to avoid GC interference. Scope memory allows the system designer to prove

properties about the predictability of the overall system including static mem-

ory bounds [79]. In RTDroid’s programming model, scopes are mostly hidden
from the application developer. The developer needs to confgure the system

to specify necessary bounds, but does not need to worry about adhering to

the scope memory rules enforced by RTSJ. Bounds are specifed declaratively

through RTDroid’s manifest extensions, instead of programmatically, thereby

18

abstracting out confguration from function. Since application constructs com-

municate through message passing, the complexity of reasoning about cross

scope references and scope nesting levels (scope stacks) is handled seamlessly

by our underlying system. This largely removes the cognitive burden from the

developer of using scope memory in application development.

For real-time communication, Kalkov et al. explored how different compo-

nents within a single app (or across multiple apps) interact through the Intent

broadcasting mechanism on Android, and redesigned it for predictability [41].

This design confrm RTDroid’s redesign of the real-time communication con-

structs [85, 86]. In this sense, Kalkov’s work is an independent confrmation

point that verify the necessity of redesign the framework components for real-

time on RTDroid. Moreover, RTDroid’s programming model provides real-time

communication channels that introduces communication semantics into appli-

cation development.

RTDroid utilizes ownership transfer to enable the data transfer between scoped

memory areas. The ownership as a language property has been extensively

studied in the context of programming language [17, 18, 29, 21, 22, 47], specif-

cally through the development of ownership types [25, 61], which were devel-

oped to simplify the reasoning about object oriented programs by controlling

aliasing and modifcation of objects. There also has been work on leveraging

implicit ownership types to simplify the RTSJ scope memory model [87] and to

prove that well typed RTSJ programs [19] are free of scope violations (i.e. an

object lower on the scope stack will not point to an object higher on the scope

stack). However, no one has yet investigated ownership transfer [56] of scopes.

2.5 Real-time Application Verifcation

The study of real-time scheduling started with the hard deadline case in which

any task with a missed deadline was considered to be a failure [50, 35, 12]. To

build a system that would guarantee temporal constrains as well as logical be-

havior, it was necessary to consider a worst-case formulation. Later, Gardner

et. al. [32, 31] model real-time constrains with soft deadlines. They are defned

with soft deadlines and a lateness constraint. For example, it defnes α(x) to be

19

the long run fraction of jobs that miss their deadlines by more than x time units,

then lateness constraints are typically of the form α(x) ≤ β.

Meanwhile, the real-time task model has also has been evolved to include

with more real-world aspects, such as blocking due to synchronization, prece-

dence constraints, mode changes, operating system overhead and architectural

details [76, 37, 76, 30, 9]. The task model in our work requires a task model

with the support of these aspects. Unfortunately, according to our experiences,

although real-time scheduling theory has been most fully developed to predict

whether a set of tasks will meet their hard deadlines given a certain set of as-

sumption about the task set and system, fewer analytic results are available for

soft deadlines.

Chapter 3
RTDroid’s System Architecture

This chapter frst examines the stock Android software stack and discuss how to

address real-time capabilities with Android as a whole system. The primary goal

is to provide predictability in three aspects, timing, memory, and resource pre-

dictability for a single real-time application. Then we present our system architec-

ture in RTDroid which utilizes a real-time OSes, a real-time JVM and redesigned

framework constructs.

The rest of this chapter is orgnized as following: Section 3.3 details three de-

ployment profles with various real-time guarantees, Section 3.4 reports lessons

learned in enabling RTOSes and real-time JVM on targeting devices. We specify

our redesign real-time constructs in framework layer, including real-time mes-

saging passing constructs, RTLooper and RTHandler which are essential to An-

droid’s framework, and two redesigned real-time system services—RTAlarmManager

and RTSensorManager. RTAlarmManager is an example that shows how to utilize

real-time APIs provided in real-time JVM to implement real-time timer. RT-

SensorManager exemplifes how to leverage the hardware abstraction layer on

Android’s customized kernel, and enables hardware access with real-time pre-

dictability. The evaluation results are available in RTDroid’s published work [86,

85, 84]. Note that the redesign framework constructs is mainly used for proof of

concept. In the next Chapter 4, we will illustrate RTDroid’s event-driven pro-

gramming model inherits from Android’s model with real-time expressiveness,

real-time communication semantics and static memory guarantees. The real-

time constructs in programming model will replace the redesigned framework

21

Applications

Application Framework

Android Runtime

Linux Kernel

Dalvik Virtual
Machine

Constructs and APIs System Services

Native Libraries

Applications

Application Framework

RT Runtime

RTOS Kernel

Fiji Virtual Machine

RT AlarmManager

RT SensorManager

Native Fiji Runtime Interface

Libraries

Bionic lib with
RT extension

RT Handler

RT Looper

(a) Simplifed Android Architecture (b) RTDroid Architecture

Figure 3.1: Comparison of Simplifed Android and RTDroid Architectures

constructs discussed in this chapter.

3.1 Android Background

Figure 3.1a shows a simplifed version of the Android architecture. The purpose

of the fgure is not to give a detailed view of Android; instead, we highlight only

those components relevant to our discussion in this section.

As Figure 3.1a depicts, we can divide Android into roughly three layers

below the application layer: (1) the application framework layer, (2) the run-

time and libraries layer, and (3) the kernel layer. Android leverages a modifed

Linux kernel, which does not provide any real-time features such as priority-

based preemption of threads, priority inversion avoidance protocols, and pri-

ority based resource management. Previous work [40, 33] has also shown that

Android’s runtime and libraries provide no real-time guarantees and Dalvik’s

garbage collector can arbitrarily stall application threads regardless of prior-

ity, resulting in non-deterministic behavior. Thus, it is well-understood that the

bottom layers need real-time support in order to provide a predictable platform.

However, we also found that even with the proper real-time features at the ker-

nel and VM layers, Android cannot provide real-time guarantees. This is due to

22

the fact that the application framework layer does not provide predictability for

its core constructs, allowing for arbitrary priority inversion.

Broadly speaking, the application framework layer poses two problems for

real-time applications, one rooted in each of its two categories shown in Fig-

ure 3.1a. The frst problem lies in the category shown on the left, constructs and
APIs, which provides programming constructs and APIs that application de-

velopers can use such as Looper, Handler, and AsyncTask. This category poses a

problem for real-time applications since the constructs do not provide any time

or memory predictability as well as priority awareness. The main issue is that

the latency of message delivery in these mechanisms is unpredictable; lower

priority threads can unnecessarily prevent higher priority threads from making

progress. In Section 3.5, we discuss this problem in more detail and present our

real alternatives.

The second problem occurs in the category shown on the right, system ser-
vices, which provides essential system services. For example, SensorManager

mediates access to sensors and AlarmManager provides system timers. The is-

sue with these system services is that the implementation of the services does

not consider real-time guarantees as a requirement. In Sections 3.6 and 3.7, we

show how two core system services necessary to run a single sensing appli-

cation, AlarmManager, and SensorManager, exhibit this general issue and discuss

how we redesign these services for real-time support.

3.2 Overview of System Architecture

In order to provide real-time support in all three layers depicted in Figure 3.1a,

we advocate a clean-slate redesign of Android in Figure 3.1b. Our redesign

starts from the ground up, leveraging an established RTOS (e.g., RT Linux or

RTEMS) and an RT JVM (e.g., Fiji VM). Upon this foundation we redesign RT-

Droid’s real-time constructs in framework layer with time, memory and re-

source predictability, while preserve Android compatibility with best effort. An-
droid compatibility means providing the same set of Android APIs as well as

preserving their semantics for real-time applications.

There are three major benefts of our clean-slate design. First, by using

23

an RTOS and an RT JVM, we can rely on the sound design decisions already

made and implemented to support real-time capabilities in these systems. Our

RTDroid prototype uses Fiji VM [63], which is designed to support real-time

Java programs from the ground up. Fiji VM already provides real-time func-

tionality through static compiler checks, real-time garbage collection [64], syn-

chronization, threading, etc. We note, however, that RTDroid’s design is VM-

independent.

The second beneft of our architecture is the fexibility of adjusting the run-

time model for different use cases. This is because using an RTOS and an RT

JVM provides the freedom to control the runtime model. For example, we can

leverage the RTEMS [5] runtime model, where one process is compiled together

with the kernel for single application deployment. With this model, an appli-

cation can fully utilize all the resources of the underlying hardware. Using this

runtime model is currently not possible with Android, as Android runs most

system services as separate processes. Simply modifying Dalvik or the OS is

not enough to augment Android’s runtime model; the framework layer itself

must be changed.

The third beneft of our architecture is the streamlining of real-time appli-

cation development. Developers can leverage the rich APIs and libraries that

are already implemented and have support for various hardware components.

Unlike other mobile OSes, Android excels in supporting a wide variety of hard-

ware with different CPUs, memory capacities, screen sizes, and sensors. An-

droid APIs make it easier to write a single application that can run on different

types of hardware. Thus, Android compatibility can reduce the complexity of

real-time application development.

3.3 Deployment Profles

RTDroid supports three different types of deployment profles with varying de-

grees of guarantees provided by the underlying platform and RTOS kernel. Not

all of the deployment profles currently support hard real-time guarantees due

to their use of the RT Linux kernel and closed source drivers as we explain be-

low.

24

� Soft Real-time Smartphone: This profle provides the loosest guarantees

due to its reliance on unverifed closed source drivers and a partially pre-

emptible RTLinux kernel as opposed to a fully preemtible RTLinux ker-

nel. 1 As the mobile-oriented kernel modifcation in Android’s kernel,

the customized Android Linux kernel is incompatible with the RTLinux

patch, which prevents us from putting the kernel into a fully-preemptible

mode. As such, it is only suited for soft real-time tasks. However, most

application domains, such as medical device monitoring are soft real-time

systems. In this profle, task deadlines can be missed due to jitter from the

kernel or blocking from the drivers. Nevertheless, RTDroid’s published

results [86, 85, 84] show that we can still provide tight latency bounds and

predictability even on this profle with RTDroid.

� Soft Real-time Desktop: This profle provides stricter guarantees than

that of the smartphone as it leverages a fully preemptible RTLinux kernel.

In this profle, we can leverage verifed-and-certifed drivers. However,

RTLinux, even in the fully preemptible kernel is not typically used in hard

real-time systems. Based on current best practices, this deployment should

only be used for soft real-time systems. In this profle, deadlines can be

missed due to jitter from the kernel.

� Hard Real-time Embedded: By moving away from RTLinux and using a

certifed RTOS such as RTEMS as well as a development board with certi-

fed drivers for its hardware sensors, much stricter guarantees can be pro-

vided. No deadlines will be missed due to jitter, at least from the kernel or

the drivers.

3.4 Real-time Building Blocks

The x86 and the LEON3 environments do not require any more than replac-

ing the non-real-time kernel with either real-time Linux kernel (by applying

an RT-Preempt patch, i.e., RTLinux) or the real-time RTEMS kernel. The same

strategy, however, does not work for the smartphone environment because An-

1With a fully preemptible kernel, all parts of the kernel become preemptible by a high priority
thread.

25

droid has introduced extensive changes in the kernel that are not compatible

with RTLinux patches. In the following section, we frst briefy describe our x86

and LEON3 environments. We then report our experience with the smartphone

environment in detail.

3.4.1 x86 PC and LEON3

For the x86 environment, we apply an RTLinux patch (patch-3.4.45-rt60) to Linux

3.4.45, and use FijiVM [63] as the real-time VM. FijiVm already runs on RTLinux,

thus it did not require any additional effort. This confguration represents our

soft real-time deployment. Tighter bounds are provided as RTLinux makes the

kernel fully preemptible. Similarly, we can introspect the drivers on the machine

to guarantee their timeliness or leverage off-the-self drivers that have already

been vetted.

To create the LEON3 environment, we use a LEON3 embedded board, GR-

XC6S-LX75, manufactured by Gaisler. We then use RTEMS as the real-time ker-

nel and Fiji as the real-time VM. RTEMS has native support for LEON3 and Fiji

already supports RTEMS. This confguration represents our hard real-time em-

bedded board deployment, avoiding the issues that plague RTLinux and closed

source drivers. The LEON3 manufacturers provide drivers that have previously

been certifed for automotive, aerospace, and civilian aviation.

In order to test the SensorManager on the LEON3, we have designed and

implemented an accelerometer daughter board as well as the associated RTEMS

compliant driver.

3.4.2 Nexus S Smartphone

Unfortunately, the same approach is not adequate for execution on an Android

phone. This is mainly due to the incompatibilities between Android and the

real-time building blocks in the kernel layer as well as in Android’s C library,

Bionic. The following are the main challenges to integration.

Bionic: Android does not utilize glibc as the core C library, instead it uses its

own library called Bionic [28]. Bionic is a signifcantly simplifed, optimized,

light-weight C library specifcally designed for resource constrained devices

26

with low frequency CPUs and limited main memory. Its architectural targets

are only ARM and x86.

Bionic becomes a problem when replacing Dalvik with Fiji; this is because it

does not support the real-time extensions for Pthreads and mutexes, which are

required by Fiji (or any other real-time Java VM). In addition, it is not POSIX-

compliant. Thus, we have modifed Bionic to include all necessary POSIX com-

pliant real-time interfaces. This includes all the real-time extensions for Pthreads

and mutexes.

Incompatible Kernel Patches: Android has introduced a signifcant amount

of changes specializing the Linux kernel for Android, e.g., low memory killer,

wakelock, binder, logger, etc. Due to these changes, automatic patching of an

Android kernel with an RTLinux patch is not possible, requiring a manually

applied RTLinux patch.

Even after manual patching, however, we have discovered that we are still

not able to get a fully-preemptible kernel which can provide tighter latency

bounds. The reason is simply that Android’s changes are not designed with full

preemption in mind. We are currently investigating this issue and it is likely

that this is an engineering task. Nevertheless, we are not aware of any report of

a fully-preemptible Android kernel.

Non-Real-Time Kernel Features: During our initial testing and experimenta-

tion, we have discovered that there are two kernel features that are not real-

time friendly. They are the out of memory killer (OOM killer) [4] and CPUFreq
governors [27]. The OOM killer is triggered when there is not enough space for

memory allocation. It scans all pages for each process to verify if the system

is truly out of memory. It then selects one process and kills it. We have found

out that this causes other threads and processes to stop for an arbitrary long

time, creating unpredictable spikes in latency. For our target scenario of run-

ning a single real-time application, the OOM killer is not only not necessary, but

a source of missed real-time task deadlines. Memory management is provided

by Fiji VM’s Schism real-time, fragmentation tolerant GC [64]. It is therefore,

critical to disable OOM killer.

CPUFreq governors offer dynamic CPU frequency scaling by changing the

frequency scaling policies. Android uses this to balance between phone per-

27

formance and battery usage. The problem is that when a CPUFreq governor

changes the frequency, it affects the execution time of all running threads, again

introducing jitter in the system. Moreover, frequency scaling is not taken into

consideration when scheduling threads. The result is missed task deadlines and

unpredictable spikes in latency. Although not the focus of our experiments, we

note that real-time scheduling that takes into consideration voltage scaling has

been vetted for hardware architecture that provides predictable mechanisms for

doing so [23]. In our experiments, we show the behavior of RTDroid with two

governors—the “ondemand” governor, which dynamically changes the CPU

frequency depending on the current usage, and the “performance” governor,

which sets the CPU frequency to the highest frequency possible. We leave it

as our future work to handle dynamic frequency scaling. For example, we can

apply an existing method for worse case execution time analysis [54] to validate

the hardware and leverage this timing analysis to modify the kernel and VM

schedulers appropriately.

3.5 RT Looper and RT Handler

As discussed in Section 3.1, the frst issue that the application framework poses

lies in its message-passing constructs. These constructs do not provide any pre-

dictability or priority-awareness. We detail this issue in this section and discuss

how we address it in RTDroid.

3.5.1 Android’s Looper and Handler

Android provides a set of constructs that facilitate communication between dif-

ferent entities, e.g., threads and processes. There are four such constructs—

Handler, Looper, Binder, and Messenger. Since any typical Android applica-

tion uses these constructs, we need to support these constructs properly in a

real-time context.

Among these four constructs, Looper and Handler are the most critical con-

structs for our target scenario of running a single real-time sensing application.

This is because Binder and Messenger are inter-process communication con-

28

Sender
Thread

handler
instance

Receiver Thread

Looper

Message Queue

Handler
Implementation

dispatchMessage()

sendMessage()

Message 1

Message n

...... handleMessage()

Figure 3.2: The Use of Looper and Handler

structs, while Looper and Handler are inter-thread communication constructs.

Further, Looper and Handler are used not only explicitly by an application, but

also implicitly by all applications. This is due to the fact that Android’s applica-

tion container, ActivityThread, uses Looper and Handler to control the execu-

tion of an application. When an application needs to make transitions between

its execution states (e.g., start, stop, resume, etc.), ActivityThread uses Looper

and Handler to signal necessary actions.

Figure 3.2 shows how Looper and Handler work. Looper is a per-thread mes-

sage loop that Android’s application framework implements. Its job is to main-

tain a message queue and dispatch each message to the corresponding Handler

that can process the message. The developer of the application provides the

processing logic for a message by implementing Handler’s handleMessage(). A

Handler instance is shared between two threads to send and receive messages.

The Looper and Handler mechanism raises a question for real-time applica-

tions when there are multiple threads with different priorities sending messages

simultaneously. In Android, there are two ways that Looper and Handler pro-

cess messages. By default, they process messages in the order in which they

were received. Additionally, a sending thread can specify a message processing

time, in which case Looper and Handler will process the message at the speci-

fed time. In both cases, however, the processing of a message is done regardless

of the priority of the sending thread or the receiving thread. Consider if multi-

29

Handler
Object

Thread Thread RT Thread

Msg 1
Msg n

RT Msg1

Looper
Thread

Msg1Msg nRT Msg 1

Message Queue

Figure 3.3: Android’s Looper and Handler: The thread in which the looper ex-
ecutes processes the messages sent through the associated handler object in the
order in which they are received.

ple user-defned threads send messages to another thread. If a real-time thread

sends a message through a Handler, its message will not be processed until the

Looper dispatches every other message prior to its message in the queue regard-

less of the sender’s priority as seen in Figure 3.3. The situation is exacerbated by

the fact that Android can re-arrange messages in a message queue if there are

messages with specifc processing times. For example, suppose that there are a

number of messages sent by non-real-time threads in a queue received before a

message sent by a real-time thread. While processing those messages, any num-

ber of low-priority threads can send messages with specifc times. If those times

come before fnishing the processing of non-real-time messages, the real-time

message will get delayed further by non-real-time messages.

3.5.2 Real-Time Redesign

To mitigate the issues mentioned, we redesign Looper and Handler in two ways.

First, we assign a priority to each message sent by a thread. We currently sup-

port two policies for priority assignment. These policies are priority inheritance,

where a message inherits its sender’s priority, and priority inheritance + specifed
where a sender can specify the message’s priority in relation to other messages

it sends.

Second, we create multiple priority queues to store incoming messages ac-

cording to their priorities. We then associate one Looper and Handler for each

30

Handler
Object

Handler
Object

Thread Thread RT
Thread

Msg 1 Msg n RT Msg1

Looper
Thread

(Non-RT)
Msg 1Msg n

Message Queue Looper
Thread

(RT)
RTMsg 1RTMsg n

RT Message Queue

Figure 3.4: An Example of Looper and Handler in RTDroid. Each message has
a priority and is stored in a priority queue. Processing of messages is also done
by priority. The example shows one high-priority thread and multiple non-real-
time threads.

queue to process the messages according to its priority. Figure 3.4 shows our

new implementation for Looper and Handler. Since we now process each mes-

sage according to its sender’s priority, messages sent by lower priority threads

do not delay the messages sent by higher priority threads. For memory pre-

dictability, queues can be statically confgured in size.

3.5.3 Worst-Case Execution Time Analysis

To understand the worst-case execution characteristics of the Real-time Looper

and Handler we must reason about how the constructs process a series of mes-

sages and execute each message’s callback function. We defne Ti
j to be the ith

message issued by the application from a thread with priority j. The messages

are passed into a real-time Looper that has the same priority as the messages

and then they are enqueued in a MessageQueue. The time cost for handling the

ith message in priority level j is shown as Si
j in Equation (3.1):

i
Sj

= ∑(hl
j
+ deq(Tl

j
)), (3.1)i

l=0

Where hi
j is the cost of time to handle Ti

j and deq(Ti
j) is the cost of dequeuing

from the message queue.

To reason about the worst-case execution time for a message m, we must frst

calculate the processing time for all messages that have priorities greater than

31

or equal to the priority of message m, shown in Equation (3.2):

phase0(Ti
j
) = ∑ Sp

last + Si
j . (3.2)

p>j

Where last is the last message in the message queue with priority j. Since the

system also handles new incoming messages, which may have a priority greater

than or equal 2 to that of m, we must also defne the system in terms of a message

arrival rate R for a given priority p.

We divide the amount of time for the system to handle m into a number of

phases. During phase0, the system handles all of the messages in the priority

queue which are greater than or equal to the priority of m as shown in Equa-

tion 3.2. While handling the message in the current phase, new messages arrive

at a given rate per priority level, the system must then handle each of the new

messages with priority greater than or equal to m before handling message m.

In order to quantify the number of messages in each priority queue, we de-

fne a sending rate for each group of clients with priority p, Rp. when, n ≥ 1,

then worst-case handling time is integrating all of the handling times for mes-

sages that are greater than or equal to the priority of message m, as shown in

Equation (3.3):

phasen−1(Ti
j
)∗Rp� �

phasen(Ti
j
) = ∑∑ hp

i + deq(i) + enq(i) . (3.3)
p≥j i=0

Where enq(Ti
j) is the cost of enqueuing in the message queue.

The LHS represents the upper bound of the time cost for message handling

for phasen, the RHS represents the total time cost for handling all messages that

arrive during phasen−1; The outer summation is the time to handle each prior-

ity level and the inner summation is the integration of the time to handle all of

the same priority messages that have arrived in the phasen−1. phasen−1(Ti
j) rep-

resents the time spent in previous phase, and when multiplied by Rp gives the

2Although our Looper and Handler uses a FIFO priority queue, we are abstracting the com-
plexities of the data-structure algorithm, such as queuing and dequeuing costs, in the calculation
and thus creating a generalized equation applicable to all our RT redesigns.

32

number of messages currently in each priority based queue. The recursion ends

when phasen is smaller than the time unit of the rate Rp. Thus, the summation

of all phases is the actual worst-case execution time for handling message, m as

shown in Equation (3.4):

WCET(Ti
j
) = phase0(Ti

j
) + phase1(Ti

j
)

+ ... + phasen−1(Ti
j
) + phasen(Ti

j
). (3.4)

Notice, the system is only well defned (i.e. able to process messages with

real-time guarantees) if the worst-case execution time for each message is less

than the deadline for processing that message relative to its arrival time and if

phasen is less than phasen−1.

3.6 RT Alarm Manager

The second issue that Android’s application framework layer poses for real-

time support is that system services do not provide real-time guarantees. Since

Android mediates all access to its core system functionalities through a set of

system services, it is critical to provide real-time guarantees in the system ser-

vices. Just to name a few, these services include PowerManager that controls

power; SensorManager that mediates all sensor access and data acquisition; and

AlarmManager that provides a timer service.

The presence of these system services raises two questions. First, in our

target scenario of running a single real-time app, there is no need to run system

services as separate processes; rather it is more favorable to run the application

and the system services as a single process to improve the overall effciency of

the system. Then the question is how to redesign the system service architecture

in our platform in order to avoid creating separate processes while preserving

the underlying behavior of Android. Second, as we show in this section and

the next section, the internals of these system services do not consider real-time

support as a design requirement.

To answer these two questions, we redesign two of the system services—

33

AlarmManager

App

Timestamp
Message

Activity
AlarmManager.set()

BroadcastReceiver
onReceive() Message

Figure 3.5: An Example Flow of AlarmManager. An application uses
AlarmManager.set() to register an alarm. When the alarm triggers, the
AlarmManager sends a message back to the application, and the application’s
callback (BroadcastReceiver.onReceive() in the example) gets executed.

AlarmManager and SensorManager. In this section we frst show how we re-

design AlarmManager to provide real-time guarantees. In the next section, we

discuss our SensorManager redesign.

3.6.1 Android’s Alarm Manager

AlarmManager receives timer registration requests from applications and sends a

“timer triggered” message to these applications when its timer fres. Since real-

time applications frequently rely on aperiodic and sporadic tasks, it is important

to provide real-time guarantees in AlarmManager.

Figure 3.5 shows how AlarmManager works, including alarm registration and

alarm delivery. An IPC call, with a message 3 and execution time, is made to the

AlarmManager every time an application registers an alarm. When the the alarm

triggers at the specifed time, the AlarmManager sends a message back to the ap-

plication, and the associated callback is executed. The issue with AlarmManager

is that it provides no guarantee on when or in what order alarm messages are

delivered, hence does not provide any timing guarantee or priority-awareness.

3This message is associated with a callback for the application which gets executed when the
message is delivered.

34

Alarm MapApp Thread

AlarmManager.set()

Timestamp

Message

Figure 3.6: The Implementation of Alarm Execution on RTDroid. The tree col-
ored black at the top maintains timestamps. The trees colored gray are per-
timestamp trees maintaining actual alarm messages to be delivered.

3.6.2 Real-Time Redesign

We redesign both alarm registration and delivery mechanisms to support pre-

dictable alarm delivery. For alarm registration, we use red-black trees to main-

tain alarms as shown in Figure 3.6. This means that we can make the registration

process predictable based on the complexity of red-black tree operations, i.e., the

longest path of a tree is no longer than twice the shortest path of the tree. We use

one red-black tree for storing timestamps and pointers to per-timestamp red-

black trees. Per-timestamp trees are leveraged to order alarms with the same

timestamp by their sender’s priority. Thus, our alarm registration process is es-

sentially one insert operation to the timestamp tree and another insert operation

to a per-timestamp tree. By organizing the alarms based on senders’ priorities,

we guarantee that an alarm message for a low priority thread does not delay an

alarm message for a high priority thread. Expired alarms are discarded. Note

that this ensures that low priority threads whose alarm registration rate exceeds

the alarm delivery capacity of the system cannot prevent a high priority alarm

from being triggered.

For alarm delivery, we create an AlarmManager thread and assign the highest

priority for timely delivery of alarm messages. This thread replaces the original

multi-process message passing architecture of Android. It wakes up whenever

an application inserts a new alarm into our red-black trees, then it schedules a

new thread at the specifed time for the alarm. We associate the application’s

callback for the alarm message with this new thread. For precise execution tim-

ing of this callback thread, we implement Asynchronous Event Handlers (AEH)

35

that Real-Time Specifcation for Java (RTSJ) [34] specifes the interface for.

We have implemented two versions for AEH. The frst is a per-thread AEH

implementation used in our workshop paper [85], which creates one thread per

handler to process a given event type. This simple mechanism is effcient in

handling low numbers of events, but can create memory and processing pres-

sure due to large number of handling threads if a large number of events oc-

cur within the same time period. Although most Android applications do not

register alarms at a frequency that would cause problems, our system must be

resilient to such behavior nonetheless.

The second mechanism leverages a thread pool with a statically confgured

number of threads, which reduces the number of threads that we need to create.

Our implementation is based on Kim et al.’s proposed model [43].

The beneft of this implementation is a hard, statically known limit on the

number of threads to handle asynchronous events. There is lower memory us-

age due to less threads being created and the output is deterministic with a

well-known, predictable behavior [26].

3.6.3 Worst-Case Execution Time Analysis

The worst-case execution scenario for AlarmManager is similar to that discussed

for the Looper and Handler in Section 3.5.3. The upper bound of delivery and

execution of an alarm a consists of 1) the delivery and execution of all alarms

that have been registered with priority greater or equal to that of a, 2) the deliv-

ery and execution of all newly registered alarms with priority greater or equal

to a based on a per priority rate of alarm delivery and registration. The equa-

tion of WCET for AlarmManager is the same pattern as shown in Equation (3.1),

(3.2), (3.3), (3.4), but couched in terms of alarm processing instead of message

delivery.

1. Ti
j represents the ith alarm registered by application with priority j.

2. Si
j represents the time cost for handling the ith alarm in priority level j.

3. hi
j is the cost of time to execute the alarm Ti

j .

4. last is the last alarm in priority level j.

5. enq(Ti
j) is the cost of alarm registration.

36

SensorManager

JNI: Native SensorManager

SystemSensor
Manager

SensorManager.cpp

SensorEventQueue

Framework Sensor Libraries

Client Side Server Side

Sensor
Thread

SensorService
(binder proxy)

Binder
Service

BnSensor
Service

SensorDevice

SensorService

SensorEvent
Connection

Sensor
Thread

HAL

Bit
Tube

SensorEventConnection
instance

SensorFusion

Linear
Accelerometer Orientation...

SensorBase

Accelerometer Gyroscope...

Sensors.cpp

Drivers.so

Kernel

Event handler

Event Device

Input Core

input device ...

Figure 3.7: Android Sensor Architecture

6. deq(Ti
j) is the cost of alarm delivery.

3.7 RT Sensor Manager

Another system service we redesign in our system is SensorManager. Modern

mobile devices are equipped with many sensors such as accelerometers, gyro-

scopes, etc. Android, mainly through its SensorManager, provides a set of APIs

to acquire sensor data. This section examines the current sensor architecture of

Android and presents our new design for real-time support.

3.7.1 Android’s Sensor Manager

On Android, sensors are broadly classifed into two categories. The frst cate-

gory is hardware sensors, which are the sensors that have a corresponding hard-

ware device. For example, accelerometer and gyroscope belong to this category.

The second category is software sensors, which are “virtual” sensors that exist

purely in software. Android fuses different hardware sensor events to provide

software sensor events. For example, Android provides an orientation sensor in

software. On Nexus S, Android 4.2 has six hardware sensors and seven software

sensors.

37

These sensors are available to applications through SensorManager APIs. An

application registers sensor event listeners through the provided APIs. These

listeners provide the application’s callbacks that the Android framework calls

whenever there is any requested sensor event available. When registering a

listener, an application can also specify its desired delivery rate. The Android

framework uses this as a hint when delivering sensor events.

Internally, there are four layers involved in the overall sensor architecture:

the kernel, HAL, SensorService, and SensorManager. Figure 3.7 shows a sim-

plifed architecture.

1. Kernel: The main job of the kernel layer is to pull hardware sensor events

and populate the Linux /dev fle system to make the events accessible from

the user space. Each sensor hooks to the circuit board through an I2C bus

and registers itself as an input device.

2. HAL: The HAL layer provides sensor hardware abstractions by defning

a common interface for each hardware sensor type. Hardware vendors

provide actual implementations underneath.

3. SensorService: SensorService converts raw sensor data to more mean-

ingful data using application-friendly data structures. This involves three

steps. First, SensorService polls the Linux /dev fle system to read raw

sensor input events. Second, it composites both hardware and software

sensor events from the raw sensor input events. For hardware sensors, it

just reformats the data; for software sensors, it combines different sources

to calculate software sensor events via sensor fusion. Finally, it writes the

sensor event to the SensorEventQueue via SensorEventConnection.

4. Framework Layer: SensorManager delivers the sensor events by reading

the data from SensorEventQueue and invoking the registered application

listeners to deliver sensor events.

There are two issues that the current architecture has in providing predictable

sensing. First, there is no priority support in the sensor event delivery mecha-

nism since all sensor events go through the same SensorEventQueue. When

38

RT SensorManager

ProcessingComponent

PollingComponent

DeliveryHandler (Real-time Handler)

RT Looper

RT Handler

RT Looper

RT Handler

RT Looper

RT Handler...

Accelerometer
ProcessingThread

Gyroscope
ProcessingThread

Orientation
ProcessingThread...

PollingThread (Periodic RT Thread)

Fusion

Kernel: Device Event

native interface

Figure 3.8: RTDroid Sensor Architecture

there are multiple threads with different priorities, the event delivery of lower-

priority threads can delay the event delivery of higher-priority threads. Sec-

ond, the primary event delivery mechanisms poll and buffer at the boundary

of different layers (e.g., between the kernel and SensorService and between

SensorService and SensorManager) by use of message passing constructs. An-

droid does not provide any guarantee on how long it takes to deliver events

through these mechanisms.

3.7.2 Real-Time Redesign

We redesign the sensor architecture for RTDroid to address the two issues men-

tioned above. Our design is inspired by event processing architectures used

for Web servers [60, 82]. We frst describe the architecture and discuss how we

address the two problems with our new architecture.

As shown in Figure 3.8, there are multiple threads specialized for different

tasks. At the bottom, there is a polling thread that periodically reads raw sensor

data out of the kernel. This polling thread communicates with multiple process-
ing threads. We allocate one thread per sensor type as shown in Figure 3.8, e.g.,
one thread for accelerometer, one thread for gyroscope, and one thread for the

39

orientation sensor. The main job of these processing threads is to perform raw

sensor data processing for each sensor type. For example, a processing thread

for a hardware sensor reformats raw sensor data to an application-friendly for-

mat, and a processing thread for a software sensor performs sensor fusion. Once

the raw sensor data is properly processed, each processing thread notifes the

delivery thread whose job is to create a new thread that executes the sensor event

listener callback registered by an application thread. To provide predictable

delivery, we use notifcation, not polling, for our event delivery except in the

boundary between the kernel and the polling thread. We provide additional

predictability through our priority inheritance mechanism described next.

We address the two issues mentioned earlier by priority inheritance. When

an application thread of priority p registers a listener for a sensor, say, gyro-

scope, then the processing thread for gyroscope inherits the same priority p. If

there are multiple application threads that register for the same gyroscope, then

the gyroscope processing thread inherits the priority of the highest-priority ap-

plication thread. In addition, when the delivery thread creates a new thread that

executes a sensor event listener callback, this new thread also inherits the origi-

nal priority p of the application thread. We assign the highest priority available

in the system to the polling thread to ensure precise timing for data pulling.

This combined use of event-based processing threads and priority inheri-

tance has two implications. First, when an application thread registers a listener

for a sensor, we effectively create a new, isolated event delivery path from the

polling thread to the listener. Second, this newly created path inherits the prior-

ity of the original application thread. This means that we assign the priority of

the application thread to the whole event delivery path.

3.7.3 Worst-Case Execution Time Analysis

The worst-case execution scenario for SensorManager is slightly different than

what we have discussed in Section 3.5.3 and 3.6.3. The upper bound for deliv-

ery of the sensor event to a sensor listener, l, consists of three parts: (1) the time

cost of the system delivery the sensor event to all sensor listeners that registered

a listener that are greater or equal to the priority of l, (2) recursively integrate the

�

40

time cost for register and deliver of the sensor data for the new higher-priority

listener arriving at a per priority rate, and (3) the time cost for polling the data

from each sensor kernel module. The WCET equation for SensorManager is in

the same fashion as previously defned in Equation (3.1), (3.2), (3.3), (3.4), and

includes the sensor data polling cost as shown in in Equation (3.5), (3.6) :

phase0(Ti
j
) = ∑

j>p
Sp

last + Si
j∑ Pj(sensore) + (3.5)

p≥j

phasen−1(Ti
j
)∗Rp �

phasen(Ti
j
) = hi

p
+ deq(Ti

j
) + enq(Ti

j
)∑ ∑

0i=
(3.6).

p≥j

1. Ti
j represents the ith sensor listener in application with priority j.

2. Si
j represents the time cost to execute the ith callback of sensor listener in

priority level j .

3. hi
j is the amount of time to execute the callback of sensor listener of Ti

j .

4. deq(Ti
j) is the cost of listener registration.

5. Pj(sensore) is the cost of sensor data polling.

3.8 Evaluation

To measure and validate our prototype of RTDroid, we have tested our imple-

mentation on three different machine confgurations, each of which represents

one of our target deployments outlined in Section 3.3. The frst confguration

utilizes an Intel Core 2 Duo 1.86 GHz with 2GB of RAM. For precise timing

measurements we disabled one of the cores prior to running the experiments.

The second confguration is a Nexus S equipped with a 1 GHz Cortex-A8 and

512 MB RAM along with 16GB of internal storage and an accelerometer, gyro,

proximity, and compass sensors running Android OS v4.1.2 (Jelly Bean) patched

with RT Linux v.3.0.50. For the third confguration we leveraged a GR-XC6S-

LX75 LEON3 development board running RTEMS version 4.9.6. The board’s

Xilinx Spartan 6 Family FPGA was fashed with a modifed LEON3 confgu-

ration running at 50Mhz. The development board has an 8MB fash PROM

https://v.3.0.50

41

and 128MB of PC133 SDRAM. We repeat each experiment multiple times, and

present empirically observed worst case execution time metrics as it is diffcult

to provide worst case latencies for the whole system without specialized tim-

ing hardware. We therefore focus on showing the timeliness of our system on

a series of stress tests. We couple the worst observed latency/processing time

for each experiment with the algorithmic characterization of the worst-case ex-

ecution time of each component individually presented in Sections 3.5.3, 3.6.3,

and 3.7.3.

To enable testing of our RT SensorManager on LEON3, we have designed

and developed a daughter board with interface circuitry based on the Freescale

Semiconductor MMA8452Q triple axis accelerometer. We have developed an

RTEMS driver for the accelerometer and integrated it into our RTEMS build.

3.8.1 RT Looper and RT Handler Microbenchmarks

To measure the effectiveness of our prototype, we have conducted an experi-

ment that leveraged RT Looper and RT Handler. Our microbenchmark creates

one real-time task with a 100 ms period that sends a high-priority message. To

measure the predictability of the system, we calculate the latency of process-

ing the message. To do this, we take a timestamp in the real-time thread prior

to sending the message. This timestamp is the data encoded within the mes-

sage. A second timestamp is taken within the RT Handler responsible for pro-

cessing this message after the message has been received and the appropriate

callback invoked. The difference between the timestamps is the message’s la-

tency. In addition, the experiments include a number of low-priority threads

which also leverage RT Looper and RT Handler. These threads have a period of

10 ms and send 10 messages during each period. To compare the Looper and

Handler designs between RTDroid and Android, we have ported the relevant

portion of Android’s application framework, including Looper and Handler, so

we can compile and run our benchmark application on x86. Thus, on Android,

all threads, regardless of their priorities, use the same Looper and Handler—

this is the default behavior. On RTDroid, each thread uses a different pair of RT

Looper and RT Handler according to its priority—this is opaque to the applica-

42

0

20

40

60

80

100

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (u
s)

Release Number

0

20

40

60

80

100

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (u
s)

Release Number

0
200
400
600
800

1000
1200
1400
1600
1800

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (u
s)

Release Number

(a) RTDroid: 30 low-priority threads (b) RTDroid: 300 low-priority threads (c) Android: 30 low-priority threads

Figure 3.9: The observed raw latency of Looper and Handler on x86.

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Release Number

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Release Number

0

5

10

15

20

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Release Number

(a) RTDroid: 5 low-priority threads (b) RTDroid: 30 low-priority threads (c) Android: 5 low-priority threads

Figure 3.10: The observed raw latency of Looper and Handler on LEON3.

tion developer and handled automatically by the system.

To measure the predictability of our constructs under a loaded system, we

increase the number of low-priority threads. We have executed each experiment

for 40 seconds, corresponding to 400 releases of the high-priority message, and

have a hard stop at 50 seconds. We measure latency only for the high-priority

messages and scale the number of low-priority threads up to the point where the

total number of messages sent by the low-priority threads exceeds the ability to

process those messages within the 40 second execution window. On both x86

and Nexus S, we have varied the number of low-priority threads in increments

of 10 from 0 to 300. Considering memory and other limitations of our resource

constrained embedded board, we have run the experiments increasing the low

priority threads in increments of 5 from 5 to 30 when running on LEON3.

Fig. 3.9 and Fig. 3.10 demonstrate the consistent latency of our RT Looper

and RT Handler implementation. On x86, we observe most of the latency for

messaging is between 22 µs and 50 µs with any number of threads, and the

variance is around 20 µs from the lowest to the highest latency in any given run.

43

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Release Number

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Release Number

0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300 350

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Release Number

(a) RTDroid With Ondemand (b) RTDroid With Performance (c) Stock Android System

Figure 3.11: The observed raw latency of Looper and Handler on Nexus S.

0

0.5

1

1.5

2

0 50 100 150 200 250 300

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Number of Low-Priority Threads

0

0.5

1

1.5

2

-5 0 5 10 15 20 25 30 35

M
es

sa
ge

 P
as

si
ng

 L
at

en
cy

 (m
s)

Number of Low-Priority Threads

(a) Nexus S (b) LEON3

Figure 3.12: Observed WCETs of Message Passing Latency

The worst observed latency variance is 26 µs. This degree of variance on the sys-

tem is attributed to context switch costs and scheduling queue contention. On

the LEON3 development board, the result shows a similar pattern. In contrast,

the huge variance of Android on both platforms clearly indicate its inability to

provide real-time guarantees.

Fig. 3.11 shows the results on Nexus S. We run two series of experiments, one

with the ondemand governor and the other one with the performance governor.

Fig. 3.11a shows that the message latencies fuctuate from 0.04 ms to 0.5 ms on

Nexus S with the ondemand governor. This is due to the periodic releases of

each low-priority thread which vary the system load and trigger the governor

module to adjust the frequency of CPU. The tests with the performance gover-

nor show a consistent latency in Fig. 3.11a, since the CPU frequency does not

change. On the other hand, the latency variation from Android is several orders

of magnitude greater than that of RTDroid as shown in Fig. 3.11c.

44

0

0.5

1

1.5

2

0 20 40 60 80 100

Ti
m

e
C

os
t (

m
s)

Number of Low-Priority Alarms

Delivery Latency
AEH Fire Latency

0

0.5

1

1.5

2

0 20 40 60 80 100

Ti
m

e
C

os
t (

m
s)

Number of Low-Priority Alarms

Delivery Latency
AEH Fire Latency

(a) RTDroid: Per Thread (b) RTDroid: Thread Pool

Figure 3.13: RT AlarmManager Per Thread vs Thread Pool on x86.

To quantify the empirical worst case behavior of our RT Looper and RT Handler

implementation, we have run the microbenchmark 10 times on Nexus S and

LEON3. Fig. 3.12 shows observed WCETs of message passing latency over 10

executions with increasing number of low-priority threads. Fig. 3.12a shows

that the observed WCETs range from 0.1 ms to 0.7 ms, the standard deviations of

the latencies are from 0.01 ms to 0.2 ms. These variances are caused by schedul-

ing time cost on a non-fully-preemtible Linux RT kernel on Nexus S. We do not

observe such variance on LEON3, show in Fig. 3.12b, since the RTEMS kernel

provides more consistent scheduler for tasks dispatching. Thus we conclude

that the variance of the observed WCETs on Nexus S are most likely caused by

kernel jitter, not our implementation.

3.8.2 RT AlarmManager Microbenchmarks

Measuring the performance of the RT AlarmManager was done with an experi-

ment consisting of scheduling of a single high-priority alarm at the current sys-

tem time + 40 ms, while increasing the number of low-priority alarms scheduled

at the exact same time. We measure two types of latency for the experiment: 1)

the entire latency of the alarm delivery (Delivery latency), which is the differ-

ence between the scheduled time and actual execution time of the high-priority

alarm, and 2) the latency of the asynchronous event fre (AEH fre latency), which

is the difference between the scheduled time and the actual fring time by the

AlarmManager. The difference between the two types of latency measures shows

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Ti
m

e
C

os
t (

m
s)

Number of Low-Priority Alarms

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Ti
m

e
C

os
t (

m
s)

Number of Low-Priority Alarms

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Ti
m

e
C

os
t (

m
s)

Number of Low-Priority Alarms

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25 30 35

Ti
m

e
C

os
t (

m
s)

Number of Low-Priority Alarms

45

Avg. Delivery Avg. Delivery
Avg. AEH Fire Avg. AEH Fire

Obsv. WCET Delivery Latency Obsv. WCET Delivery Latency

(a) RTDroid: Per Thread (b) RTDroid: Thread Pool

Figure 3.14: RT AlarmManager - Per Thread vs Thread Pool on Nexus S.

Avg. Delivery Avg. Delivery
Avg. AEH Fire Avg. AEH Fire

Obsv. WCET Delivery Latency Obsv. WCET Delivery Latency

(a) RTDroid: Per Thread (b) RTDroid: Thread Pool

Figure 3.15: RT AlarmManager - Per Thread vs Thread Pool on LEON3.

how long it takes for the system to deliver an alarm from the AlarmManager to

the app. We run the experiment on all three platforms. These results show

the timing and latencies of the alarm execution process and indicate that the

RT AlarmManager is effcient at prioritizing high-priority alarms and scheduling

them at their specifed time.

As mentioned in Section 3.6, we have implemented two techniques for alarm

management in RT AlarmManager—one with a per-thread AEH implementation

used in our previous workshop paper [85] and another implemented with a

thread pool. We show the predictability of RTDroid with each technique by

using threads ranging from 5 to 100 and a thread granularity of 10. To induce

queueing in the thread pool implementation, only 3 worker threads are allo-

cated for the thread pool.

46

Fig. 3.13 shows the results of the per-thread AEH and the thread pool AEH

experiments running on x86. The latency of the entire alarm delivery for per-

thread AEH on the x86 is bounded from 0.22 ms to 0.33 ms. The asynchronous
event fre latency is consistently around 0.11 ms. The per-thread implementation

exhibits a slightly lower performance with the alarm delivery bounded from

0.26 ms to 0.36 ms. The results of the thread-poll implementation is 0.1 ms longer

than the results of the per-thread implementation. Such variations are expected

and caused by alarm queuing in the thread pool itself.

To evaluate the empirical worst case behavior of RT AlarmManager, we have

repeated the same experimental scenario 10 times on Nexus S and LEON3.

Fig. 3.14 shows the observed WCETs of alarm delivery latency and AEH fring

latency as a function of the number of low- priority alarms on Nexus S. It shows

a similar pattern as it does on x86 with slightly larger values. This is not surpris-

ing considering the different hardware architectures between x86 and Nexus S

in terms of the type and frequency of their CPU and available memory. For per-

thread scheduling, the observed WCETs of alarm delivery range from 0.44 ms to

0.77 ms with different number of low-priority alarms, the standard deviations

of them are from 0.01 ms to 0.05 ms. Fig. 3.14a presents the AEH fring latency

between 0.34 ms to 0.38 ms. It shows that the alarm delivery latency is attributed

to AEH fring latency. For thread pool scheduling, Fig. 3.14b demonstrates the

observed WCETs of alarm delivery from 0.19 ms to 0.22 ms with around 0.09

ms standard deviation. Since the number of tasks in the system are limited, the

alarm delivery latency are more consistent.

Fig. 3.15 shows the same results of RT AlarmManager microbenchmark on

LEON3. The overall performance is around 3 times slower than Nexus S, be-

cause of the board’s slower CPU frequency. However, due to the RTEMS ker-

nel, the observed WCETs of alarm delivery latency are more consistent, around

2.5 ms with per- thread scheduling, and 1.1 ms with thread pool scheduling.

The standard deviations are almost negligible with both scheduling methods.

In general, we have observed that the alarm delivery latencies are dominant

by two factors: 1) the number of schedulable objects in system. 2) The cost of

AEH fring. As we have discussed above, the alarm delivery latencies with the

thread-pool scheduling mechanism are more consistent under a fully-preemptive

47

0

20

40

60

80

100

120

0 8000 16000 24000 32000 40000

D
el

iv
er

y
C

os
t (

m
s)

Event Release Time (ms)

0

20

40

60

80

100

120

0 8000 16000 24000 32000 40000

D
el

iv
er

y
C

os
t (

m
s)

Event Release Time (ms)

0

500

1000

1500

2000

2500

3000

0 8000 16000 24000 32000 40000

D
el

iv
er

y
C

os
t (

m
s)

Event Release Time (ms)

(a) RTDroid: 1 Comp Thread (b) RTDroid: 100 Comp Threads (c) Android: 100 Comp Threads

0

20

40

60

80

100

120

0 8000 16000 24000 32000 40000

D
el

iv
er

y
C

os
t (

m
s)

Event Release Time (ms)

0

20

40

60

80

100

120

0 8000 16000 24000 32000 40000

D
el

iv
er

y
C

os
t (

m
s)

Event Release Time (ms)

0

20

40

60

80

100

120

0 8000 16000 24000 32000 40000

D
el

iv
er

y
C

os
t (

m
s)

Event Release Time (ms)

(d) RTDroid: 1 Mem Thread (e) RTDroid: 100 Mem Threads (f) Android: 100 Mem Threads

Figure 3.16: Memory and Computation stress test for the Fall Detection Appli-
cation on Nexus S.

kernel. For soft-real-time application, these techniques may be suffcient to pro-

vide a soft-real-time alarm with bounded latency. For hard-real-time usage that

requires sub-millisecond latency, systems require more precise timing measure-

ment for thread wake-up in order to trigger the AEH with lower cost. A ded-

icated real-time hardware clock needs to be integrated as an additional device

on either the smartphone or embedded board to achieve such latencies. Indeed

many embedded boards used in such systems have such hardware. We believe

with a hardware real-time clock, the overall latency of alarm delivery will be just

the difference of the alarm delivery latency and the AEH fring latency, approx-

imately 0.3 ms according to our experimental results in Fig. 3.15a and Fig. 3.15b.

3.8.3 Applications on Real-Time SensorManager

To validate the predictability of our sensor architectures in data delivery, we

have developed two applications. The frst application is a soft real-time fall de-

tection application that leverages our SensorManager outlined in Section 3.7. We

designed two experiments with two different types of workloads: (1) a memory

48

0

5

10

15

20

8000 16000 24000 32000 40000

D
el

iv
er

y
La

te
nc

y
(m

s)

Event Release Time

0

5

10

15

20

8000 16000 24000 32000 40000

D
el

iv
er

y
La

te
nc

y
(m

s)

Event Release Time

0

5

10

15

20

8000 16000 24000 32000 40000

D
el

iv
er

y
La

te
nc

y
(m

s)

Event Release Time

(a) RTDroid: No Low-Priority Thread (b) RTDroid: 30 Comp Threads (c) RTDroid: 30 Mem Threads

Figure 3.17: Memory and Computation Stress Test for Fall Detection Applica-
tion on LEON3.

intensive load and (2) a computation intensive load. The memory intensive ex-

periment creates a varying number of non-real-time priority threads that each

allocate a 2.5 MB integer array storing integer objects. The thread then assigns

every other entry in the array to null. The effect of this operation is to fragment

memory and create memory pressure. The extent of fragmentation is dependent

on the VM and underlying GC and RTGCs are known to be able to minimize

and in some cases eliminate fragmentation [64]. The computation intensive ex-

periment creates low-priority, periodic threads with a period of 20 ms. Each

thread executes a tight loop performing foating point multiplication for 1,000

iterations.

3.8.3.1 Fall Detection Application

The fall detection application is registered as a SensorEventListener with SensorManager

and executed with the highest priority in system. After receiving events from

the SensorManager as outlined in Section 3.7, the application consumes the SensorEvent

with the value of x, y, and z coordinates and computes the fall detection al-

gorithm. If a fall is detected the application notifes a server through a direct

socket connection using Wi-Fi. Since network does not provide any real-time

guarantees, we measure data-passing latency between the time of the sensor

raw data detected in the kernel and the time that the sensor event is delivered

by SensorManager to the fall detection application.

Fig. 3.16 illustrates the observed latency of the sensor event delivery for the

fall detection application. To stress the predictability of our SensorManager im-

49

0

10

20

30

40

50

0 20 40 60 80 100

D
el

iv
er

y
La

te
nc

y
(m

s)

Number of Noisy Threads

Computation Stress
Memory Stress

0

5

10

15

20

0 10 20 30 40 50

D
el

iv
er

y
La

te
nc

y
(m

s)

Number of Noisy Threads

Computation Stress
Memory Stress

(a) Nexus S (b) LEON3

Figure 3.18: RT SensorManager Observed WCET of Sensor Data Delivery in Fall
Detection.

plementation, we have injected memory and computationally intensive threads

into the application itself that run alongside of the fall detecting thread. We

set these additional threads to a low priority. Fig. 3.16a, Fig. 3.16b, Fig. 3.16d

and Fig. 3.16e show the latency of sensor event delivery with one low-priority

thread and 100 low priority threads. The upper bound of these four runs was

always around 30 ms, and there is no perceivable difference between execut-

ing the app with or without memory and computationally intensive threads.

For comparison we provide Android performance numbers in Fig. 3.16c and

Fig. 3.16f to show the effect of low-priority threads on sensor event delivery in

stock Android.

Fig. 3.17 lists the results of running the system unloaded, with 30 compu-

tational threads, and with 30 memory intensive threads. The typical latency is

5.5 ms with a very low standard deviation. The memory intensive test shows a

greater variability in the sensor event delivery times but they still fall under 6.5

ms and are also typically 5.5 ms also. RTDroid deployed on this platform creates

a very stable system, especially when compared to the results of both Android

and RTDroid running on Nexus S as is shown in Fig. 3.16.

Fig. 3.18 presents observed WCETs of sensor event delivery on Nexus S and

LEON3. On Nexus S, the observed WCETs of sensor event delivery are from

24 ms to 28 ms with 0.2 ms standard deviation. The delivery latency mirrors

the sensor polling rate of RT SensorManager framework, 25 ms. It is domi-

nant by time difference between Linux kernel handle sensor interruption and

50

Simulations

SimulatorFlightModelTaskHandler

SimulatorGPSTaskHandler SimulatorIRTaskHandler

Fly-by-Wire (FBW)

CheckMega128ValuesTaskHandle

TestPPMTaskHandler

CheckFailsafeTaskHandle

SendDataToAutopolit

Autopilot

NavigationTaskHandler

AltitudeControlTaskHandler

StablizationTaskHandler

ClimbControlTaskHandler

RadioControlTaskHandler

LinkFBWSendTaskHandler ReportingTaskHandler

Figure 3.19: jPapaBench Task Dependency

RT SensorManager read the sensor data. On LEON3, the delivery latencies are

reduced to around 5 ms, because we develop sensor driver to directly read de-

vice register through i2c bus on RTEMS, instead of buffering and polling from

kernel buffer.

3.8.3.2 jPapaBench

The second application is a port of a traditional benchmark application, named

jPapaBench [38]. It is designed as a Java real-time benchmark to evaluate Java

real-time virtual machines. It mirrors the function of paparazzi [20], a UAV

autopilot system written in C. The jPapaBench code is conceptually divided

into three major modules: the autopilot, which controls UAV fight and is ca-

pable of automatic fight in the absence of other control; the fy-by-wire (FBW),

which handles radio commands from a controlling station and passes informa-

tion to the autopilot to be integrated into fight control; and the simulator, which

collects information from each of the other modules, determines the UAV’s

location, trajectory, and generates input from the environment (such as GPS

data, servo feedback, etc.). Two of these modules, the autopilot and fy-by-wire

(FBW), are housed in different microcontrollers on the conceptual hardware,

and the jPapaBench code simulates a serial bus between them—they have no

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

51

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

(a) Nexus S base line performance

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

(b) LEON3 base line performance

Figure 3.20: RT SensorManager performance base line

other direct communication path. The simulator is only loosely coupled to the

FBW module, but shares a moderate amount of state with the autopilot. A high-

level overview of the jPapaBench system is provided in Fig. 3.19.

As noted by Blanton et. al. [14], the simulator module updates the autopilot

state with simulated sensor values and this provides a natural point for sep-

arating the simulation tasks from the main autopilot tasks. We integrate our

RTDroid system into simulator module by delivering simulated data into the

bottom-most layer of RTDroid, which in turn provides this data to the autopi-

lot in jPapaBench. At a high-level, the simulation component of jPapaBench

feeds simulated sensor data into an intermediate buffer that our polling thread

pulls data from. This is used to model the kernel behavior over actual hardware

sensors. The simulated sensor data is then processed by the RT SensorManager

and delivered the control loops, which require data generated by a given sim-

ulated sensor. The control loops were modifed slightly to subscribe to the RT

SensorManager using traditional Android APIs.

In all our results, we show end-to-end latency as well as the breakdown of

latency. In Fig. 3.20 through Fig. 3.22, the circle points show the overall end-to-

end latency from simulated sensor event generation till event delivery in jPa-

paBench. As stated earlier, we feed the simulated sensor data generated by

jPapaBench’s simulator into an intermediate buffer frst. This buffer emulates

a typical kernel behavior. Then our polling thread pulls simulated sensor data

out of it. Thus, the end-to-end latency measures the buffering delay in addition

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

52

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

(a) 5 Listeners (b) 5 Memory Threads (c) 5 Computational Threads

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000

D
el

iv
er

y
La

te
nc

y
(m

s)

Release Number

End-to-End Delivery Latency
RT Handler MSG Latency

(d) 30 Listeners (e) 30 Memory Threads (f) 30 Computational Threads

Figure 3.21: RT SensorManager stress tests on Nexus S

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

(a) 5 Listeners

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

(b) 5 Memory Threads

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

(c) 5 Computational Threads

Message Buffering Latency
End-to-End Delivery Latency

RT Handler MSG Latency

(d) 30 Listeners (e) 30 Memory Threads (f) 30 Computational Threads

Figure 3.22: RT SensorManager stress tests on LEON3

53

0

10

20

30

40

50

0 10 20 30 40 50

D
el

iv
er

y
La

te
nc

y
(m

s)

Number of Noisy Threads

Listener Stress
Memory Stress

Computational Stress

0

10

20

30

40

50

0 5 10 15 20 25 30 35

D
el

iv
er

y
La

te
nc

y
(m

s)

Number of Noisy Threads

Listener Stress
Memory Stress

Computational Stress

(a) Nexus S (b) LEON3

Figure 3.23: RT SensorManager Observed WCET of Sensor Data Delivery in jPa-
paBench Application

to the latency incurred purely in our architecture. The square points show the

buffering delay, and the cross points show the raw latency of the rest of our ar-

chitecture below applications, i.e., the processing threads as well as RT Handler.

The y-axis is latency given in millisecond and the x-axis is the time of release of

the simulator task in jPapaBench. As shown in Fig. 3.20 through Fig. 3.22, since

the sensors are periodically simulated, there is little difference between Nexus

S and LEON3 and the data is generated at a rate ten times that of the hardware

sensors’ capacity on Nexus S. Fig. 3.20 shows the baseline performance of the

RT SensorManager on Nexus S and LEON3, respectively.

In addition, we run our experiments with three different confgurations:

memory, computation, and listener. The memory workload creates low priority

noise making threads, each of which periodically allocates a 2MB byte array,

then de-allocates every other element, and fnally deallocates the array. This

workload serves to create memory pressure in terms of total allocated memory

as well as to fragment memory. The computation workload creates low priority

noise making threads, each of which performs a numeric calculation in a tight

loop. This workload serves to simulate additional computation tasks in the sys-

tem, which are disjoint, in terms of dependencies, from the main workload. The

listener workload creates low priority threads, each of which subscribes to re-

ceive sensor data from the RT SensorManager. This workload simulates low

priority tasks, which periodically subscribe and consume sensor data from sen-

sors that are utilized by the high priority real-time tasks in jPapaBench.

54

Fig. 3.21 and Fig. 3.22 show performance results obtained on Nexus S and

LEON3, respectively. The fgures illustrate two workload confgurations for

each system level confguration: 5 noise generating threads and 30 noise gener-

ating threads, respectively. Interested readers can view additional experimental

results and raw data on our website 4. The baselines for both hardware plat-

forms are provided in Fig. 3.20a and Fig. 3.20b. Fig. 3.23 presents the observed

WCETs of the end-to-end delivery latency over 10 executions with an increasing

number of noisy threads.

The observed WCETs of sensor delivery range from 19.65 ms to 25.55 ms
with 0.19 ms to 5.31 ms standard deviations on Nexus S. On LEON3, the results

of LEON3 refect the same trend with larger values, WCETs are from 27.20 ms
to 35.40 ms with and 3.7 ms to 7.47 ms standard deviations. Such variances are

caused by the sensor data buffering, and the delays from other tasks with higher

priorities in the application. It is reasonable that we obtain larger latencies on

LEON3 than Nexus S due to the massive differences in computation capability

and main memory in the architectures. In addition, we do not observe perfor-

mance difference between three different noisy threads. This means that there

are enough time slots in the system for each task to meet its deadline. The

RTGC has enough slack time to keep up with memory allocations performed in

the memory noise generating threads on both Nexus S and LEON3.

4Full results available: http://rtdroid.cse.buffalo.edu

http://rtdroid.cse.buffalo.edu

Chapter 4
RTDroid’s Real-Time Progamming

Model

This chapter explains an event-drive programming model that built upon RT-

Droid. This programming model consists four parts for the application de-

velopment: (1) a set of real-time components for the real-time application de-

velopment, (2) fourreal-time communication channels which defnes real-time

semantics for components interactions, (3) unpauseless region-based memory

management for memory guarantee at runtime, and (4) an extension to An-

droid’s manifest to express the real-time requirements of an application.

Figure 4.1: Cochlear Implant1

56

1 class ConfigurationUI extends 1 class ProcessingService
Activity { extends Service {

2 ClickListener l = new 2 public void onStartCommand()
ClickListener() { {

3 public void onClick(View 3 /* periodic audio processing
v) { */

4 //change processing config 4 while (true) {
5 } }; 5 //process every 8 ms
6 public void onStart(){ 6 }
7 button.setOnClickListener(l); 7 }
8 } 8 ...
9 } 9 }

Figure 4.2: Audio Confguration UI
written in Android.

Figure 4.3: Audio Processing Service
written in Android.

To illustrate the programming model, we use a cochlear implant application

as an example. The cochlear implant is a device that restores hearing abilities

through a surgically inserted electronic mechanism in the patient’s inner ear.

As Figure 4.1 shows, an external component for capturing ambient audio and

converting that audio into digital signals is also required. Lastly, a processing

device, which translates signals into electrical energy, triggers implanted elec-

trodes to simulate hearing nerves. Recently, there has been interest in leverag-

ing smartphones [8] to reduce the size of the components external to the body

and to reduce the number of devices the patient must carry. In such a scenario,

the smartphone is used to record audio streams, perform audio processing, and

send the converted signals to the implant. For this hybrid system to be useful,

the audio processing must process sound samples every 8 ms.

The rest of this chapter is organized as following: Section 4.1 presents the

software architecture of the cochlear implant and discusses limitations and chal-

lenges of implementing such an application in Android. Section 4.2, Section 4.3

and Section 4.4 detail how these challenges are addressed in RTDroid’s pro-

gramming model. Lately, Section 4.5 demonstrates evaluation results in micro-

benchmarks and applications.

1Source www.bcfamilyhearing.com/my-child-has-a-hearing-loss/hearing/
cochlear-implants/

www.bcfamilyhearing.com/my-child-has-a-hearing-loss/hearing/cochlear-implants/
www.bcfamilyhearing.com/my-child-has-a-hearing-loss/hearing/cochlear-implants/

57

4.1 Android-enabled Real-time Applications

Using the stock Android platform for real-time computing is challenging for a

number of reasons which we summarize here. Android provides three software

architectural elements, services, activities, and broadcast receivers, for, respectively,

background computation, foreground computation with user input, and han-

dling system-wide events. The Android scheduler is not priority aware and

there is no mechanism to assign priorities to threads. Android offers two com-

munication mechanisms: messages and intents. Messages are received by a

Handler which is a unique mailbox for all messages directed at a component.

As there is no notion of priority for messages, the frst-in frst-out queue asso-

ciated with a handler can lead to priority inversion. An Intent is an event that

triggers execution of callbacks in components that have registered for it. Intents

can lead priority inversion as callbacks are executed by the receiver which may

have different timeliness requirements than the component that raised the in-

tent. Memory pressure is also a concern. Android provides no mechanism other

than garbage collection to manage memory, and its garbage collector does not

have real-time guarantees. To makes matters worse, there is no way to bound

memory consumed by different components. Thus a stray non-critical compo-

nent can affect the whole system.

Even with theses limitations, the health care industry has been studying how

to adapt Android for wearable and implantable health devices, like cochlear im-
plants. A cochlear implant restores hearing abilities through an electronic device

surgically inserted in the inner ear. It relies on external components to capture

ambient audio, convert it into digital signals, and translate the signals into elec-

trical energy. There is interest in leveraging smartphones [8] to provide addi-

tional services such as on-the-fy translation or noise cancellation. In such a

scenario, a smartphone records audio streams and processes them. To provide

acceptable performance sound samples must be handled at rate of one every 8

ms.

A plausible design for such an application would be to split the user interface

that controls volume and noise reduction from sound processing. The UI can be

implemented as an activity as shown in Figure 4.2. It deals with confguration

58

parameters set by the user. On the other hand, sound processing is best mod-

eled as a service (Figure 4.3), which repeatedly processes sound samples. Even

in such a simple use-case, it is important to ensure that sound processing will

not be delayed by UI processing. When components have to interact through

Android-based communication mechanisms, ensuring non-interference becomes

even more tricky.

Figure 4.4 shows the architecture of our solution in RTDroid. It separates

real-time (RecordingService, ProcessingService, and OutputReceiver) and non-

real-time components (VolumeReceiver and ConfigurationUI). The former have

priorities attached and use communication services that prioritize messages.

ConfigurationUI has a Handler for other components to update the UI, and a

non-real-time receiver listens on volume key events. It also receives messages

from real-time components. Similarly, the ProcessingService receives messages

from non real-time components (VolumeReceiver and ButtonListener) and a real-

tine component (RecordingService). RTDroid allows these components to com-

municate while enforcing memory bounds. Each real-time component is pro-

vided a fxed amount of memory for its exclusive use. That memory is divided

into two sections, one persists for the lifetime of the component, the other is

cleared each time the component yields control. Messages are pre-allocated.

Non real-time components allocate messages in heap memory. RTDroid extends

the Android manifest to enable developers to declare properties of components

that include priority, periodicity and memory bounds.

4.2 RTDroid’s Application Components

RTDroid supports three different real-time components: services, tasks, and re-

ceivers. A RealtimeService is a counterpart to Android’s service used for one-

shot aperiodic or sporadic computation. As the notion of periodic computation

is foreign to Android, we introduce the PeriodicTask class to model such behav-

ior. Tasks are used internally within a real-time service. A RealtimeReceiver is

used to react to system-wide events delivered via intents. We do not provide

a counterpart to Android’s activities; they are used for UI programming and

we have not yet observed real-time requirements for these. We do allow for in-

59

ProcessingService

ConfigurationUI

VolumeReceiver

ButtonListener

UiHandler

Periodic Audio
Processing

msgmsg msg…

RecordingService

OutputReceiver

Non-Real-Time Components Real-Time Components

MsgHandler

Non-Real-Time Messages Real-Time Messages

Figure 4.4: Architecture of Cochlear
Implant Application.

RTSJ Application

Application Framework

RT Runtime

RTOS Kernel

RT System Services

Libraries

Bionic lib with
RT extension

RT Handler

RT Looper RealtimeService

RealtimeReceiver

Realtime Channels

RT Android
Application

Stock Android

Android Application

Scoped Memory
Extensions

Fiji Virtual Machine

Figure 4.5: RTDroid runtime architec-
ture.

Gray elements are the extensions introduced in this paper. Notably, we now support multiple, interacting real-time
applications, real-time applications written using an Android like programming model, as well as legacy code and
stock Android applications.

Compile Time

Manifest XML
Parser

Configuration
Validation

Configuration
Bytecode

Generation

System Service
Initialization

Component
Initialization /
registration

Application
Execution

Configuration
Bytecode

Configuration
Object Initilization

Component
Manager

Figure 4.6: Bootstrap sequence.

teraction between UI components and real-time components through message

channels.

Real-time components are statically assigned the following: a priority, a

starting time, a deadline, and a memory limit. This is done declaratively by ex-

tending Android’s manifest with properties (priority, memSizes, release, etc.).

The association between a periodic task and its parent is also specifed in the

manifest by a periodic-task tag. The manifest provides information for boot-

time verifcation and pre-allocation of components. RTDroid ensures that the

total memory requested specifed for a component equals the objects in its per-

60

sistent memory, its per-release memory, and that of its sub-components. Fig-

ure 4.7 shows a manifest for the processing service of our running example.

Managing the lifetime of components requires: (1) ensuring priorities, dead-

lines, and periodicity of components, (2) automatically managing memory al-

located by components, and (3) guaranteeing per-component memory bounds.

We extend RTDroid’s priority based scheduler and introduce a declarative spec-

ifcation for confguration of component requirements to ensure point (1). We

introduce memory regions and specialized channels for ensuring points (2) and

(3). Our VM parses this declarative specifcation and pre-allocates all necessary

constructs, memory regions, and channels.

The concept of region-based memory allocation is an old one. The idea is

to avoid having to manage individual objects, instead objects are allocated in

regions, which can be deallocated in one fell swoop. The RTSJ introduced this

idea to Java to provide an alternative to garbage collection. In the RTSJ, each

thread may be associated to a particular scope, and scopes can be nested to

make a cactus stack. For RTDroid, region-based allocations has two important

benefts, threads that are using it need not be paused during garbage collection

and they make it possible to bound the amount of memory allocated by any

thread.

The RTDroid system supports a much simpler form of scoped memory than

the RTSJ. Each component has access to two scopes, one is Persistent Memory for

data that lives as long as the component and the other is Release Memory which

is cleared before each release of a periodic task. The size of these scopes is given

in the manifest. The total memory of a component is the sum of its persistent

memory, release memory, and the memory of internal components.

4.2.1 Real-Time Service

A real-time service is an abstract class; a programmer needs to implement its

callbacks. These callbacks are directly inherited from Android’s service and

they are invoked at different points in the lifetime of a service. The onCreate()

callback is invoked at service creation. The onStartCommand() method is called

at startup and usually implements application logic. Figure 4.9 shows a ser-

61

1 <service name="pkg.ProcessingService"
priority="79">

2 <memSizes total="3M"
persistent="1M" release="1M" />

3 <release start="0ms">
4 <periodic-task

name="processingTask">
5 <priority priority="79"/>
6 <memSizes release="1M"/>
7 <release start="0ms"

periodic="8ms" />
8 </periodic-task>
9 <!-- subscribes to the msgHandler

channel -->
10 <intent-filter count="2"

role="subscriber">
11 <action name="msgHandler"/>
12 </intent-filter>

Persistent Scope

RealtimeService

Release
Scope

Release
Scope

Release
Scope …

Periodic
Task …

Intent Queue

Intent Queue

periodic
logic

service
callbacks

periodic
logic

…Periodic
Task

Figure 4.8: Scope Structure for a
Service.

Figure 4.7: An extended Android mani-
fest.

vice that starts a periodic task. Unlike Android services which run in the main

thread, RTDroid services execute in dedicated threads. This change is necessary

in order to allow services to run with different priorities.

Services are bound to real-time threads from the underlying real-time JVM.

By default, when a service is initialized, it is assigned a persistent memory scope

that has the same lifetime as the service. The scope is allocated when the ser-

vice starts and deallocated when the service terminates. Static initializers for

the service are run in this scope. In addition, if the service uses communica-

tion channels, intent queues are allocated in persistent memory. Callbacks exe-

cute within the scope of release memory for the associated service. The release

memory is cleared when the callback returns. Similarly, when a periodic task is

started in a service, it is also assigned a release scope. Note that our manifest

requires specifcation of memory bounds for callbacks and periodic tasks, and

this information is used to size release scopes appropriately. Figure 4.8 depicts

the scope structure for a service as well as pre-allocated objects during boot.

62

1 class ProcessingService extends
RealtimeService{

1 <channel name="msgHandler"
2 PeriodicTask task = new

2 type="rt-msg" >
PeriodicTask(){

3 <order>
3 public void onRelease(){

priority-inheritance
4 /* periodic audio processing

</order>
logic */

4 <execution>
5 } }; ...

5 component-priority
6 public int onStartCommand(...){

6 </execution>
7 /* Each registered task starts

7 <drop>priority&oldest</drop>
after the

8 <data size="256B" \
8 onStartCommand() callback. */

9 type="app/octet-stream"/>
9 registerTask("processingTask",

10 </channel>
task);

10 } } Figure 4.10: Real-time Channel
Declaration.Figure 4.9: Real-Time Service and Periodic

Task.

4.2.2 Periodic Task

A periodic task is a sub-component of a service. In addition to the characteristics

of its parent service, a task needs a period. Figure 4.9 shows an example which

processes audio input periodically. A programmer needs only to implement

onRelease() to specify a periodic computation.

4.2.3 Real-Time Receiver

In Android a new broadcast receiver is allocated whenever an intent is received,

which results in frequent object allocation and deallocation if many intents are

sent from a component. In RTDroid, a real-time receiver is a persistent con-

struct, we reuse the same receiver to reduce memory pressure. As a direct con-

sequence, a receiver can only process one intent at a time. Application logic

is expressed in callbacks. The onReceive() defnes logic to react to events, it

is invoked when an intent is received. A new callback, onClean(), resets class

variables in a receiver. This callback is used to cleanup any state between in-

tents and is necessary if the programmer wishes to have stateless processing.

This callback is not needed if the receiver only modifes local variables as they

63

live in release memory and will be cleared automatically. In our running exam-

ple we implement OutputReceiver as a receiver to react to the processed audio

output sent by the ProcessingService.

One important design choice is the priority of a callback, RTDroid decouples

intent delivery from the callback execution. Intents are delivered according to

policy enforced by real-time channels (described later). Callbacks are executed

at the priority of their component. Multiple callbacks triggered by a series of

intents are serialized and will be executed in-order. In the cochlear implant,

ProcessingService sends audio to OutputReceiver through a real-time channel.

The channel guarantees that intents are delivered to the receiver with the prior-

ity of the ProcessingService, and the callback is invoked asynchronously with

the priority of the receiver.

In implementation terms, a receiver is bound to an asynchronous event han-

dler in the underlying JVM and backed by a priority message queue. An asyn-

chronous event handler can serialize multiple releases from different senders,

and the priority queue ensures the intent delivery order is based on the sender’s

priority. The callback is executed by the asynchronous event handler, which is

assigned the priority of callback method’s owner.

4.3 Real-Time Communication Channels

RTDroid provides four types of real-time channels for communication: (1) mes-

sage passing channels, (2) broadcast channels, (3) bulk data transfer channels,

and (4) cross-context channels to communicate with non real-time components.

Following Android conventions, programmers declaratively specify channel

name, events, data type, and size. Real-time components must specify the num-

ber of messages that they send or receive per release. This ensures that we can

preallocate the messaging objects and enforce memory bounds for all channels.

There is one primordial cross-context channel to facilitate interaction with other

Android applications and services. All other channels are explicitly created by

programmers.

Figure 4.10 shows a real-time message passing channel declaration with a

name attribute as an event identifer. Each channel should defne its runtime be-

64

havior via: type attribute (channel communication type), order (message deliv-

ery order), execution (execution priority of the invoked function), drop (message

dropping policy), data size and data type. Components can use intent-filter

to identify themselves as publishers or subscribers of a channel and to specify the

number of messages sent or read in each callback release.

One of the major benefts of using declarative manifest in our programming

model is that it provides information for static verifcation. RTDroid guarantees

the correctness of the application in two aspects: (1) Memory boundary check-

ing: the total memory of a component should be equal to the sum of objects

of its persistent memory, its release memory and the release memories of all its

sub-components. (2) Channel overfow checking: The incoming message rates

should not exceed the message processing rates for each channel.

4.3.1 Message Channels

A real-time message passing channel has three distinctive characteristics: (1) the

associated RealtimeHandler must be registered in a real-time service; (2) only

primitive arrays (or fxed length byte-buffers) can be exchanged on it; and (3)

the number of waiting messages is bounded.

Our implementation creates a fxed-length message queue for each channel.

Along with the message queue, message objects are also pre-allocated. They live

in persistent memory of the receiver. Figure 4.11 illustrates the scope memory

hierarchy of our design.

Queuing of messages is handled at the sender’s priority, while de-queuing

is done according to the receiver’s priority. If a queue is full, high-priority com-

ponent can steal a message from a low priority sender. When this happens,

the high-priority component will be able to enqueue its message while the low-

priority component will receive an exception.

Sending messages is slightly tricky as they are pre-allocated and senders

should not retain references messages after the message has been sent. The pro-

tocol for sending a message is thus indirect. A MessageClosure is allocated by

the sender, and the genMsg() callback is used to populate the message’s payload

with data. This unifes message population and queuing and is shown in Fig-

Persistent Scope

Release Scope

handleMessage(…)

…

Persistent
Scope

Persistent
Scope

Immortal Memory
Real-time Message Passing Channel

message copy message pollmessage

Release
Scope
obtain

send send

Release
Scope
obtain

65

1 MessageClosure c = new
MessageClosure(){

2 @Override
3 public RTMSG genMsg(RTMSG

m){
4 Bundle b = m.getData();
5 b.setInt(idx, 3);
6 ...
7 return m;
8 }
9 };

Figure 4.11: Real-time Message Pass-
ing Channel.

10 rmsg.send("channel", c);

Figure 4.12: Message Passing Interface.

ure 4.12. In our running example, high-priority messages from RecordingSer-

vice can be prioritized over the messages from non-real-time ConfigurationUI.

The message is served based on sender priority as a message pool. As a di-

rect consequence, the obtain operation can fail when no messages are available

as they have been given to higher priority component. An exception is raised

in this case. If a high priority component attempts to obtain a message and all

message objects are currently in use, the high priority thread can steal message

objects that are currently being used by low priority and non real-time senders.

Since messages are obtained during the send method of MessageClosure, all mes-

sage objects in use will correspond to messages that have been enqueued, but

not yet received. If the message is stolen from a construct, an asynchronous

exception is delivered to the construct by utilizing the RTSJ AsynchronousInter-

ruptedException mechanism.

Once a message has been obtained, the sender must copy the data to be sent

from its local allocation context to the message pool of the the channel. This

ensures that a sender cannot utilize or fll the allocation context of a receiver

directly, the receive must choose to receive the message. Since each channel is

itself bounded, non real-time senders cannot overfow the channel. The message

content will only be copied to the receiver when the receiver is ready to receive

and process the message. Once the message is copied to the receivers handler,

the message object is returned the message object pool. This strategy keeps the

66

amount of memory dedicated to message passing constant. The sender must

utilize its own memory (heap or its release scope) to create the data that it wishes

to send and cannot use system resources to store this data unless it is able to

obtain a message object.

4.3.2 Broadcast Channels

Real-time broadcast channels are used to invoke callbacks of real-time compo-

nents. We decouple the priority of intent delivery from invocation of callbacks

which execute at their own priority, however intents are by default delivered

in priority order in the same was as messages over a message channel. The

main difference between intents and messages is the number of recipients. For

messages this is always one and for intents this is the number of subscribers.

Subscription to an intent must be declared in the manifest. Figure 4.13 shows

how an intent object persists in immortal memory until it is copied to the in-

tent queues in multiple subscribers. Although the message will be replicated

for each subscriber to the intent, only one message is stored in channel itself. A

count is associated with the message identifying the number of recipients sub-

scribed to the intent. On receipt, when the message is copied to the receivers

intent queue the count is decremented. The last recipient releases the message

back to the message pool in exactly the same fashion as the message passing

channel. The memory usage of the broadcast channel is bounded, because we

pre-allocate intent objects in each subscriber’s intent queue based on the size

and type of data in the manifest as well as a bounded number of intent mes-

sages.

4.3.3 Bulk Data Channels

The bulk data transfer channel allows zero-copy data transfers for large mes-

sages. To support bulk transfers we extend the notion of nested memory regions

with transferable nested scopes. A nested scope, which in this case encapsulates

the bulk data, is removed from the scope stack (a tracking structure used for cor-

rectness guarantees) of the sending construct and pushed onto the scope stack

of the receiving construct. As a result, the sender can no longer allocate into the

67

scope, nor can the sender write to the memory of the scope. We observe that

ownership transfer only works if the scope being transferred is at the top of the

scope stack and the scope stack is linear. Since our programming model does

not expose scopes to programmers, the constraints are ensured by the structure

of the channel as well as the real- time constructs. Communication with bulk

channels thus entails, a sender creating a transferable scope, populating it with

data, and relinquishing access to the scope.

4.3.4 Cross-Context Channels

Cross-context channels allow Android’s activities to communicate with real-

time components. In this scenario communication is occurring between two

separate VMs, one of which is executing the non real-time application and RT-

Droid executing a real-time application. This allows us to support interaction

with both legacy Android code as well as other Android applications. We note

that cross-context channels are not required for communication between mul-

tiple real-time applications as the Fiji VM supports multiple VMs in the same

address space.

To enable such communication an Android application must declare a ser-

vice (RTsProxyService) that subscribes to channels declared in an real-time ap-

plication that uses our real-time constructs. For communication in the other

direction, a real-time application need only to subscribe to intents the non real-

time application has declared in its manifest. Since our manifest is an extension

of the Android manifest, no changes are require to the confguration of Android.

The proxy service allows non-real-time code to send an intent to real-time com-

ponents. Communication in the other direction requires the activity can sub-

scribe to intents defned by real-time code. To preserve memory bounds, the

number of intents in a cross-context channel is bounded and each intent has a

fxed-length payload. Figure 4.14 shows how the bi-directional communication

is established through sockets between RTDroid and Android. To do so, we

leverage two proxy components in each runtime, To avoid interference, the An-

droid proxy component is executed in heap memory, and it runs at the lowest

real-time priority. The incoming message objects are translated to real-time in-

68

Persistent Scope

Release Scope

sendBroadcast(intent)

Persistent
Scope

Release
Scope

Persistent
Scope

Release
Scope

Immortal Memory
Real-time Intent Broadcast Channel

broadcast

message copy message pollmessage

Heap Memory

Immortal Memory

AndroidProxy

Android
Activity

RTDroid
Proxy

Service

Socket

Socket intentSocketReal-time
Channels

Socket

RTDroid Runtime Android Runtime

Android
Service

Android
System
Service

intent

intentReal-time
Persistent Scopes

…

message copy message pollmessage socket communication

Figure 4.13: Real-time Intent Figure 4.14: Cross-Context Channel.
Broadcast Channel.

tents or messages with the lowest priority and sent to the subscribing real-time

components via real- time channels. Only one message is deposited into a real-

time channel at a time, preventing non real-time components from exhausting

memory used by real- time constructs. Non-real-time components can exhaust

the heap, but this will not affect real-time components using pre-allocated mem-

ory regions.

4.4 Memory Management

For real-time applications, providing memory usage guarantees implies that the

underlying system provides predictable allocation – object allocation should

not be blocked by the memory usage of any other construct, and predictable

reclamation – the underlying memory management scheme should not interfere

with the execution of a real-time component. To achieve both, we use scoped

memory, a region based memory management scheme. Scoped memory pro-

vides fxed amount of memory for real-time tasks through the usage of memory

regions and predictable object allocation and deallocation within scopes. Addi-

tionally, scoped memory ensures that real-time threads executing within scopes

are not blocked during GC if they only utilize scoped memory. The RTSJ pro-

vides three types of memory areas: (1) heap memory, which is garbage collected,

(2) immortal memory, which is never reclaimed, and (3) scoped memory, which

provides bounded memory regions. To guarantee referential integrity, RTSJ im-

69

poses a number of rules on how scoped memory must be used, such as (1) the

objects in a scope are only reclaimed after all threads in that scope have fnished,

(2) every thread must enter a scope from the same parent scope, and (3) a scope

with a longer lifetime cannot hold a reference to an object allocated in a scope

with a shorter lifetime. Fundamentally, we leverage scoped memory to provide

memory bounds corresponding to the lifetime of different computations as well

as data across computations.

To provide memory boundary for RTDroid’s components, we defnes a re-
lease scope and a persistent scope for each real-time component. A real-time com-

ponent must be declared with memory scopes in RTDroid’s application manifest

fle. For an instant, a real-time service has two designated scopes, persistent and

release, which are preserved and guaranted by the runtime. The persistent scope

is never reclaimed until the service is terminated. The persistent of the service

stores the service object and other objects that have the same lifetime as the ser-

vice. The release scope is used for allocating local variables during an invocation

of the service’s callback functions. It will be cleaned up once each invocation

fnishes. Each component run is bound to its own thread of control that starts

in immortal memory. This assures that its memory necessary for creating the exe-

cution context for the thread is always available, even if the construct has to be

terminated and restarted. Similarly channels are allocated in immortal memory
as well.

To enable data transfer between constructs in communication channels, we

provides a transfer scope with the notion of object ownership. From a devel-

oper’s perspective, a transfer scope represents an object of a memory region

(TransferScope) used for cross-scope data transfer. It contains a fxed-size, priority-
aware message queue with a set of APIs allowing the developer to read/write

the message in the scope. More specifcally, The following properties make it

unique to the default scoped memory:

1. All objects allocated in a transfer scope has an owner. A default owner is

set when the scope is instantiated.

2. When a transfer scope is created, a “placeholder” thread enters into the

transfer scope in order to keep the scope “alive”.

70

3. Instead of implicitly entering into a transfer scope, a developer uses APIs

of TransferScope class to read/write objects in the message queue. This

means that the transfer scope is never pushed onto scope stack, instead,

it utilizes VM-level object copy or reference pointer to enable data trans-

fer. The ownership of objects in a transfer scope is set internally with the

invocation of its APIs. For example, when a sender sends a message to

a transfer scope by calling its write operation, the write operation sets the

sender as the owner of the written object. With a receiver, the read oper-

ation works in a similar fashion as the write operation, but the read op-

eration will also reset the owner of the object to the default owner after

reading operation fnished.

4. An exit method is used for programmatically tearing down the entire trans-
fer scope. When the exit method is called, it will check whether all objects

in the transfer scope are owned by the default owner, if not an Object-

ForceRecliamationInterruption exception is thrown to notify the owner

of objects.

With these properties of transfer scope, we have untilized the transfer scope

to implement two VM-level primitives and build real-time channels based on

them.

Receiver Release

…

Sender 1 Release
Msg m = new Msg();

channel.send();m

Sender n Release
Msg m = new Msg();

channel.send();m

Transfer
Scope

S1

Msg Queue

…

Msg m = channel.pull();

handleMsg(){

// msg processing

}

m
Sn

R

R

copy

copy

copy

…

Sender 1 Release
Intent i = new Intent();

channel.send();i

Sender n Release
Intent i = new Intent();

channel.send();i

Transfer Scope
Msg Queue

Receiver 1 Release

S1 …SnR R

Transfer Scope
Msg Queue
S1 …SnR R

…

callback_func()i

Receiver n Release

callback_func()i

…copy

copy

copy

copy

(a) Real-Time Message Passing Channel (b) Real-Time Intent Broadcasting Channel

Figure 4.15: Transfer Scope with Data Copy Primitives

Transfer Scope with Data Copy: The frst primitive is a data copy primitive that

enables data transfer between the release scope of a sender to the release scope

of a receiver via a transfer scope. Figure 4.15a and Figure 4.15b demonstrate

data transfer procedure for the real-time message channel and the real-time in-

tent broadcasting channel, respectively. Essentially, both of them depends on

71

the same set of TransferScope’s APIs, TransferScope.copyIn(Msg) and Trans-

ferScope.copyOut(Msg). When the transfer scope is initialized, all pre-allocated

messages are owned by its receiver. A sender frst allocates its message object in

its own release scope. When channel.send(msg) is called, the message is copied

from the sender’s release into the transfer scope. All messages from senders are

queued with respect to the priority of their senders. The object’s owner then

is set to its sender after the write operation. Later, when the receiver processes

messages by copy them out the transfer scope, the object owner is switched back

to the thread of the receiver. Due to the limited size of message queue, if all mes-

sages in a message queue are owned by different senders, it means an operation

of message dropping operation is required, i.e., the message with the lowest

priority will be reclaimed. At the same time, an ObjectForceRecliamationIn-

terruption exception is thrown to the reclaimed message’s sender. Notice that

the entire data transfer procedure does not allow any release scope stores a ref-

erence to objects in the transfer scope, both senders and receivers have to use

object data copy APIs that guarded by underlying virtual machine. These APIs

utilizes native compiler built-in atomic functions and read/write barriers for

thread safe.

Transfer Scope with Enclosed Objects: The another data transfer primitive is a

one-to-one data sharing primitive that utilizes transfer scope for bulk data trans-

fer with a zero-copy operation. Since it is a one-to-one communication, the life-

time of transfer scope is tied to the lifetime of both ends. To achieve zero-copy

operation, it is safe to have a temporary reference in their release scope to read-

/write objects in transfer scope, since the release scope is reclaimed after every

invocation of callback functions. Figure 4.16 shows how the bulk data transfer

channel works with transfer scope. The message dropping operation is required

as well as the data copy operation. However, because the sender of the channel

uses a message reference to populate data, the sender can potentially delay the

message enqueue operation by performing any arbitrary computation from the

time when it holds the reference to the time when it calls message send function.

To avoid such delay, we introduce a new interface, EnclosedMessage, as shown

in Figure 4.16. It wraps the sender’s message population logic in genMsg(), and

trigger it in RTDroid’s framework to encapsulate message request and message

72

Sender Release
EnclosedMsg em =
 new EnclosedMsg(){
 Message genMsg(){
 msg = ts.getMsg();
 //fill msg
 }
};
channel.send(em);

Transfer Scope

R …RS S

channel.send(em){

 msg = em.genMsg();

ts.enqueuMsg(msg);
}

Receiver Release
 = ts.dequeueMsg();s

callback_func(){
 // application logic
}

s

msg.reliqushMsg(); R

s

ref ref

set owner to R

Figure 4.16: Transfer Scope for Real-Time Bulk Data Transfer Channel

data population until the enqueue operation in RTDroid’s framework.

The message ownership in bulk data transfer channel is used for indicating

messages that can be forcedly reclaimed when the message queue is full. Notice

that the default owner in transfer scope is marked as ‘T’ in Figure 4.16. During

the message population by EnclosedMessage, the message is marked as ‘S’. After

enqueue operation, the enqueued messages are marked as ‘T’ again. When a

message is processed by its receiver, its message’s owner is the receiver, marked

as ‘R’. Then, after processing, the message is switched back to ‘T’. Therefore,

when an enforced message reclamation is performed, we do not reclaim any

message has been started to be processed, we only recycle a message marked

as ‘T’ based on their arriving time, since all messages are sent from the same

sender.

Simplifed Scope Checks: Another beneft of the linear scope stack is that it

simplify the scope checks required at runtime. Firstly, the single parent rule
checks can be simplifed with the following rules:

� Persistent scope must be entered from the immortal scope.

� Release scope must be entered from the persistent scope of the same con-

struct.

� Transfer scope must never be entered.

To implement these rule, we can set the expected parent scope when these

scopes are created. When a scope is entered, it just needs to check whether

its parent scope (the current active scope) is the expected parent scope by com-

paring scope intensifer.

Secondly, the assignment checks can be even replaced by static compiler anal-

ysis. Table 4.1 lists a set of reference rules between different scopes. Notice

73

Ref to Transfer Ref to Releaseii Ref to
Persistentii Ref to Immortal

Transfer Yes No No Yes
Release Yes Yes Yes Yes

Persistent No No Yes Yes
Immortal No No No Yes

The release scope and persistent scope of the same constructs.

Table 4.1: RTDroid’s Static Scope Check

reference rules are only considering the references between the release scope

and the persistent scope of the same construct. Any cross-construct reference is

forbidden.

4.5 Evaluation

This section shows our experimental results of micro-benchmarks and applica-

tions in RTDroid. To evaluate the predictability and the code effciency of our

programming model, we have conducted a series of stress tests for message de-

livery latency and three case studies which compare task processing duration

and code effciency between RTDroid and Android. The three applications are

a cochlear implant application described in Section 4.1, a UAV fight control sys-

tem, jPapaBench [38], and a turbine health monitoring application. We use these

case studies to compare against Android as well as RTSJ. To test the correctness

of our audio framework, we have conducted stress tests of the audio framework

and performed evaluation over two applications, including device coordination

and distance estimation.

All results are collected on a Raspberry Pi Model B, which has a single-core

ARMv6-based CPU with 512 MB RAM, and runs Debian with Linux preemp-

tive kernel v3.18 and on a Google Nexus 5 smartphone, which has a quad-core

2.3 GHz Krait 400 Processor and 2GB RAM, running Android v6.0.1. On both

platforms we only enable one core and fx CPU frequency. For the turbine health

monitoring application, we use an external Wolfson audio codec in order to pro-

vide high-quality audio playback and capture for vibro-acoustic analysis. Raw

data and plotting scripts can be found under the publications tab and cases

0
50

100
150
200
250
300
350
400

0 500 1000 1500 2000
0

50
100
150
200
250
300
350
400

0 500 1000 1500 2000
0

50
100
150
200
250
300
350
400

0 500 1000 1500 2000

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

74

Message Passing Latency Intent Delivery Latency Intent Delivery Latency
Context Switch Latency AsyncEvent Fire Latency AsyncEvent Fire Latency

Message Allocation Latency

M
ic

ro
se

co
nd

M
ic

ro
se

co
nd

s

M
ic

ro
se

co
nd

s

Release Number Release Number Release Number

(a) Message Passing (b) Intent Broadcast (c) Bulk Data Transfer

Figure 4.17: Real-time Communication Channels: Baseline Scatter Plot for Micro
benchmarks.

0

20

40

60

80

100

0 50 100 150 200 250

Pe
rc

en
ta

ge

Data Transferring Latency (us)

Baseline
2M
4M
6M
8M

10M

(c) CDF for Bulk Data Transfer

Pe
rc

en
ta

ge

Pe
rc

en
ta

ge

Baseline Baseline
Computational Noise

Memory Noise
Computational Noise

Memory Noise
Message Noise Message Noise

Message Passing Latency (us) Intent Delivery Latency (us)

(a) CDF for Message Passing (b) CDF for Intent Broadcast

Figure 4.18: Micro-benchmarks for Real-time Communication Channels.

study code under the application tab on our website: http://rtdroid.cse.

buffalo.edu.

4.5.1 Micro Benchmarks

We have conducted a set of micro-benchmarks for our communication channels

and audio playback latency for the audio framework. The micro-benchmark for

communication channels runs two real-time services and one non real-time ser-

vice. One real-time service acts as a sender that sends a message every 100 ms
with the highest priority and one as a receiver of the message. The third service,

executing in heap memory, starts 30 noise-making threads with the lowest pri-

ority to inject noise into the system. Similarly, the audio micro-benchmark has

a real-time service which contains a user-defned audio session and play a fxed

number of audio data from a MP3 fle.

To stress the system, we use three types of noise-making threads: (1) heap

noise that allocates an array of 512 KB in the heap memory every 200 ms, (2)

http://rtdroid.cse.buffalo.edu
http://rtdroid.cse.buffalo.edu

75

computational noise that computes π every 200 ms, and (3) message noise for

the message latency measurement, which sends a low-priority message to the

receiving service every 200 ms, or stream noise for the audio playback measure-

ment, which delivers a fx-number of audio samples to play every 200 ms.

Message delivery latency in communication channels: Figure 4.17 shows raw

performance measurements for the baseline performance of our channel imple-

mentations. Message passing consists of message allocation by the sender, mes-

sage delivery, and context switch from the sender to the receiver. Figure 4.17a

shows this breakdown with just the sender and the receiver, and it is our base-

line performance. In the fgure, we plot the latency of 2000 message passing

events. For each event, the message allocation latency is the amount of time it

takes for a sender to instantiate a message. The message passing latency is the

time taken for delivery. The context switch latency is the difference between the

time the sender sends a message and before the receiver processes the message.

As shown, all three types of latency are tightly bounded across all events, and

there is no outlier that takes much more time to process than others. It shows

that without any other background load, our implementation provides stable

and predictable performance.

We have conducted a similar experiment to evaluate our Intent delivery

channel. The experimental confguration is the same except that we use our In-

tent broadcast channel instead of message passing; the sender sends an Intent

every 100 ms, and the receiver executes a dummy callback that responds to the

Intent. The Intent delivery latency is the overall latency for each Intent event,

and the callback trigger latency is the amount of time it takes to spawn a new

callback. Figure 4.17b shows the baseline performance. Similarly Figure 4.17c

shows the baseline performance for bulk data transfer, which also leverages the

Intent mechanism for delivery, but is specialized to use the bulk data transfer

channel.

Figure 4.18 shows cumulative distribution function (CDF) plots comparing

the performance of all three types of channels. The CDF illustrates what percent

of the total measured points are equal to or less than a given time value. For ba-

sic messaging, shown in Figure 4.18a, our implementation effectively provides

an unchanged overall latency profle, regardless of the types of background

0

500

1000

1500

2000

2500

3000

0 500 1000 8000 10000

Deadline

0
500

1000
1500
2000
2500
3000
3500

0 500 1400 50000

Deadline

76

Release Duration (us) Release Duration (us)

0
5

10
15
20
25
30
35
40
45

0 2000 4000 6000 50000

Deadline

N
um

be
r

of
 R

el
ea

se
s

Release Duration (us)

RTDroid
RTSJ

(a) Cochlear Implant: Audio Process-(b) jPapaBench: Stabilization Task Du-(c) Turbine Monitoring: Audio
ing Duration ration Recording Duration

Figure 4.19: Performance Measurements on Raspberry Pi.

N
um

be
r

of
 R

el
ea

se
s RTDroid

RTSJ

N
um

be
r

of
 R

el
ea

se
s RTDroid

RTSJ

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

Pe
rc

en
ta

ge

Release Duration (us)

RTDroid
RTSJ

(a) Cochlear Implant: Audio Process-
ing Duration

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

Pe
rc

en
ta

ge

Release Duration (us)

RTDroid
RTSJ

(b) jPapaBench: Stabilization Task Du-
ration

0

20

40

60

80

100

1000 2000 3000 4000

Pe
rc

en
ta

ge

Release Duration (us)

RTDroid
RTSJ

(c) Turbine Monitoring: Audio
Recording Duration

Figure 4.20: CDFs of Performance Measurements on Raspberry Pi.

load. We observe in Figure 4.18b similar performance characteristics for our in-

tent broadcast channel, though we do notice additional overhead as compared

to the message passing channel. This is to be expected as the intent broadcast

channel results in the creation of a callback, which adds a fxed amount of over-

head. Figure 4.18c shows the CDF comparing the transfer latencies with differ-

ent sizes of data payload for the bulk data transfer channel. The transfer latency

is the delivery time of an intent with a bulk data payload. Instead of stressing

the system with noise-making threads, we increase the size of data payloads to

demonstrate the performance of our zero-copy data transfer.

4.5.2 Comparison to Android and RTSJ

We conduct three case studies consisting of a cochlear implant application, a

UAV fight control system, and a turbine health monitoring application to com-

pare RTDroid in realistic settings against Android as well as RTSJ.

Simulated cochlear implant platform: The cochlear implant application has a

0
200
400
600
800

1000
1200
1400
1600
1800
2000

8000 100 1000 100000

Deadline

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

50000 10 100 1000 10000

Deadline

77

Cochlear Implant jPapaBench Wind Turbine
Application

RTDroid RTSJ Android RTDroid RTSJ Android RTDroid RTSJ

Sampling Numbers 40,000 40,000 40,000 91,840 91,791 92,816 2,295 2,295
Mean (µs) 238 194 5,353 1,055 698 360 3,000 2,779

Standard Deviation
(µs)

16 15 2,831 55 49 1,530 107 103

Deadlines Missed 0 0 5,160 0 0 14 0 0

Table 4.2: Task Execution Duration Statistics.

N
um

be
r

of
 R

el
ea

se
s RTDroid

Android

N
um

be
r

of
 R

el
ea

se
s RTDroid

Android

Release Duration (us) Release Duration (us)

(a) Cochlear Implant: Audio Process-(b) jPapaBench: Stabilization Task Du-
ing Duration ration

Figure 4.21: Performance Measurements on Nexus 5.

real-time service for audio processing and a real-time receiver for output error

checking. Each run of the audio processing needs to acquire 128 audio sam-

ples, process them, and send processed audio output to the output receiver.

This process should complete within 8 ms [8, 2]. Our main measurement and

comparison point is this audio processing task since it has a strict timing re-

quirement. We collected 40,000 release durations for each execution, and repeat

the experiment 10 times.

jPapaBench: A real-time Java benchmark simulates autonomous fight control.

We have ported it to our system as well as Android and divided the code into

two services: (1) an autopilot service that executes sensing, stabilization, and

control tasks, (2) a fy-by-wire (FWB) service that handles radio commands and

safety checks. The original communication is replaced with intent broadcasts.

We measure release durations of the autopilot stabilization task, which runs pe-

riodically with a 50 ms deadline, over 10 benchmark executions. Due variations

in the physics simulator, each execution takes roughly 91,000 releases to com-

78

0

20

40

60

80

100

0 100 200 300 400 500 600

Pe
rc

en
ta

ge

Message Passing Latency (us)

0

20

40

60

80

100

0 20000 40000 60000 80000

Pe
rc

en
ta

ge

Message Passing Latency (us)

(a) Audio Processing Duration with(b) Audio Processing Duration with
RTDroid Android

Figure 4.22: CDFs of Performance Measurements of the Cochlear Implant on
Nexus 5.

plete the same fight path.

Wind turbine health monitor: The wind turbine health monitoring application

was developed originally using RTSJ. We have also created a version to execute

on our system. Since this application requires specialized hardware we did not

implement an Android version. The application performs crack detection on

turbine blades based on vibro-acoustic modulation [83]. It consists of an prob-

ing task that imposes a clean sine-wave audio tone at one side of a blade, a

recording task that stores the captured audio from the other end of the blade,

and an analyzing task that detects cracks by analyzing the stored audio stream.

The audio recording task must be executed every 50 ms in order to capture mean-

ingful data, and as such is our main point of measurement. We collected release

durations of the audio recording task over 2 hours, and only kept releases that

perform recording logic. The size of the audio buffer recorded per release is

around 2MB and as such we leverage our bulk data transfer channel for com-

munication between the recording and audio processing tasks for the version

implemented in our system. The RTSJ version uses a shared memory buffer.

Figure 4.19 shows aggregated task execution durations over each applica-

tion, and plots the frequency of the execution duration for each release. These

results show that the use of scoped memory as well as performing communica-

tion over channels does increase the execution duration for each release, but this

overhead is bounded. Android, not surprisingly, is not very predictable. Fig-

ure 4.21 shows that there is extreme variance in the duration for each release.

79

0

20

40

60

80

100

100 200 300 400 500

Pe
rc

en
ta

ge

Release Duration (us)

0

20

40

60

80

100

0 20000 40000 60000 80000

Pe
rc

en
ta

ge

Message Passing Latency (us)

(a) Stabilization Task Duration with(b) Stabilization Task Duration with
RTDroid Android

Figure 4.23: CDFs of Performance Measurements of the jPapaBench Stabiliza-
tion Task on Nexus 5.

To quantify the overhead imposed by our system, we report the statistical re-

sults of each application in Table 4.2. Both our system and RTSJ have similar

standard deviations even in the presence of scoped memory and channel based

communication. Our system’s overhead is particularly visible in the stabiliza-

tion task of jPapaBench. In the RTSJ version, the stabilization tasks reads sensor

data from global shared memory buffers, performs at tight numeric computa-

tion, and produces control commands for the motors, which are also stored in

global shared memory buffers. The version executing on our system, in com-

parison, receives sensor readings and sends control commands over channels,

instead of reading from global buffers.

Figure 4.20 show the CDFs of the experiments detailed in Figure 4.19. We can

observe that the curves of the CDFs for RTSJ performance compared to RTDroid

performance are similar. Based on this observation as well as similar standard

deviations presented in Table 4.2, we can conclude that RTDroid does introduce

additional latency, but does not impact the predictability of the code as com-

pared to RTSJ. Figure 4.22 and Figure 4.23 show the CDFs of the experiments

detailed in Figure 4.21. Although not surprising, our numbers indicate that a

non trivial portion of releases in Android exhibit signifcant delays, even when

not in the presence of a loaded system.

Although our system does induce additional overhead when compared to

applications written in RTSJ, it does provide tangible benefts in terms pro-

gramability. In addition to hiding the complexity of writing code that lever-

80

Application Type of Code SLoC3 Syn4 Manifest5

Cochlear Implant
Common

RTSJ
RTDroid

175
256
235

0
4
2

0
0
69

jPapaBench
Common

RTSJ
RTDroid

3,844
300
230

0
6
0

0
0

149

Wind Turbine
Common

RTSJ
RTDroid

1,387
539
387

3
9
0

0
0
52

Table 4.3: Code Complexity Measurements.

ages scoped memory, our system also decouples confguration from application

logic and simplifes interactions between components via Android like com-

munication over channels. Table 4.3 shows code metrics over three types of

code—the common code in both versions of implementation (mostly the appli-

cation logic), specifc code to our system, and RTSJ specifc code, but excludes

common libraries (i.e. the FFT and signal processing libraries for the cochlear

implant). It shows that applications written for our system are implemented

with fewer lines of code. This occurs because RTSJ requires developers to man-

ually instantiate all tasks, and provide release logic with the multi-threading

APIs. In our system all application components are declared in the manifest

and the boot process initiates and starts them. Additionally, since our system

uses message passing, it removes explicit programmer written synchronization

between interacting components.

Chapter 5
Static Application Validation

 APIs for lifecycle
management Callback functions Component statuses

onCreate(…) destroyed

onReset(…)

onPause(…)

onResume(…)

pausedactiveonStart
Comand(…) onDestroy(…)initilized

start
Service(intent)

pause
Service(intent)

resume
Service(intent)

reset
Service(intent)

stop
Service(intent)

stop
Service(intent)

Figure 5.1: Lifecycle management of RTDroid’s Real-time Service

RTDroid provides a validatoin mechanism to simulate the task scheduling

and check the feasibility of application at runtime. Such validation process is

part of the compilation process in FijiVM’s compiler, it uses real-time properties

declared in RTDroid’s manifest and unilizes Cheddar, an open source real-time

scheduling tools, for task simulation and scheduling feasibilities.

5.1 Background

RTDroid’s programming model is derived from Android’s programming model

by extending Android’s application components and the manifest schema. RT-

Droid inherits Android’s event-driven nature and provides a familiar program-

ing style to Android developers. Both Android and RTDroid programming

82

models rely heavily on message passing based task communication, which sig-

nifcantly complicates the task model for validation. This section frst intro-

duces the design of the real-time components that form the bases of RTDroid’s

programming model. We then discuss how to model these components in a

real-time task model that allows task communication.

5.1.1 Real-Time Components of RTDroid

RTDroid provides three basic application components—RealTimeService, Real-

TimeReceiver and PeriodicTask. To facilitate application validation, RTDroid

synthesizes communication components for different types of message han-

dling patterns. These are defnes as RTDroid’s real-time channels.

Similar to Android’s components, RTDroid’s real-time components are de-

fned as abstract classes with a set of callback functions, these callback functions

are used by developers to implement applications logic and invoked by life-

cycle management APIs. Figure 5.1 depicts the lifecycle management of Real-

timeService. Developers must extend the abstract class of RealtimeService and

implement their application logic in callback functions. For example, onStartCom-

mand(), which will be triggered, when other components or system services calls

startService(Intent). Then, once the execution of onStartCommand() is com-

pleted, RealtimeService enters into the state of “active”. The following para-

graphs describe the design of each component, respectively.

5.1.1.1 Real-time Service

The real-time service is a standalone component that serves as a controller over

a group of nested components, such as real-time receivers and periodic tasks.

Although every component in the same group has its own real-time properties,

all component in a same real-time service share the same lifetime. This means

that lifecycle management APIs listed in Figure 5.1 will start/stop/pause/re-

sume both the real-time service as well as all of its nested components.

83

Time

start-time

cost
period

deadline

T

T

T

T

mem-size

total

persistent

release

N

N

N

Figure 5.2: Timing Figure 5.3: Memory
Constrains Bounds

intent-filter
action

data

name

name
sizeA

typeA

A

A

Figure 5.4: Channel Access

Service

priority

periodic
task

0 … 1

meta-data

0 … ∞

N

nameA

Time

intent-filer

intent-filer

channel

queueing
order

processing
order

msg drop
policy

data

nameA

(a) Real-time Service (b) Real-time Channel

Periodic
Task

Priority

Time

MemSize

Receiver

priority
mem-size

meta-data0 … ∞

intent-filter

N

nameA

(c) Periodic Task (d) Real-time Receiver

Figure 5.5: Real-Time Schema for RTDroid’s Components

5.1.1.2 Real-time Receiver

The real-time receiver is used to listen to specifc events from system services or

even other applications. It can be implemented as a standalone component or

a nested component of a real-time service. It has only two callback functions:

onReceive(), which is used to implement responses to events, and onReset()

84

to reset and clear data structures and memory associated with the real-time

receiver. The callback function, onReceive(), is triggered by an broadcasting

API—sendBroadcast(). The callback function, onReset(), can not be invoked

programmatically, it is only invoked if the real-time receiver is reset by the RT-

Droid runtime system.

5.1.1.3 Periodic Task

The periodic task can be only be implemented as a nested component of a real-

time service. The periodic task component differs from other RTDroid compo-

nents as it does not have a corresponding component in Android. An instance

of periodic task has the same lifetime as the real-time service that contains it.

PeriodicTask has only one interface, onRelease(), which embeds the logic to

execute when the periodic task is released by the RTDroid scheduler.

5.1.1.4 Real-time Communication Channel

The real-time communication channels are built-in communication mechanisms

on RTDroid. It is not an abstract class. To create a channel, a developer needs to

declare the channel in the application manifest and specify the size of message

sent in the channel, messages processing pattern and the maximum length of

the message queue. If a component sends/receives messages to/from the chan-

nel, the component has to explicitly state itself as a producer/consumer of the

channel and provides messages sending/receiving rate. There are four types

of real-time channel built in RTDroid, we model them as tasks precedence and

shared buffers. More details about the channel modeling will be illustrated as

part of integration details Section 5.2. This section just focus on the discussion

of the task model.

5.1.2 Task Model for RTDroid’s Application Validation

Our validation mechanism utilizes a task model that accepts periodic tasks with

hard deadlines as well as sporadic and aperiodic tasks with soft deadlines. It is

based on a fxed-priority, periodic task model with rate monotonic scheduling.

Feasibility tests are defned by [50, 35]. A number of assumptions were made

85

to simplify the complexity of the feasibility tests. For example, every periodic

task (τi) has an offset from system startup for the frst release of the task and the

length of time between successive releases must be a constant (Ti). Each release

of a task must have a hard deadline (Di). Most of the time such deadline (Di)

equals to Ti. Thereby, all tasks are independent of others and no interaction is

allowed.

To support aperiodic and sporadic tasks and to enable task interactions, we

adopt two extensions to the basic model: (1) The inclusion of aperiodic and

sporadic tasks with soft deadlines, which defnes the periodicity of a sporadic

task as the maximal interval of two release and utilizes an aperiodic server to

repeatedly check requests of aperiodic releases [74, 7, 13, 11]. (2) Introduction of

shared resources and task precedence in the feasibility analysis [76, 9, 30, 37].

Notice that the minimal execution unit of RTDroid’s components is the call-

back function, so one execution of a callback function is referenced as a release

of a real-time task in this work. PeriodicTask is directly mapped to a real-time

periodic task with hard deadlines. If one release of a periodic task cannot be

completed before the next release, it means that the application is not schedula-

ble. We model real-time services and the real-time receivers as aperiodic tasks

and sporadic tasks with soft deadlines since their releases are irregular. A real-

time receiver is normally used to listening to an specifc system/application

event that occurs repeatedly within a minimum interval, so real-time receiver is

modeled as the sporadic task. The real-time service is used to grouping a set of

nesting components, it normally serves as a controller to manage the lifecycle

of its nesting components. There is no specifc interval between two releases,

so we model real-time services as aperiodic tasks. The present implementation

of RTDroid uses a per-instance server to execute RealtimeService or Realtime-

Receiver, the server periodically checks release requests and invokes callback

functions.

5.2 Application Validation and Bootstrap

Section 5.1 has describe the task model in our validation process, this section

presents integration details between RTDroid’s real-time properties declared in

86

its application manifest and feasibility tests in Cheddar [71]. Later, we also ex-

plain how the application boot process leverages the output of the application

validation for task initialization and memory boundary enforcement.

5.2.1 Integration between RTDroid Manifest and Cheddar

RTDroid’s compiler translates RTDroid’s application manifest to a XML fle

understood by Cheddar [71] and performs the validation process, including

scheduling simulation, calculating worst-case response times, and producing

an upper bound of system utilization. Because RTDroid only supports an en-

vironment with a single core processor, all tests for this paper use uniprocessor

hardware simulation in Cheddar. We also check memory bounds for real-time

components and message bounds for real-time channels. These checks, how-

ever, are implemented in RTDroid’s compiler and not in Cheddar.

Tags Real-Time Tasks
Aperiodic Task Sporadic Task Periodic Task

<start> - - The frst release time
<cost> Soft deadline Soft deadline The worst-cast time cost

<periodic> - MISR1 Periodicity
<deadline> - - Hard deadline2

1 The minimum interval between two successive releases.
2 The period of a periodic task is equal to its deadline.

Table 5.1: Real-Time Semantics of Timing Elements

5.2.1.1 Timing Constraints in Scheduling Simulation

Timing constraints of real-time components are modeled into a task model with

fxed-priority scheduling consisting of three types of tasks: a periodic tasks with

hard deadlines, sporadic tasks with soft deadlines, and aperiodic tasks with soft

deadlines. Figure 5.5 shows a complete manifest schema. Each component must
be declared with a unique name as its identifer; the importance of the compo-

nent is defned by a priority element. Timing constraints are specifed with a

<time> element consisting of four child elements, given as timing parameters:

<start>, <cost>, <periodic> and <deadline>, as shown in Figure 5.2.

87

Channel Name Channels in RTDroid Real-Time Entities

Message
passing channel

Multiple producers.
Consumers inherits the
priority of the message
producer. A consumer per
priority.

A task precedence per
priority.

Intent
broadcasting

channel

The broadcasting commu-
nication pattern with fxed
number of participants.
All participants declare
their rates of message
producing/consuming.

A shared buffer with
M/M/s/∞/N.

Bulk data
transfer
channel

One-to-one data
communication.

A receiver as the con-
sumer, a task precedence.
Periodic task as the con-
sumer, shared buffer with
M/D/1.

Cross-context
channel

Unbound incoming
messages, process
messages with best efforts.

A shared buffer with
M/G/1.

Table 5.2: Modeling between RTDroid’s Channel to Real-Time Entities

In real-time semantics, due to the restrict levels with deadlines, these tim-

ing parameters present slightly different meanings. e.g., the element of <cost>

is used as a soft deadline for the aperiodic and the sporadic task, but it is the

worst-cast time cost of each release for a periodic task. Notice that the worst-

case time cost is flled by application developers at the current version of RT-

Droid. Similarly, The element of <periodic> is the minimum interval between

two successive releases for a sporadic task as listed in Table 5.1.

5.2.1.2 Feasibility Tests and Bounds Checking

There are two feasibility tests: (1) The schedulability test that produces an up-

per bound of processor utilization and worst-case response times of tasks; (2)

The performance analysis with shared buffers/task precedences which lever-

ages the theory of queuing systems to calculate two upper bounds—message

88

waiting times and the maximum number of messages in a given buffer, respec-

tively.

The schedulability test is based on a fxed-priority, preemptive rate mono-

tonic scheduler in [50, 35]. The sporadic and aperiodic tasks are handled through

a aperiodic server that periodically checks requests of aperiodic/sporadic tasks.

There are different types serves proposed by Spuri et. al. [76, 72]. For perfor-

mance analysis with shared buffers and task precedences, Table 5.2 shows the

modeling of RTDroid’s channel against queuing system theory [45, 44]. The

message waiting times and the maximum number of messages are computed

during the performance analysis, the later number is then used as the message

bound of a real-time channel to check if any of its producer/consumer send-

s/receives message exceed this bound.

RTDroid utilizes on-stack memory management schema with two types of

memory scopes: <persistent> and <release>. All real-time components must
specify their expected memory usage via the element of <mem−size> defned in

Figure 5.3 with three attributes:

1. Release: The memory region is used to allocate temporal objects for the

execution of callback functions, this region is reclaimed after each invoca-

tion.

2. Persistent: The memory region is used to allocate objects that have the

same lifetime as real-time components, this region is reclaimed when the

associated component is destroyed.

3. Total: The sum of the persistent, the release, and the memory usage of all

children components if any exist.

Memory bound checking is performed at two levels. The frst level is to check

every single component if the sum of its persistent, its release, and its children’s

releases is equal to its total. The next level is to check the sum of total in all com-

ponent is less than the amount of memory available for the real-time application

itself within the RTDroid framework.

89

5.2.2 Application Bootstrap

The application bootstrap process is divided into two stages: a static compile

time and a runtime boot procedure as depicted in Figure 5.6. The frst step

of static application compilation is to validate the real-time confguration to

quantify temporal constrains and check any unbounded behavior over shared

buffers defned in the application manifest. Then, RTDroid’s compiler emits

Java bytecode that overrides the constructor of each component in which ap-

plication bootstrap instantiates an instance for declared real-time components,

which assign timing parameters and allocates memory bounds or message ob-

jects for the runtime. Note, RTDroid does not allow any real-time component to

manually change its timing properties at runtime. This is enforced by the pro-

gramming model and exposed interfaces in RTDroid. The memory bound and

utilization checks are enforced via instrumented bounds checks, inserted by the

compiler, in the RTDroid runtime implementation. If memory constraints are

violated, a pre-allocated runtime exception is generated by the runtime system..

For example, when the memory consumption of a real-time component exceeds

its memory bound, the runtime checks will throw an OutOfMemory exception.

This ensures clean failure semantics.

The bootstrap of a real-time application leverages results of static validation

and makes the application ready for computation. As Figure 5.6 shows, after the

JVM is initialized, it invokes an entrance function of the application and loads

generated bytecode. Then, each component is allocated based on the real-time

properties defned in the manifest and registered with an internal component

manager for lifecycle management during the application runtime. Memory

regions and message objects are preserved to guarantee a bounded response

time with shared buffers and task precedences as discussed above.

5.3 Case Study: Cochlear Implant Application on RT-

Droid

This section uses a simulated cochlear implant application as a case study to

reports our experiences of integrating RTDroid’s validation mechanism with

90

an existing real-time framework, Cheddar. The cochlear implant can restore

hearing abilities through a surgically inserted electronic device in a patient’s

inner ear. Figure 5.7 shows an external device used for capturing ambient au-

dio and converting audio samples into digital signals, and an implanted device

that translates signals into electrical energy and triggers implanted electrodes to

simulate hearing nerves. Recently, there has been interests in replacing the ex-

ternal device with a smartphone for audio sampling and processing to reduce

the number of devices the patient must carry [8, 2] and enable the possibility

of changing the built-in signal processing algorithms for better performance. To

keep the patient rapidly response in daily conversation, a fxed amount of audio

samples (128 audio samples) must be processed on the smartphone and delivered

to the implanted device every 8ms.

The previous section 4 implemented such cochlear implant application with

three independent components on RTDroid, as listed in Table 5.3. It has two

real-time services that control periodic tasks for audio recording and processing,

respectively. The recording task sends captured audio samples to the processing

task via a message passing channel (modeled as a task precedence). Audio sam-

Compile Time

Manifest XML
Parser

Configuration
Validation

Configuration
Bytecode

Generation

System Service
Initialization

Component
Initialization /
registration

Application
Execution

Configuration
Bytecode

Configuration
Object Initilization

Component
Manager

Figure 5.6: Bootstrap Procedure of RTDroid Application

91

ples are buffered and processed. After performing the signal processing algo-

rithm, the processing task broadcast its processing signal to a real-time receiver

(a sporadic task) as an output receiver. The receiver performs error-checking by

simulating the behavior of implanted device. To enforce the timing constrain

(8ms), we model the recording task, the processing task and the output receiver

with descending priorities starting from 90 (the highest priority allowed in RT-

Droid application), while limits their periods with 8ms and time cost with 1ms.

The cost time is estimated through an experimental measurement in [8], the

time cost of computation for sampling, processing and error checking mostly

less than 1ms.

We have implemented the integration process as part of the procedure in

RTDroid’s application compilation. The compiler translates RTDroid’s applica-

tion manifest to an input XML fle loaded in Cheddar v3.31 There are a number

of workaround that must be token to utilized the scheduling simulation and

feasibility tests. According to our best knowledge, they are due to the fact of

limitations of Cheddar’s implementation, including the incompleteness of task

precedence and shared buffer with the scheduling simulation and buffer fea-

sibility tests. For example, the the simulation doesn’t run with the present of

aperiodic tasks. The implementation of message queuing models for shared

1Compiled from SVN repository revision 1835, last source code changed on 2015-08-19.

Figure 5.7: Cochlear Implant

92

Figure 5.8: Scheduling Simulation of Cochlear Implant Application in Cheddar

buffers are not completed. We have made the following workaround to get task

simulation and feasibility tests: (1) we manually convert the output receiver

(a sporadic tasks) triggered by task precedences to a periodic task since it is

triggered in every release by the processing service. (2) The feasibility tests on

shared buffer can only produce meaningful results with P/P/1 model.

We report the scheduling simulation of the cochlear implant application in

Cheddar, as shows in Figure 5.8. As they are in a descending order and sched-

uled with the policy of POSIX HIGHTEST PRIORITY FIRST, the recording service is

scheduled frst, then processing service and the output receiver at last within

80ms repeatedly. Additionally, the scheduling feasibility test calculates proces-

sor utilization at 37.5 % and WCRTs are 1ms, 2ms, 3ms with the descending

priorities. Given to the scheduling simulation, the message size bound of the

massage passing channel is always 1, the maximum waiting time is 1 as well.

Task Priority Start Cost
Period
(Dead-

line)

Recording Service
Processing Service
Output Receiver

90
89
88

0
0
0

1
1
1

8
8
8

Table 5.3: Real-Time Properties in Cochlear Implant

Bibliography

[1] Android and RTOS Together: The Dynamic Fuo for Today’s
Medical Devices. http://embedded-computing.com/articles/
android-rtos-duo-todays-medical-devices/.

[2] Android-Based Research Platform for Cochlear Implants. http:
//www.utdallas.edu/~hussnain.ali/publications/CIAP_2015_Poster_
Android_CRSS-CIL.pdf.

[3] .dex — Dalvik Executable Format. http://source.android.com/tech/
dalvik/dex-format.html.

[4] Linux kernel memory management: Out of memory killer. http://
linux-mm.org/OOM_Killer.

[5] RTEMS. http://www.rtems.org/.

[6] Why Android Will Be The Biggest Selling Medical Devices in The World
By The End of 2012. http://goo.gl/G5UXq.

[7] T. F. Abdelzaher, V. Sharma, and C. Lu. A utilization bound for aperiodic
tasks and priority driven scheduling. IEEE Trans. Comput., 53(3):334–350,
Mar. 2004.

[8] H. Ali, A. P. Lobo, and P. C. Loizou. Design and Evaluation of A Personal
Digital Assistant-Based Research Platform for Cochlear Implants. Biomedi-
cal Engineering, IEEE Transactions on, 60(11):3060–3073, 2013.

[9] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with
lock-free shared objects. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, RTSS ’95, page 28, Washington, DC, USA, 1995. IEEE Computer
Society.

http://embedded-computing.com/articles/android-rtos-duo-todays-medical-devices/
http://embedded-computing.com/articles/android-rtos-duo-todays-medical-devices/
http://www.utdallas.edu/~hussnain.ali/publications/CIAP_2015_Poster_Android_CRSS-CIL.pdf
http://www.utdallas.edu/~hussnain.ali/publications/CIAP_2015_Poster_Android_CRSS-CIL.pdf
http://www.utdallas.edu/~hussnain.ali/publications/CIAP_2015_Poster_Android_CRSS-CIL.pdf
http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dex-format.html
http://linux-mm.org/OOM_Killer
http://linux-mm.org/OOM_Killer
http://www.rtems.org/
http://goo.gl/G5UXq

94

[10] B. B. B. Cheng. A JIT Compiler for Android’s Dalvik
VM. http://www.google.com/events/io/2010/sessions/
jit-compiler-androids-dalvik-vm.html.

[11] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Real-Time Systems Symposium,
1990. Proceedings., 11th, pages 182–190. IEEE, 1990.

[12] I. Bate and A. Burns. Schedulability analysis of fxed priority real-time sys-
tems with offsets. In Real-Time Systems, 1997. Proceedings., Ninth Euromicro
Workshop on, pages 153–160. IEEE, 1997.

[13] G. Bernat and A. Burns. New results on fxed priority aperiodic servers. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99, pages
68–, Washington, DC, USA, 1999. IEEE Computer Society.

[14] E. Blanton and L. Ziarek. Non-blocking inter-partition communication
with wait-free pair transactions. In Proceedings of the 11th International
Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’13,
pages 58–67, New York, NY, USA, 2013. ACM.

[15] W. C. Blog. What OS Is Best for a Medical Device? http://www.
summitdata.com/blog/?p=68.

[16] D. Bornstein. Dalvik VM internals. http://sites.google.com/site/io/
dalvik-vm-internals.

[17] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe program-
ming: Preventing data races and deadlocks. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’02, pages 211–230, New York, NY, USA, 2002.
ACM.

[18] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for Object Encap-
sulation. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, pages 213–223, New York,
NY, USA, 2003. ACM.

[19] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership types
for safe region-based memory management in real-time java. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation, PLDI ’03, pages 324–337, New York, NY, USA, 2003. ACM.

[20] P. Brisset, A. Drouin, M. Gorraz, P.-S. Huard, and J. Tyler. The Paparazzi
Solution. In MAV 2006, 2nd US-European Competition and Workshop on Micro
Air Vehicles, pages pp–xxxx, 2006.

http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://www.summitdata.com/blog/?p=68
http://www.summitdata.com/blog/?p=68
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals

95

[21] N. Cameron, J. Noble, and T. Wrigstad. Tribal ownership, volume 45. ACM,
2010.

[22] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith. Multiple own-
ership. In ACM SIGPLAN Notices, volume 42, pages 441–460. ACM, 2007.

[23] J.-J. Chen and C.-F. Kuo. Energy-effcient scheduling for real-time systems
on dynamic voltage scaling (dvs) platforms. In Embedded and Real-Time
Computing Systems and Applications, 2007. RTCSA 2007. 13th IEEE Interna-
tional Conference on, pages 28–38, 2007.

[24] cherylcoupe. Roving Reporter: Medical Device Manufacturers Improve
Their Bedside Manner with Android. http://goo.gl/d2JF3.

¨ [25] D. Clarke, J. Ostlund, I. Sergey, and T. Wrigstad. Ownership types: A sur-
vey. In Aliasing in Object-Oriented Programming. Types, Analysis and Verifca-
tion, pages 15–58. Springer, 2013.

[26] A. Corsaro and D. Schmidt. The design and performance of the jrate real-
time java implementation. 2519:900–921, 2002.

[27] Cpu frequency and voltage scaling code in the linux(tm) kernel. https:
//www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

[28] A. Developers. Bionic c library overview. http://www.kandroid.org/ndk/
docs/system/libc/OVERVIEW.html.

[29] W. Dietl, S. Drossopoulou, and P. Müller. Separating ownership topology
and encapsulation with generic universe types. ACM Trans. Program. Lang.
Syst., 33(6):20:1–20:62, Jan. 2012.

[30] J. J. G. Garcia and M. G. Harbour. Optimized priority assignment for tasks
and messages in distributed hard real-time systems. In Proceedings of the 3rd
Workshop on Parallel and Distributed Real-Time Systems, WPDRTS ’95, pages
124–, Washington, DC, USA, 1995. IEEE Computer Society.

[31] M. K. Gardner. Probabilistic Analysis and Scheduling of Critical Soft Real-time
Systems. PhD thesis, Champaign, IL, USA, 1999. AAI9953022.

[32] M. K. Gardner and J. W.-S. Liu. Analyzing stochastic fxed-priority real-
time systems. In Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’99, pages 44–58,
London, UK, UK, 1999. Springer-Verlag.

http://goo.gl/d2JF3
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.kandroid.org/ndk/docs/system/libc/OVERVIEW.html
http://www.kandroid.org/ndk/docs/system/libc/OVERVIEW.html

96

[33] T. Gerlitz, I. Kalkov, J. Schommer, D. Franke, and S. Kowalewski. Non-
Blocking Garbage Collection for Real-Time Android. In Proceedings of the
11th International Workshop on Java Technologies for Real-time and Embedded
Systems, JTRES ’13, 2013.

[34] J. Gosling and G. Bollella. The Real-Time Specifcation for Java. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[35] R. Ha and J. W. Liu. Validating timing constraints in multiprocessor and
distributed real-time systems. In Distributed Computing Systems, 1994., Pro-
ceedings of the 14th International Conference on, pages 162–171. IEEE, 1994.

[36] iOmniscient. Fall and Man Down Detection. http://iomniscient.com/
index.php?option=com_content&view=article&id=155&Itemid=53.

[37] K. Jeffay. Scheduling sporadic tasks with shared resources in hard-real-
time systems. In Real-Time Systems Symposium, 1992, pages 89–99. IEEE,
1992.

[38] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl. Exhaustive Testing
of Safety Critical Java. In Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’10, pages 164–174, 2010.

[39] T. Kalibera, F. Pizlo, A. L. Hosking, and J. Vitek. Scheduling Real-time
Garbage Collection on Uniprocessors. ACM Trans. Comput. Syst., 29(3):8:1–
8:29, Aug. 2011.

[40] I. Kalkov, D. Franke, J. F. Schommer, and S. Kowalewski. A Real-Time
Extension to The Android Platform. In Proceedings of the 10th International
Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’12,
pages 105–114, New York, NY, USA, 2012. ACM.

[41] I. Kalkov, A. Gurghian, and S. Kowalewski. Predictable Broadcasting of
Parallel Intents in Real-Time Android. In Proceedings of the 12th International
Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’14,
pages 57:57–57:66, New York, NY, USA, 2014. ACM.

[42] H. Kim, S. Lee, W. Han, D. Kim, and I. Shin. SounDroid: Supporting Real-
Time Sound Applications on Commodity Mobile Devices. In Real-Time Sys-
tems Symposium, 2015 IEEE, pages 285–294, Dec 2015.

[43] M. Kim and A. Wellings. An Effcient and Predictable Implementation of
Asynchronous Event Handling in the RTSJ. In Proceedings of the 6th interna-
tional workshop on Java technologies for real-time and embedded systems, JTRES
’08, pages 48–57, New York, NY, USA, 2008. ACM.

http://iomniscient.com/index.php?option=com_content&view=article&id=155&Itemid=53
http://iomniscient.com/index.php?option=com_content&view=article&id=155&Itemid=53

97

[44] L. Kleinrock. Queueing systems, volume 2: Computer applications, volume 66.
wiley New York, 1976.

[45] L. Klennrock. Queueing systems volume 1: theory. New York, 1975.

[46] H. Kopetz. ”Real-time systems: Design Principles for Distributed Embedded
Applications”. Springer Science & Business Media, 2011.

[47] P. Kumar. Modal logic & ownership types: Uniting three worlds. In Com-
panion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 778–779, New
York, NY, USA, 2006. ACM.

[48] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Real Time Systems Sym-
posium, 1989., Proceedings., pages 166–171. IEEE, 1989.

[49] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[50] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[51] C. Maia, L. Nogueira, and L. M. Pinho. Evaluating Android OS for Em-
bedded Real-Time Systems. In Proceedings of the 6th International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications, Brussels,
Belgium, OSPERT ’10, pages 63–70, 2010.

[52] W. Mauerer, G. Hillier, J. Sawallisch, S. H¨ ¨ Real-onick, and S. Oberthur.
time Android: Deterministic Ease of Use. In Proceedings of Embedded Linux
Conference Europe, ELCE, volume 12, 2012.

[53] M.-M. moazzami, D. E. Phillips, R. Tan, and G. Xing. ORBIT: A
Smartphone-based Platform for Data-intensive Embedded Sensing Appli-
cations. In Proceedings of the 14th International Conference on Information Pro-
cessing in Sensor Networks, IPSN ’15, pages 83–94, New York, NY, USA, 2015.
ACM.

[54] S. Mohan, F. Mueller, M. Root, W. Hawkins, C. Healy, D. Whalley, and
E. Vivancos. Parametric timing analysis and its application to dynamic
voltage scaling. ACM Trans. Embed. Comput. Syst., 10(2):25:1–25:34, Jan.
2011.

98

[55] A. K.-L. Mok. Fundamental Design Problems of Distributed Systems for The
Hard-Real-Time Environment. PhD thesis, Massachusetts Institute of Tech-
nology, 1983.

[56] P. M ¨ Ownership transfer in universe types. uller and A. Rudich. In Pro-
ceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 461–478, New
York, NY, USA, 2007. ACM.

[57] Y. Murphy. Northrop Grumman News Release: DARPA ASPN Project
Article. http://www.irconnect.com/noc/press/pages/news_releases.
html?d=10029353.

[58] Northrop to Demo DARPA Navigation System on Android. http://goo.
gl/bgRggD.

[59] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon. Evaluation of Android
Dalvik Virtual Machine. In Proceedings of the 10th International Workshop on
Java Technologies for Real-time and Embedded Systems, JTRES ’12, pages 115–
124, New York, NY, USA, 2012. ACM.

[60] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An effcient and portable
web server. In Proceedings of the 1999 USENIX Annual Technical Conference,
USENIX ATC’99, 1999.

[61] M. Patrignani, D. Clarke, and D. Sangiorgi. Ownership types for the
join calculus. In Formal Techniques for Distributed Systems, pages 289–303.
Springer, 2011.

[62] L. Perneel, H. Fayyad-Kazan, and M. Timmerman. Can Android Be Used
for Real-Time Purposes? In Computer Systems and Industrial Informatics
(ICCSII), 2012 International Conference on, pages 1–6. IEEE, 2012.

[63] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek. High-Level Program-
ming of Embedded Hard Real-Time Devices. In Proceedings of the 5th Eu-
ropean conference on Computer systems, EuroSys ’10, pages 69–82, New York,
NY, USA, 2010. ACM.

[64] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek. Schism:
Fragmentation-Tolerant Real-Time Garbage Collection. In Proceedings of
the 2010 ACM SIGPLAN conference on Programming language design and im-
plementation, PLDI ’10, pages 146–159, New York, NY, USA, 2010. ACM.

[65] G. J. Rajguru. Reliable Real-Time Applications on Android OS. International
Journal of Management, IT and Engineering, 4(6):192, 2014.

http://www.irconnect.com/noc/press/pages/news_releases.html?d=10029353
http://www.irconnect.com/noc/press/pages/news_releases.html?d=10029353
http://goo.gl/bgRggD
http://goo.gl/bgRggD

99

[66] L. Sha. Solutions for some practical problems in prioritized preemptive
scheduling. In Proc. 7th IEEE Real-Time Systems Symposium, 1986. IEEE
Computer Society Press, 1986.

°
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-time systems, 28(2-3):101–155, 2004.

[67] L. Sha, T. Abdelzaher, K.-E. Arzén, A. Cervin, T. Baker, A. Burns, G. But-

[68] L. Sha and J. B. Goodenough. ”real-time scheduling theory and ada”. Tech-
nical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 1989.

[69] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode changes in a
prioritized preemptive scheduling environment. Real-Time Systems Journal,
pages 27–60, 1989.

[70] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg. Virtual machine showdown:
Stack versus registers. ACM Trans. Archit. Code Optim., 4(4):2:1–2:36, Jan.
2008.

[71] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a fexible real time
scheduling framework. In ACM SIGAda Ada Letters, volume 24, pages 1–8.
ACM, 2004.

[72] B. Sprunt. Aperiodic task scheduling for real-time systems. PhD thesis, PhD
thesis, 1990.

[73] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-
time systems. Real-Time Systems, 1(1):27–60, 1989.

[74] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-
time systems. Real-Time Systems, 1(1):27–60, Jun 1989.

[75] M. Spuri. Analysis of deadline scheduled real-time systems. PhD thesis, Inria,
1996.

[76] M. Spuri and J. A. Stankovic. How to integrate precedence constraints and
shared resources in real-time scheduling. IEEE Transactions on Computers,
43(12):1407–1412, 1994.

[77] J. K. Strosnider. Highly responsive real time token rings. 1988.

[78] M. E. Systems. Rugged Handheld Computers Suit Up with An-
droid on The Battlefeld. http://mil-embedded.com/articles/
rugged-suit-with-android-the-battlefield/#.

http://mil-embedded.com/articles/rugged-suit-with-android-the-battlefield/#
http://mil-embedded.com/articles/rugged-suit-with-android-the-battlefield/#

100

[79] D. Tang, A. Plsek, and J. Vitek. Static Checking of Safety Critical Java An-
notations. In Proceedings of the 8th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES ’10, pages 148–154, New York,
NY, USA, 2010. ACM.

[80] M. Tofte and J.-P. Talpin. Implementation of the Typed Call-by-value λ-
calculus Using a Stack of Regions. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’94,
pages 188–201, New York, NY, USA, 1994. ACM.

[81] Strand-1 Satellite Launches Google Nexus One Smartphone into
Orbit. http://www.wired.co.uk/news/archive/2013-02/25/
strand-1-phone-satellite.

[82] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-
conditioned, scalable internet services. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, pages 230–243, New
York, NY, USA, 2001. ACM.

[83] Robust Distributed Wind Power Engineering. wind.cs.purdue.edu.

[84] Y. Yan, S. Cosgrove, E. Blantont, S. Y. Ko, and L. Ziarek. Real-time sensing
on android. In Proceedings of the 12th International Workshop on Java Technolo-
gies for Real-time and Embedded Systems, JTRES ’14, pages 67:67–67:75, New
York, NY, USA, 2014. ACM.

[85] Y. Yan, S. H. Konduri, A. Kulkarni, V. Anand, S. Ko, and L. Ziarek. RTDroid:
A Design for Real-Time Android. In Proceedings of the 11th International
Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’13,
New York, NY, USA, 2013. ACM.

[86] Y. Yan, S. H. Konduri, A. Kulkarni, V. Anand, S. Ko, and L. Ziarek. Real-
Time Android with RTDroid. In The 12th International Conference on Mobile
Systems, Applications, and Services, MOBISYS ’14, New York, NY, USA, 2014.
ACM.

[87] T. Zhao, J. Baker, J. J. Hunt, J. Noble, and J. Vitek. Implicit ownership types
for memory management. Sci. Comput. Program., 71(3):213–241, May 2008.

http://www.wired.co.uk/news/archive/2013-02/25/strand-1-phone-satellite
http://www.wired.co.uk/news/archive/2013-02/25/strand-1-phone-satellite
wind.cs.purdue.edu

	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Introduction
	Real-Time Application in Mobile Computing
	Overview of Contributions
	System Architecture: RT OS, RT JVM and RT Framework
	Real-Time Programming Model
	Real-Time Application Validation

	Background and Related Research
	Background to Android
	The Linux Kernel and Java Runtime Environment
	The Event-Driven Programming Model

	Real-Time System
	Real-Time Tasks
	Real-Time Scheduling

	Real-time System Architecture on Android
	Real-time Extensions to Android
	Real-time Application Verification

	RTDroid's System Architecture
	Android Background
	Overview of System Architecture
	Deployment Profiles
	Real-time Building Blocks
	x86 PC and LEON3
	Nexus S Smartphone

	RT Looper and RT Handler
	Android's Looper and Handler
	Real-Time Redesign
	Worst-Case Execution Time Analysis

	RT Alarm Manager
	Android's Alarm Manager
	Real-Time Redesign
	Worst-Case Execution Time Analysis

	RT Sensor Manager
	Android's Sensor Manager
	Real-Time Redesign
	Worst-Case Execution Time Analysis

	Evaluation
	RT Looper and RT Handler Microbenchmarks
	RT AlarmManager Microbenchmarks
	Applications on Real-Time SensorManager
	Fall Detection Application
	jPapaBench

	RTDroid's Real-Time Progamming Model
	Android-enabled Real-time Applications
	RTDroid's Application Components
	Real-Time Service
	Periodic Task
	Real-Time Receiver

	Real-Time Communication Channels
	Message Channels
	Broadcast Channels
	Bulk Data Channels
	Cross-Context Channels

	Memory Management
	Evaluation
	Micro Benchmarks
	Comparison to Android and RTSJ

	Static Application Validation
	Background
	Real-Time Components of RTDroid
	Real-time Service
	Real-time Receiver
	Periodic Task
	Real-time Communication Channel

	Task Model for RTDroid's Application Validation

	Application Validation and Bootstrap
	Integration between RTDroid Manifest and Cheddar
	Timing Constraints in Scheduling Simulation
	Feasibility Tests and Bounds Checking

	Application Bootstrap

	Case Study: Cochlear Implant Application on RTDroid

	Bibliography

