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Continuous domestic respiration monitoring provides vital information for diagnosing assorted diseases. In
this paper, we introduce RespTracker, the first continuous, multiple-person respiration tracking system in
domestic settings using acoustic-based COTS devices. RespTracker uses a multi-stage algorithm to separate
and recombine respiration signals from multiple paths so that it can track the respiration rate of multiple
moving subjects. And it leverages features from multiple dimensions to separate different users in the same
area. Our experimental results show that our two-stage algorithm can distinguish the respiration of at least
four subjects and cover a distance of three meters.
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1 INTRODUCTION
Respiration is one of the vital signs that contain valuable information for diagnosing assorted

diseases, e.g., pulmonary disease [2], heart failure [3], anxiety [4], and sleep disorders [5]. Clinical
instruments, such as capnography or plethysmography, provide reliable respiration measurements.
However, they need professional operators and cannot be deployed in the domestic scenario
to perform long-term monitoring, which is vital to early diagnoses of chronic diseases, such as
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Fig. 1. General application scenario of RespTracker.

obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD). As
a result, the development of domestic continuous respiratory monitoring systems has attracted
increasing research interest in recent years.

There are domestic respiratory monitoring systems based on cameras [6] or using special devices,
including belt integrated with capacitive sensors [7] or smart cushion with air pressure sensors [8].
However, user studies have shown that people are reluctant to deploy these devices due to privacy
concerns [6, 9] or the high cost and long-term physical contact requirements [7, 8]. Amore promising
solution is enabling device-free respiratory monitoring with ubiquitously available wireless signals
emitted by commercial off-the-shelf (COTS) devices in domestic settings [10–12].

Limitations of Prior Art: Existing device-free respiratory monitoring systems leverage two
types of signals emitted by COTS devices: radio frequency (RF) signals and ultrasound signals.
One popular solution for RF-based systems is collecting Wi-Fi channel state information (CSI) for
further respiration measurements [13]. However, due to the narrow bandwidth of Wi-Fi signals,
the range resolution of CSI is too low to separate two nearby respiration signals. For example, the
aliasing range between two non-resolvable paths is 7.5 m for aWi-Fi bandwidth of 40 MHz. Existing
works either rely on the differences in the respiration rate [12] or use specialized high bandwidth
frequency modulated continuous wave (FMCW) radar and Independent Component Analysis (ICA)
[10] to separate multiple users. These solutions impose extra assumptions on respiration patterns
or need specialized devices that increase the domestic deployment cost. Acoustic-based systems
turn the speaker-microphone pair integrated with COTS devices, such as mobile phones and
smart speakers, into an active sonar to perform the respiration monitoring task. The advantage of
acoustic-based systems is the higher range resolution [11], e.g., a typical bandwidth of 4 kHz leads
to a range resolution of 8.5 cm for ultrasound signals. However, due to the fast attenuation of sound
signals, most acoustic-based systems have a limited range of 0.7∼1.1 m [11, 14–16]. Therefore,
their applications are limited to sleep monitoring instead of room-scale domestic deployment for
continuous respiratory monitoring and tracking.

Proposed Approach: In this paper, we introduce RespTracker, a continuous, multiple-person
respiration tracking system in domestic settings using acoustic-based COTS devices. As shown in
Fig. 1, the respiration signal of different users may arrive at the receiver through multiple paths.
RespTracker proposes a multipath separation, user separation and path combination framework
for robust respiration signal tracking.
First, RespTracker utilizes inaudible sound signal modulated by the Zadoff-Chu (ZC) se-

quence [17] to separate sound reflections from different users. Compared to traditional FMCW-based
systems, the key advantage of our separation scheme is that we can precisely differentiate individual
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reflection paths with channel impulse response (CIR) through correlation. Then, RespTracker
turns the indoor multipath effect into our friends by recombining the multipath signals belonging
to the same user. Our signal combination algorithm performs a multi-dimensional search and
analysis among different distances, different angles, multiple receiving microphones, and different
time-frames, based on the CIR measurement from the ZC signal. In this way, we can reliably cluster
reflection paths to different users even if they have similar respiration rates. With our multi-stage
scheme, RespTracker can detect reliable single person respiration signal at a distance of 3 meters
and track the movement of each user within 20 seconds after movements. We can also separate
multiple subjects’ respiration and track each of them in domestic settings.

Technical Challenges and Solutions: The first challenge is to reliably separate multiple
breath signals. Existing work for multi-user breath detection [10] leverages the ICA algorithm
to extract different subjects’ respiration. As multiple reflections of wireless signal are mixed at
the receiver due to the limited range resolution, they need a reliable decomposition algorithm to
separate them. To address this challenge, we use the ZC sequence to distinguish different sound
reflection paths with a high resolution of less than 10 cm (for round trip). On top of distance metrics,
we use a microphone array to conduct beamforming and cancellation to separate users in different
angles. In addition, we also measure the statistical features and features related to different users’
breath to increase the separability. In this way, each path contains less interference of other subjects
so that the complexity of signal decomposition is greatly reduced.
The second challenge is to expand the monitor range to the room-scale. Since the ultrasonic

signal attenuates quickly in indoor environments, the measurement of a single path could be noisy
and inaccurate. Microphone arrays of COTS acoustic devices are often sparsely arranged with an
interval around 5 cm to enhance speech signals with a frequency under 3 kHz and a wavelength
longer than 11 cm. In this case, traditional delay-and-sum beamforming algorithm blindly combines
signals from the same distance and angle where the weak respiration signal may be destroyed by
the out-of-phase combination. To resolve this issue, we use a multi-dimensional signal combination
scheme to select and recombine the respiration signals from the same user. We first leverage
multiple microphones that are common on COTS devices, such as Amazon Echo and Google Home,
to collect multiple copies of the sound reflections. Based on the multipath phenomenon, we collect
sound reflections on paths at different distances that arrive at the same microphone. We first
determine whether these reflections are related to respiration patterns and then extract a group of
features to differentiate different users. By clustering these multi-dimensional reflection signals,
we can determine which user the respiration signal belongs to. In this way, we are able to combine
a large number of weak paths from the same user, thereby reconstructing the respiration signal
reliably and achieving long-distance monitoring.

The third challenge is to track the respiration signals when users change their position. As users
may not keep static in their daily routine, our monitoring system should be able to keep tracking
while users change their position or orientation. To achieve respiration tracking under dynamic
position and orientation, we divide the signal into short observation slots with a duration of twenty
seconds. Within each slot, we first determine whether there are movements and then track the
distance change of each reflection path. Therefore, we can quickly use the historical data to regain
synchronization within twenty seconds after the movement through cluster center match and
correlation.

Summary of Experiments and Contributions: In the single user scenario, our system can
robustly estimate the respiration rate with an error under 0.6 Beats per Minute (BPM) for different
environments, such as in the hallway, offices, and conference rooms. RespTracker can also achieve
an error of less than 1 BPM within a distance of three meters and maintain an error of less than 0.8
BPMwhile the user is moving. In the multi-user scenario, RespTracker can separate the respiration
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signals of more than four users in the same room and achieve an error of less than 1 BPM for each
user.

In summary, our contribution has the following three aspects:

• We design a signal separation technique to separate multiple users’ respiration signal from
the each other and reflection from environment.

• We propose to combine multiple echoes related to respiration from other object in the
environments and expand the sensing range up to 3 meters.

• We combine features of different users in multiple dimensions to reconstruct the respiration
signal for different users in the same environment.

Paper Organization: The rest of this paper is organized as follow. Section 2 summarizes related
works of this paper. Section 3 provides motivation and overview of our system. Section 4 introduces
the signal model used to track the respiration. Section 5 introduces how to select the paths related to
respiration from the environmental reflections. Section 6 separate respiration signal from different
users in features frommultiple dimensions, and Section 7 introduce themodels of signal combination.
Section 8 showcases the implementation and evaluation of our system. Section 9 discusses the
limitation of the system and Section 10 concludes the paper.

2 RELATEDWORK
We summarize recent works related to respiration tracking according to the following three

categories.
Respiration Monitoring with Wireless Signals: Wireless signals are widely used for non-

invasive vital sign monitoring [10, 18–20]. BreathTaking [18] leverages the received signal strength
between different pairs of network devices to conduct the contactless breath monitoring for single
person on the bed. DeepBreath [10] uses multiple FMCW transceivers and the ICA algorithm to
separate different users’ respiration signal. Liu et al. [19] extract breath and heart beats from the
CSI gathered by commodity Wi-Fi devices. Wang et al. [12] propose the Fresnel Zone model of
Wi-Fi sensing and detect locations where the subject’s respiration can be hardly recognized by
the CSI amplitude. To tackle this challenge, Zeng et al. [20] exploit the complementary between
amplitude and phase of complex CSI data to cover the blind point of Fresnel Zone and further
use CSI ratio of two antennas to calculate the accurate phase of reflections [21]. Yang et al. [22]
leverage the high resolution of UWB radars to separate different subjects’ respiration and use
image processing techniques to detect sleep apnea. ViMo [23] leverages the high spatial resolution
(distance, azimuth and elevation) of 60 GHz millimeter wave antenna array to extract both the
respiration rate and the heart rate of multiple subjects. Hou et al. [24] place an RFID tag on users’
chest and leverage the back scatter signal to conduct respiration sensing. While the tags are light
and small, the requirement of putting them on body is still a great limitation. Liu et al. [25] use
smartphone to receive WiFi signal from reflections both from chest and ambient environment to
improve the reliability of NLoS condition. Zhang et al. [26] use antenna array to steer the LoRa
signal on different users’ body to spatially separate users and detect their respiration activities.
MoReFi [27] conducts respiration waveform reconstruction with a UWB MIMO radar and deep
neural network. Although wireless devices can provide strong signal with good quality, they are
expensive and the monitoring process might interfere with normal data transmissions, which make
them hard to be deployed in domestic environments.

Respiration Monitoring with Acoustic Signals: Acoustic signal travels much slower than
wireless signals. The bandwidth of 4 kHz from COTS acoustic devices provides a fine range
resolution of 8.5 cm, while similar resolution on RF-based systems requires Gigahertz of bandwidth.
So, recent works exploit acoustic signal to perform device-free breath sensing. Apneapp [11]
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transmits 18 ∼ 20 kHz FMCW sound signals to estimate breathing frequency and detect sleep apnea
passively. Wang et al. [14] expand the frequency band of acoustic signal by transforming audible
white noises into FMCW signals and enhance the signal SNR with receiving-end beamforming to
conduct infant respiration monitoring. Unlike traditional processing methods for FMCW signal,
CFMCW[15] uses cross-correlation to increase the accuracy of the acoustic-based breath sensing. Xu
et al. [28] leverage Energy Spectrum Density (ESD) of a single-frequency acoustic signal, Ensemble
Empirical Mode Decomposition, and Generative Adversarial Network (GAN) to reconstruct the
breathing signal in a driving scenario. BreathPrint [29] uses the acoustic feature of users’ breathing
to perform breath event detection passively and uses them as biometric signature to conduct user
authentication. One of the key challenges for acoustic based approach is the attenuation of sound
in the air, which makes it hard to expand the sensing range to more than two meters. Furthermore,
the passive methods are not suitable for daily monitoring because the breath sound in audible
frequency is very weak and can be affected by many kinds of noise.

Beamforming of Wireless Signals: Beamforming is an important technique in wireless com-
munication, as it can enhance signal strength from/to different direction with receiving/transmitting
array. In the wireless transmission scenario, Phaser [30] enables phase array signal processing on
COTS device which increases spatial resolution, decreases phase error and suppressed the multipath
interference. Wang et al. [31] use a blind distributed beamforming on both uplink and downlink
to increase the backscatter sensing distance to 64 meters. For wireless sensing and tracking, md-
Track [32] gives a multi-dimensional Wi-Fi localization model and drastically increases passive
localization divisibility. Vasisht et al. [33] analyze time of flight in different frequency band and
between different TX/RX pairs to reach decimeter-level localization accuracy. WiDar 2.0 [34] and
FreeSense [35] calculate the AoA and ToF to match and localize the moving subject. RFocus [36]
synchronizes thousands of passive antennas to form a wallpaper and improves the median signal
strength by 9.5× and channel capacity by 2.0×. In sound signal processing, Roy et al. [37] set
up a speaker array to achieve long-range ultrasound attacks on voice assistants. Moutinho et al.
[38] address the inverse problem of localizing microphones with speaker arrays that are playing
predefined sounds. Shen et al. [39] leverage microphone array and reflections from the wall to
localize sound source. X-Array [40] co-phases multiple millimeter wave transmitters to enhance
the indoor communication coverage. Most of the existing beamforming techniques ignore the
possibility of utilizing the multipath effect to enhance the sensing signal.

3 SYSTEM OVERVIEW
RespTracker aims at multiple-person room-scale respiration tracking. Therefore, the system is

supposed to detect and separate the weak reflection signals at a long range reliably. To differentiate
different people, thewireless signal should have ability to estimate the absolute distance of individual
reflections. Passive sensing by listening to the respiration sound or ambient sound is hard to fulfill
the task due to their range limitation and limited separation ability [41].

Comparing to other active sensing medium such as RF signal or millimeter wave signal, acoustic
signal has three important advantages. First, the acoustic devices are already ubiquitous in the
domestic environments, e.g., TV sets, laptops, voice assistants and etc., and reusing them to conduct
breath sensing or human activity recognition (HAR) incurs no extra cost. Moreover, RF and
millimeter wave require extra hardware to support the signal acquisition processes including
ADC and down-sampling. Second, acoustic signal travels much slower than the wireless signal.
Based on the fact that range resolution of broadband signal with bandwidth B and propagation
speed of c is proportional to c/B, to achieve the same range resolution with acoustic signal, RF and
millimeter wave signal require Gigahertz of bandwidth which requires expensive devices and may
violate the ISM band regulation. Third, acoustic signals are more flexible in signal design which can
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(a) CIR amplitude of a single frame. (b) Time variations of CIR amplitudes.
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(c) Filtered CIR amplitude at different distances.
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(d) Reconstructed respiration signal.

Fig. 2. CIR waveform of a single subject

be adjusted for different conditions. For example, we can transmit shorter supplementary signal in
different frequency band simultaneously to locate the user fast and provide timely feedback for the
breath sensing signal, while most COTS RF radars can hardly change the signal design.

3.1 Design Motivations
To understand the design challenges for long-range respiration signal detection and separation,

we provide a typical respiration signal illustration in Fig. 2. The experiment is performed with
the same acoustic devices as used in the evaluation section, shown in Fig. 7, and we conduct this
experiment in a hallway shown in Fig. 8(a). The subject is facing the acoustic devices shown in
Fig. 8(a) against the wall and is 50 cm away from them. Fig. 2(a) shows the amplitude of multipath
signals at different distances, where each peak corresponds to one path. From Fig. 2(a), we have
two observations. First, due to the high resolution of the sound signal, the width of each peak is
less than 20 cm so that theoretically we can separate two users even if they are just 10 cm apart
due to round trip reflections. Second, the sound signal attenuates quickly and it is hard to reliably
detect peaks at a distance of 4 meters.
Fig. 2(b) further illustrates the time variations of the paths, where we removed the static com-

ponents by subtracting the paths that are not changing within a period of 30 seconds. These
paths are mainly the LOS path and reflections of walls. The subtraction can be performed in the
complex-valued baseband signal because that the speaker and microphones are driven by the same
clock on the same broad without frequency offset and clock skew between them. We observe from
Fig. 2(b) that the respiration of a user causes regular fluctuations in the corresponding path. More
interestingly, a single user may incur correlated changes in multiple paths, as the signal may be
reflected by the wall or other objects before/after reaching the chest of the user. Also, signals may
reflect from different parts of the chest. While these reflections are weak, they provide important
respiration information of the same user. It is well known that the signal quality of a single path
largely depends on the posture and angle of the user [12]. The fluctuations of a single path may be
undetectable for certain user orientations, which lead to interruptions in continuous monitoring.
Therefore, it is vital to combine the information of different paths to perform reliable continuous
monitoring.
Fig. 2(c) shows the waveform of the respiration signal of the same user at reflection paths at

different distances. While the patterns of these signals are similar, they have different phases and
signal details. Therefore, directly adding these paths may not be an effective way to enhance the
signal.
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Fig. 3. System Overview of RespTracker

Based on the above observations, we find that RespTracker needs to address two important
challenges. First, how to efficiently separate and identify the multipaths of different users? Second,
how to reliably combine and reconstruct the breath signals from different paths belonging to a
single user?

3.2 System Design
To address the above challenges, RespTracker proposes a multi-stage design as shown in Fig. 3.
The first stage is raw signal processing. We use COTS speakers to transmit ZC modulated sound

signals. The reflected signals are received by a microphone array that collects multiple copies of
the reflection signal. We perform frequency domain dot products between the received and the
transmitted signal to derive the CIR.

The CIRs are fed into the path selection stage. We detect each path in randomly sampled frames
and calculate the respiration SNR in the frequency domain to select paths that are candidates of
respiration related reflections, which will be used in the second stage.
For multiple users, we use multiple dimensions of features, including distance (CIR), angle

(beamforming) and other features, to separate them and perform the path clustering before the
following steps.
In the path combination stage, we first perform cross-correlation between the detected paths

and their surrounding samples to calculate delay and conduct delay-and-sum in the local paths
to expand the sensing range. We then use a Principal Component Analysis (PCA) algorithm to
optimally combine the time-domain waveform of the detected paths.
Based on the combined respiration signal, we perform the room-scale tracking by calculating

the waveform of each observation slot independently and then match them to form a complete
waveform. Finally, we use the reconstructed breath signal to perform breath rate and breath interval
time estimations for each user.

4 RAW SIGNAL PROCESSING
We use ZC sequences that have ideal auto-correlation property to separate paths of different

users and at different distances.

4.1 ZC Modulation
The transmitting signal used in RespTracker is the ZC sequence modulated by a sinusoid carrier

[17, 42]. The ZC sequence with a length of Nzc is given by

zc[n] = e−j
πun(n+1+2q)

Nzc ,n = 0, ...,Nzc − 1, (1)
where 0 ≤ n < Nzc , q is a constant integer and often set to zero which make it a Chu sequence,
and Nzc is the length of sequence and must be a prime number. The parameter u determines the
correlation property and is an integer with 0 < u < Nzc and дcd(Nzc ,u) = 1. In this project, we
only use a single ZC sequence and set u = 1 for convenience. If we need multiple ZC sequences
to operate simultaneously[43, 44], we could choose different values that are co-prime with each
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other for each sequence, such as u1 = 5,u2 = 17. Sequences with different u will not exhibit good
cross-correlation property. The selection of of Nzc determines the bandwidth in the final modulated
signal. For example, if we set Nzc to 163 and the frame length to 1920 sample points, the bandwidth
of the modulated signal would be 163/1920× 48 = 4.075 kHz under 48 kHz sampling rate. With this
signal setting, we use the acoustic device (shown in Fig. 7) and two plastic plates to demonstrate
the cross-correlation property. We place the two plastic plates at 70 cm and 50 cm away from the
transceiver respectively, as in Fig. 4(a). The distance between the reflectors and the sound devices
are much larger than the distance between microphone and speaker, so the signals’ propagation
distance is approximate twice of the direct distance(50 cm and 70 cm). We calculate the CIR at the
receiving end and we can clearly observe the reflection peaks corresponding to these two objects
in Fig. 4(b). If we use different u to calculate the CIR, the result is a noisy sequence and we can’t
extract any reflection patterns from it. This property may not help to increase the performance
but can be used for other purpose, e.g., simultaneously transmitting in the same frequency band
or sensing with privacy. The wider the bandwidth is, the higher range resolution we can achieve,
which means we can separate different object closer to each other. However, wider bandwidth also
means that average signal strength on each frequency will be smaller and may reduces the effective
range. The frame length determines the slow time frame rate. With longer frame length, we have
lower frame rate and longer detection range and vice versa. In our system, we set q to 0, u to 1, Nzc
to 199 and frame length L to 4,800 sampling points.
Once we get the baseband signal, we first perform FFT and FFT shift on it to get the frequency

domain baseband signal. For computational efficiency, the result of FFT has the frequency indexes
from 0Hz to fs/2 and then −fs/2 to −1Hz [45]. The FFT shift operation is to reorder the frequency
indexes from −fs/2 to fs/2 so that 0Hz is at the center of the FFT result to facilitate the following
modulation process. We generate a sequence with length L and then modulate the signal with a
carrier sinusoid at a frequency of fc , which is set as 19 kHz to avoid noise interference to human,
by moving the baseband sequence to the higher frequency part. Before performing Inverse Fast
Fourier transform (IFFT) for OFDMmodulation, we set the negative frequency part to the conjugate
counterpart of the signal on the positive frequency to make sure the generated signal is real number
in time domain. Algorithm 1 shows the detailed process, where fs is the sampling frequency. After
we generate one frame of the time-domain real signal zcT [n], we transmit it repeatedly so that the
transmitted signals are cyclical OFDM symbols.

Algorithm 1: Transmitting signal generation
Result: The modulated sequence zcT [n] with a length of L and a carrier frequency of fc .

1 Generate zc[n] from Eq.1 with a length of Nzc .
2 Perform FFT on zc[n] to get ZC[n].
3 Perform FFT shift on ZC[n] to get ZCs [n].
4 Generate a all zero sequence ẐC[n] with a length of L.
5 ẐC[

fcL
fs

−
(Nzc−1)

2 : fcL
fs
+

(Nzc−1)
2 ] ⇐ ZCs [n].

6 ẐC[L −
fcL
fs

−
Nzc−1

2 : L −
fcL
fs
+

Nzc−1
2 ] ⇐ ZC∗

s [n : 1].
7 Perform IFFT on ẐC to the time domain zcT [n].

4.2 ZC Demodulation
After the signal is transmitted from the speaker, the microphone array at the receiver side records

the signals that come from both the LOS path and the reflections of subjects and the environment.
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Fig. 4. Demonstration of ZC’s range separation ability.

On one pair of speaker/microphone, we can extract one set of CIR per OFDM frame by performing
cross-correlation between the received signal and the known transmitted signal [42]. Instead of
using the time domain down-conversion and correlation as in [42], we leverage the frequency
domain multiplication to perform the frequency-domain correlation which will greatly reduce the
computational complexity of correlation.

The received signal is modeled as

zcR [n] =
P∑
i=1

Aie
jϕizcT [n − τi fs ], (2)

where zcR [n] is received signal, P is the number of paths, Ai is attenuation coefficient of path
i , ϕi is the phase shift caused by the propagation/reflection of path i after moduling 2π and τi
is the time of flight (ToF) of path i . We first segment the received signal into frames with the
same length of L. We then perform FFT on each frame and extract OFDM passband frequency
components ZCR [n] corresponding to the transmitted ZCs [n]. We multiply ZCR [n] by ZC∗

s [n]
to perform cross-correlation in the frequency domain. According to the ideal auto-correlation
property of ZC sequence [46], the auto-correlation of ZCs [n] × ZC∗

s [n] is all 1 in the frequency
domain. Therefore, the cross-correlation gives an ideal CIR under the bandwidth limitation. We use
zero-padding to expand the frequency domain baseband length to L then perform an IFFT to get
an interpolated time-domain CIR. The peaks in the resulting CIR denote different delayed copies
of transmitted signal from different paths, as shown in Fig. 2(a). Algorithm 2 shows the detailed
demodulation process.

Algorithm 2: Received signal demodulation
Result: The interpolated time-domain cir [n].

1 Perform FFT on zcR [n] to get ZCR [n].
2 CIRbaseband [n] ⇐ ZCR [n] × ZC∗

s [n].
3 Generate an all-zero sequence CIR[n].
4 CIR[0 : Nzc−1

2 ] ⇐ CIRbaseband [0 : Nzc−1
2 ]

5 CIR[L −
Nzc+1

2 : L] ⇐ CIRbaseband [
Nzc+1

2 : Nzc ]

6 Perform IFFT on CIR[n] to the time domain cir [n].

On each pair of speaker and microphone, we obtain one measurement of cir [n] for an OFDM
frame, which has a duration of 0.1 second. We assemble the measurement of CIR in multiple OFDM
frames within an Observation Slot to form a 2D CIR map as shown in Fig. 2(b). The time-domain
resolution of 0.1s in the CIR map gives a sampling rate of 10 Hz, which is adequate for monitoring
respiration signals that have typical frequency of 0.1∼0.5 Hz.
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5 PATH SELECTION
Before we reconstruct the respiration signals from multiple paths, we need to first select correct

paths to that contains breath related signal patterns. As modeled in Eq. (2), we can denote breath
related reflections as

zcRb [t] = Ae−j(
2π f d (t )

c +p)zcT

[
n −

dbody + d(t)

c
fs

]
, (3)

where dbody is the path length of user’s body reflection, d(t) is the path length changes caused by
chest movement during the exhaling and inhaling, which is a periodic signal, and p is the unknown
initial phase shift caused by transmitting and receiving delay. There is no need to estimate p since
we don’t require the absolute distance of users. And most existing ranging works ask users to put
devices on a known location to calibrate and cancel the initial phase [47–49]. Under this model, the
corresponding CIR is:

cirRb [t] = Ae−j(
2π f d (t )

c +p)sinc

[
n −

dbody + d(t)

c
fs

]
. (4)

As the OFDM signal is band-limited with a rectangular frequency gate function, the corresponding
time domain CIR is a convolution of the sinc function with the impulsive response. For a breath
movement with a period of 1/fb , the corresponding CIR peak will move back-and-forth with an
amplitude of dr around dbody . As the LOS and reflection from static environment or static body
parts remain almost the same along with time, we can separate the static paths and the breath
related paths by their periodicity. After the system starts monitoring, we first determine the location
of the LOS path by voting for the maximum peak location of the first Lv frames. The voting period is
set to 20 frames based on our experiments and is corresponding to 2 seconds. The LOS localization
is an one-time calibration because the distance between the speaker and the microphone is fixed
during the monitoring.

5.1 Static Signal Removal and Random Sampling:
After localizing the LOS path, we remove both the LOS path and static reflection. As the LOS

and static reflections corresponding to peaks with quasi-static amplitude and phase, we can remove
them by subtracting the average complex-valued CIR along the slow time axis of each observation
slot from each CIR frame and get cirra (CIR after removing the average complex values in slow
time axis):

cirra[n, t] = cir [n, t] −
1
T

T−1∑
t=0

cir [n, t], (5)

where n is the fast time index in frames indicating the propagation distance, t is the frame index in
the observation slot, cir [n, t] is the time-stacked result from Algorithm 2, T is the frame number
in one observation slot. In this way, the remaining non-zero peaks correspond to dynamical paths
and the process is shown in Fig. 5. We then randomly sample R frames with uniform distribution
in the observation slot to detect the dynamical paths. The random sampling scheme is robust for
respiration detection as the paths corresponding to respiration may periodically disappear due to
chest movements. We found that using around 10% of the frames in one observation slot (R = 10)
can cover most of dynamical paths.

We use two extra constraints to remove the interference of noisy paths. First, we remove peaks
that have an amplitude smaller than a threshold β of the maximum dynamical path. We perform
the min-max normalization on each CIR frame. Since the LOS peak normally has the maximum
and stable amplitude, we would use the average LOS peak’s amplitude of first 10 frames and use it
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Fig. 5. Process of static signal removal and random sampling (we use the magnitude of the complex signal

for illustration).

and 0 to normalize the rest of data. After the normalization, we directly apply a threshold between
0 ∼ 1. This can remove the fluctuation caused by the sidelobes of the sinc function and other noise,
the selection of β is a trade-off between the tolerance of noise and retaining weak reflections. With
a higher threshold β , it tends to pick stronger reflections and ignore weak reflections. However,
weak reflections may be helpful for breath signal reconstruction at long distance. We will further
discuss the selection of β in Section 8.3. Second, we remove paths that are within Tb sample points
to avoid repetition. Finally, we record the remaining peaks’ distance index and take the range bins
in that distance across the observation slot as candidate paths.

5.2 Breath SNR Calculation:
After detecting the dynamical paths, we use the breath SNR to determine whether the path con-

tains respiration signal or other interfering movements. The breath SNR is based on the observation
that the respiration signal will have a strong frequency component within the breath frequency
range of 0.1∼0.5 Hz as indicated in Eq. (4). Therefore, for a specific dynamical path, we first perform
an FFT along the time-axis to get the spectrum of the path. We then measure the maximum energy
in the FFT bins within the breath frequency range of 0.1∼0.5Hz as Emax . We modify the s-BNR
from [10] and the breath SNR is calculated asw1

Emax
(
∑
f ∈[0.1,0.5] Ef )−Emax

+w2
Emax∑

f ∈[0.5,5] Ef
, where Ef is the

energy of FFT bin that represents frequency f . This is a weighted sum of the uniqueness of the peak
within the breath frequency range and the strength of the peak comparing to other movements. In
this way, we can further filter the candidate paths that correspond to breath movements for further
path combination in the following sections.

6 USER SEPARATION
In previous sections, we have discussed how to separate paths related to respiration from other

unrelated reflections. In real-world scenarios, there might be more than one user in the room and
their respiration related paths are all selected in the candidate paths. In this section, we discuss
how to separate different users in the same area through features in multiple dimensions.

6.1 Distance Separation
As our ZC sequence has a range resolution of around 8.5 cm and the signal model is shown in

Equation 4, we can separate users by their different distances to the receiver. Fig. 6(a) shows the
CIR map when there are two users at distance of 1 meter and 1.5 meters. We can clearly observe
two traces related to the respiration signal from these two users at corresponding distances. We
record each candidates path’s distance from LOS as a feature for clustering.
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6.2 Angle Separation
Beamforming is a technique to enhance the signal strength from/to one or many directions

and suppress the signal from other directions using Rx/Tx arrays [50]. We can use receiver-side
beamforming to separate different users from different angles. Different users might appear at the
same distance from the microphone and speaker set, so we can’t fully rely on the distance metrics
derived from CIR [32]. In addition, we use the angular difference to help to resolve multi-user
signals. Subspace AoA estimation algorithms, such as multiple signal classification (MUSIC)[51],
are not suitable for this situation because reflections of ZC sequences are correlated to each other
which violates the assumption of MUSIC. Therefore, we design an iterative cancellation algorithm
by iteratively canceling the strongest reflection and then focusing on the weaker reflections.

Fractional Shift. Using the one element of the array as the reference point, to enhance the
signal coming from azimuth θ and elevation ϕ, beamforming in normal scenario with unit circle
array (UCA) will operate on the original time-domain signal:

R[n] =
M−1∑
i=0

Ri [n − ∆i fs ], (6)

where Ri is the received signal from ith microphone in totalM and ∆i is the time difference caused
by signal from the azimuth ϕ and elevation θ , which is calculated as ∆i =

r sin(ϕ)cos(θ−Θi )
c and r

is the radius of the circular microphone array, Θi is the relative angle of the microphone with
respect to the reference direction. ρ = 0◦ is usually selected as the reference direction in (r , ρ)
polar coordinate system (along x-axis in Cartesian coordinate system) and Θi = 2πi/N in this case
[50]. Our goal is to enhance paths with breath signals and most of our operation are performed
on the CIR, where DC is removed by subtracting the average value along slow time axis of each
distance bin and get the cirra as described in Section 5.1:
Since the time-domain shifting is not computationally efficient when performing sub-sample

shifts, we use frequency-domain shift instead. We use i to represent the index of microphones
and take traditional delay-and-sum beamforming as an example here. We first perform FFT on the
cirra,i to get the frequency domain signal (ZCra,i ) on ith microphone of totalM microphones and
then apply a phase shift to recalculate the estimation of the average and the beamformed CIR:

CIRra,θ [n] =
M−1∑
i=0

(ZCra,i [n] × e−j2π
2Lfc −(Nzc −1−2n)fs

2fs
∆i fs
L ). (7)

After that, we perform zero-padding, IFFT shift, and IFFT onCIRra,θ to get the beamformed cirra,θ .
Instead of using allM microphones to estimate several azimuths and elevations as conventional
approaches, where the side-lobes are severe, we propose an iterative algorithm to extract the
beamformed breath patterns.

Iterative Algorithm. To get the breath patterns from different directions with different signal
strength, we iteratively beamform the signal from two microphones, select the breath-related paths
and then cancel the strongest incoming signal that related to breath from certain direction to
focus on weaker reflections. For each iteration, we use two microphones to perform delay and
sum in twelve preset azimuth angles, with the estimated angle, we perform path selection on the
beamformed patterns and then cancel the strongest reflection. After we calculate the beamformed
CIR from the preset angles and we calculate the Breath-SNR and average signal strength with a
distance interval of 10 range bins in each direction. We can get a matrix with each entry’s index
indicating the angle and distance and the value is multiplication of Breath-SNR and average signal
strength which means the bigger value it has, the higher probability it’s related to respiration. We
use the RAB (range, angle and breath) matrix to refer to it. An example of generated Breath-SNR
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matrix is show in Fig. 6(b). After we collect the highest paths in this angle, we then focus on weaker
reflections from other angle. We use the angle that contains the greatest Breath-SNR and signal
strength and data from one microphone (microphone 0 as an example) to cancel other microphone’s
reflection from this angle:

ZCra,i ,0[n] = ZCra,i [n] − ZCra,0[n] × e−j2π
2Lfc −(Nzc −1−2n)fs

2fs
(∆0−∆i )fs

L . (8)

∆0 and ∆i are the shifted time for microphone 0 and microphone i caused by the incoming azimuth
with max signal strength mentioned above. Using Equation (8), we cancel the signal from the
estimated angle on microphone 1 ∼ 5. At the end of one iteration, we get CIR of five microphones
with the strongest reflection canceled for the next iteration. We repeat this process for five iterations
and collect the features, the detailed process is introduced in Algorithm 3.

We use COTS sound devices to implement our system, where the distance between microphones
are normally around 4 cm for speech signal enhancement. Our circular microphone array (Fig. 7)
has a radius of 4.6 cm and microphones are separated by 60 degrees. We use the microphones that
next to each other to mitigate the impact of side-lobe in which condition the number of side-lobes
are no more than 2 for each user. Even in the worst condition when the first 3 iterations all focus
on the same user (main-lobe and side-lobes), we can still use the next 2 iterations to focus on
other users. Fig. 6(b) and Fig. 6(c) show the scenario where two users have nearly the same signal
reflection distance but different angles. We can observe that although the side-lobes of the first
user are strong after two rounds of cancellation, the main lobe of the second users become the
strongest and the position of the second user can be determined in the third round. In each iteration
of beamforming and cancellation, we select the paths in that angle and record the angle as one of
the features of the selected paths.

Algorithm 3: Process of Angle Estimation
Result: Path candidates after beamforming and feature list.

1 Generate an empty array Candidates for candidate paths and Anдles for angle feature.
2 Perform Static Signal Removal on every microphone’s CIR according to Equation 5 and get

cirra,i , where i ∈ [0,M − 1].
3 Perform FFT and then FFT shift on cirra,i to get ZCra,i .
4 formic1 = 0 : M − 2
5 mic2 =mic1 + 1
6 for θ = θ0 : θ11
7 Calculate CIRra,θ with ZCra,mic1 and ZCra,mic2 using Equation 7.
8 Perform IFFT shift and then IFFT on CIRra,θ and get cirra,θ .
9 Calculate RAB matrix with cirra,θ using Breath-SNR and reflection strength.

10 Maximum value on RAB matrix’s θ value θm is selected as the first echo angle.
11 Perform random sampling on cirra,θm to get the candidate paths with angle feature θm .
12 Append the selected paths on Candidates and θm on Anдles .
13 for index =mic2 : M − 1
14 Update ZCra,index with θm and ZCra,mic1 according to Equation 8.
15 Return Candidates and Anдles .
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(a) CIR map with two users in 1 m and 1.5 m. (b) Initial result of beamform-
ing without cancellation.

(c) Round 3 result of beam-
forming and cancellation.

Fig. 6. Separate different users in distance and angle dimension.

Table 1. Feature List for Path Clustering

Types Features
Distance Distance from LOS
Angle Angle used for beamforming

Breathe-related
Times of crossing zeros, Breath SNR, Biggest frequency bin within the BFR,
2nd biggest frequency bin within the BFR, Biggest frequency bin beyond the BFR,
2nd biggest frequency bin beyond the BFR.

Statistic Standard deviation in TD, Kurtosis in TD and FD, Skewness in TD and FD.

6.3 Breath Related Features
Besides location information, different people may have different breath patterns which may

result in different features in time-domain and frequency domain of the signal. For example, different
people may have different breath rate and other related patterns. In time-domain, we use the times
of crossing zeros and in frequency-domain, we consider Breath SNR in Section 5 and the maximum
frequency bin’s index within and out of breath frequency range (BFR for short) as the breath related
features.

6.4 Statistical Features
We also consider some statistical features in time-domain and frequency-domain of these can-

didate paths for separation. We calculate Standard Deviation in time-domain and we estimate
Kurtosis [52] and Skewness [53] in both time-domain and frequency-domain.

6.5 Path Clustering
The complete feature information is listed in Table 1. Before we apply the clustering algorithm on

these features, we normalize the features within each feature’s dimension with min-max normalizer.
We want to enhance the influence of some features like distance and angle, because they are related
to users’ position which is unique for each user and other features like breath-related features may
be similar since different users may have the same breath patterns. Clustering algorithms mostly
rely on the distance between samples under different distance metrics. To enhance the influence,
we only need to multiply the normalized features with a weight factor and we set the weights
for distance and angle features to 5 and others to 1. Because the distance and angle features are
unique for each users, they either have different distances from the devices or have different angles.
Other features could increase the separability of different users, but the breath patterns and statistic
features could be similar when they happen to have similar breath patterns. We apply Kmeans
clustering algorithm on these features. After the clustering, the paths of the same user are more
likely to be placed in the same class since the effective multipath reflections are mostly around
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the direct reflection. We then perform the two-round combinations algorithm to reconstruct the
respiration signal for each user.

7 PATH COMBINATION ANDWAVEFORM PROCESSING
We gathered the candidate paths in the previous sections and we introduce how to combine

these paths to reconstruct respiration waveform and the processing on the final waveform in this
section.

7.1 Two-Round Combinations
In this subsection, we reconstruct the respiration signal through two-round path combinations

on the clustered candidate paths selected in the previous section. After the path selection and user
separation, we can get breath related paths from different users. To combine signal from multiple
paths and reconstruct the respiration signal, we propose a two-round combinations scheme.

Local Path Combination: According to our signal model, the CIR samples surrounding each
peak share the same pattern of the path at the peak so that we can combine them to enhance the
common features caused by breathing. Specifically, we calculate the cross-correlation between the
candidate paths and Nlocal path samples around them to get the weight parameter. We then delay
the surrounding paths and use a weighted-sum to add them to the candidate path to reduce the
noise of the single sample at the candidate peaks.

Path Combination from Different Distances: We have collected the clustered paths from
different users and the underlying respiration patterns for the same user is considered highly
related. After the local combination, we gather the candidate paths from different distances and
microphones together to form a matrix X with a size of n × Tp , where n is the total number of
candidate paths and Tp is the number of frames in the observation slot. We only use the amplitude
of the candidate paths to avoid the phase noises in paths. We then remove the static part of each
row through the LEVD algorithm [54] and apply a moving average filter with a length of nine
samples to smooth the waveform.
Although these data are all from single user and share the same breath patterns, they have

different phases and signal details, see Fig. 2(c), caused by the propagation delay and environment
reflections. A straightforward method is to use the breath SNR as an indicator and exhaustively
search for all possible phase delay parameter to maximize the SNR of generated signal, which is
time-consuming. Instead of using this method, we use the PCA algorithm to extract the principal
components which are strongly correlated to the respiration signal. The first principal component
of the signal matrix gives a low-noise reconstruction of the respiration signal. Fig. 2(d) compares
the reconstructed respiration waveform and the ground truth waveform captured by the respiration
belt.

7.2 Waveform Processing
Tracking: Users may move during the respiration monitoring period. Therefore, we need to

relocate the users and regain synchronization after each movement. To achieve this, we divide the
continuous monitoring period into shorter observation slots and perform user tracking within each
slot.

To balance between the accuracy of movement detection and delay of respiration rate estimation,
we choose to set the observation slot length to 20 seconds, which lasts 200 OFDM frames. The
reason of using 20 seconds as the observation window is a trade-off between detection accuracy and
feedback frequency. We leverage the frequency domain features to distinguish breath patterns from
static reflection and other unrelated movements. Given the fact that normal respiration periods
are around 3 ∼ 5 seconds, if the window size is too short (e.g., around 10 seconds), the number of
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periods is small and short sequence makes the frequency resolution coarse-grained, which could
affect the path selection process. Using longer window can make the detection of breath patterns
more accurate, yet, this will bring more computational burden for resources constraint devices
and cause a longer feedback interval. Observation slot with length of 20 seconds is suitable in
our scheme to provide acceptable performance in both sides. Within each observation slot, we
perform movement detection on the path index change and combination result. When a movement
occurs, the peaks found for breath will move largely and the periodic patterns of the result will
be devastated. This is because we sample the frames randomly within the observation slot, and
the possibility of the small portions of movements being sampled is quite small and the selected
paths’ major component are still breath related. However, when there are movements across the
whole slot, the breath patterns are totally mixed with the movement patterns and our scheme still
struggles in this situation. Although we use breath-SNR to select the candidate paths, complex user
movements may also have a large power in breath related frequency range. The movement affected
paths are mixed with the subtle breath affected paths because they are caused by the same person
and close in distance. When we apply PCA on these paths, the majority components are movement
related patterns. As a result, the reconstructed waveform has an abrupt shape with no periodicity
which can be used for motion detection during monitoring. We further discuss this limitation in
Section 9.

Whenmultiple usersmoved in the environment, we should perform a re-synchronization between
observation slot. In the re-synchronization process, we should match the candidate clusters in the
current observation slot with those in the previous slots. We use the mean-square of the difference
between cluster centers to perform the matching so that when users are moved, static users might
be first matched to their historical clusters indicated by distance and angle and moved users will be
relocated to new positions.

Breath Rate/Interval Estimation: After we reconstructed the waveform of each observation
slot, we estimate the number of breath periods for each user. Within each observation slot, we use a
moving average filter to eliminate noise and false respiration peaks. Since the breath rate may vary
from 0.1 Hz to 0.5 Hz and the noise level may also vary, we cannot use a fixed empirical window
size for the moving average filter. The window length should not be too long to affect the breath
peaks or too short to be unable to suppress the noise peaks. We treat the filter length selection as a
classification problem and extract the FFT energy within the range of human respiration frequency
as the feature. We then use a Support Vector Machine (SVM) to select the filter length based on
the FFT energy features. The filter length candidates are odd numbers in [9, 31] (in the sampling
frequency of 10 Hz), which makes it a 12 classes classification problem. We collected another set
of breath data to train the model. We generate the labels through running the whole estimation
process with different filter length and the filter length with minimum errors are selected as the
label. If different filter length achieves the same minimum errors, we select the shorter one for less
computational cost. In the operation phase, we extract the same features and feed them into the
classifier to select the filter length.

After the smoothing process, we normalize the waveform through min-max normalization and
perform peak detection. The detected peaks must satisfy two constraints. First, the interval of two
adjacent peaks must bigger than 20 sampling points because the breath frequency range in our
system is from 0.1 Hz to 0.5 Hz and the smallest possible interval is 20 sampling points. Second,
the prominence of the peaks must be bigger than an empirical threshold Thr . Since the waveform
is already smoothed and normalized, the Thr is set to 0.05 to avoid false alarms. We then further
estimate the BPM and the breath interval time of users based on the detected peaks.
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Fig. 7. Devices used in the ex-

periments, including Raspberry Pi,

speakers, and the respiration belt.

(a) Hallway. (b) Office room.

Fig. 8. Samples of experimental environments.

8 IMPLEMENTATION AND EVALUATION
We implement RespTracker on Raspberry Pi 3B+ [55] and desktop computers using Python.

The Raspberry Pi is equipped with a speaker and a 6-mic circular microphone array [56] to transmit
and receive acoustic signal at a sample rate of 48 kHz. The speaker and microphones are driven by
the same clock on the broad and they can perform playback and recording simultaneously with no
frequency offsets. The captured sound signal is sent to PC through Wi-Fi in real-time for further
processing. The ground truth of the respiration signal is collected through a Vernier respiration
belt [57] that measures the pressure of the chest. As the subjects inhale and exhale, the sensor will
record the pressure change of the belt caused by the chest. The devices used in our experiments
are shown in Fig. 7.

We use two key metrics to evaluate the performance of RespTracker. The first metric is Beats
per Minute (BPM) that indicates the average frequency of the breath. The second metric is the
breath interval that gives more detailed information about each inhale and exhale, which is vital
for diagnosing of chronic diseases. We recruit five volunteers in our evaluation, who are healthy
graduate students from 21 to 24 years. During the evaluation, all subjects are asked to breath
normally and we find that the resulting BPM are in the range of 10 to 20 which is consistent with
the breath rates for healthy people. And the subjects are allowed to occasionally have some body
movements like touching faces. For each experiment set, we repeat the processing for 10 times and
use the average errors as the experimental result to reduce the impact of random sampling process
in our algorithm.

8.1 Experiments in the Single User Scenario
Effective range: To evaluate the breath detection range of RespTracker, we conduct experi-

ments in the hallway shown in Fig. 8, at different distances from 0.5 m to 4.0 m. At each distance, we
collect two minutes breathing data for five repetitions for each subject. To compare with existing
beamforming schemes, we implement a delay-and-sum algorithm to process and combine the
same data. In the delay-and-sum scheme, we conduct the delay process in the frequency domain
and reuse the intermediate data from the demodulation process to reduce the computational cost.
To find the proper elevation and azimuth, we first search with a stride of 10 degrees to find a
coarse-grained elevation and azimuth and then fix the elevation and search with a stride of 1 degree
in the neighborhood of the azimuth detected by the first step to find the final parameters. For each
combination of these parameters, we calculate the breath SNR for all possible paths to find the
combination that maximizes the SNR. After that, we get the combined path of six microphones and
then calculate BPM and breath interval time in a similar way as in RespTracker.
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Fig. 9. Experimental results at different distances.
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Fig. 11. Experimental results in different environments.

Fig. 9 shows that RespTracker achieves an acceptable measurement error of less than 1 BPM at
a distance of 3.0 m. RespTracker outperforms the traditional delay-and-sum method in most cases.
This is because the delay-and-sum scheme can only combine the received data at one distance,
elevation, and azimuth. When reflected signal is quite weak, the single path set used in delay-and-
sum is unstable. In comparison, RespTracker combines multiple path sets thus it can enhance the
reflected signal multiple times and the mean absolute errors within 3.0 m is less than 0.95 BPM,
while the error of delay-and-sum at 3.0 m is 1.60 BPM. The measurement errors for the breath
interval time are shown in Fig. 9(b). The measurement error increases rapidly for the long distances
because the ultrasound attenuates quickly in the indoor environment. Although, RespTracker can
still reliably work at a distance of three meters.
Fig. 10 further shows the details of the reconstructed waveform. Note that the respiration belt

can only detect the inhale, due to the measured chest pressure should always be non-negative,
and the acoustic signal can detect both the inhale and the exhale movements. And there is a delay
between the two waveform caused by the signal propagation.

Impact of Different Environments: To evaluate impact of different indoor environment, we
conduct experiments at different locations in typical indoor environments, including hallway, office
room, conference room, and student apartment. Fig. 8 shows the experimental environments in the
hallway and the office room. In each environment, we choose four different locations based on the
environments’ condition, including facing wall, parallel to wall, facing corner, and in the middle of
room to cover different reflection conditions. During these experiments, the distance between the
user and the microphone/speaker is fixed to be one meter. We ask each subject to breath for two
minutes for five repetitions while sitting on a chair.
Fig. 11 shows that our algorithm is robust to environmental changes. Different environments

only slightly affect the performance of our system. The mean absolute error at the hallway, office
room, conference room and student apartment shown in Fig. 11(a) are: 0.49, 0.57, 0.49, and 0.69
BPM, respectively. In case when there are complex multipath conditions, the breath related paths
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Fig. 12. Experimental results for tracking.

could mix at the same distance, causing ambiguity in the reconstructed respiration signal that leads
to higher errors. However, as our algorithm considers paths at different distances, the impact of
these multipath signals are mitigated. We also estimate the error of breath interval time between
breaths, the average error for these four environments are 0.207, 0.247, 0.209, and 0.217 seconds,
respectively, as shown in Fig. 11(c).

Tracking Performance: To evaluate the tracking performance, we requested the subjects to
move during the two minutes breathing period, while stay static before and after the movement.
We use six different moving patterns which are from 1.0 m to 1.5 m, from 1.5 m to 2.0 m, from 1.0
m to 2.0 m, from 1.5 m to 1.0 m, from 2.0 m to 1.5 m, and from 2.0 m to 1.0 m respectively, during
which the subjects are always facing the speaker and microphone array. We denote these movement
patterns as pattern 1 to 6 on the result figure. We conduct this experiment in the hallway.

Fig. 12 shows that RespTracker can track different movement patterns. Since our system only
measure the respiration signal when the subject is static and the subjects only move once during
the measurement, RespTracker achieves similar performance compared to the static experiments.
The average absolute error of these six type of movement are 0.58, 0.60, 0.59, 0.47, 0.59, and 0.51
BPM respectively. The breath interval time errors are 0.196, 0.217, 0.258, 0.199, 0.196, and 0.183
seconds for these movement types.

Comparison with Baseline Method.Most previous acoustic signal based respiration monitor-
ing systems [11, 14, 15] monitor the respiration of a single person in different scenarios. To make
a fair comparison, we select C-FMCW [15] as the baseline method in this experiment. C-FMCW
leverages the correlation function of FMCW frames to obtain the fine-grained distance estimation,
which has poorer correlation property than the CIR used in our system [42]. We replace the correla-
tion function with CIR and compare C-FMCW and we can get the results of both systems in a single
session of data collection. We compare RespTracker’s performance under two different ranges,
1.0m and 2.5m in BPM, which is the only metric discussed in [15]. Fig. 13 shows the result of this
experiment. In a close distance, the two systems have similar results. However, in a farther distance,
RespTracker outperforms the baseline method much, which demonstrates the effectiveness of our
algorithm on expanding the sensing range.

Diversities of Users’ Age. To evaluate RespTracker’s robustness in different age groups, we
recruit 6 people in three different age groups, which are 20 ∼ 30, 30 ∼ 45 and 45 ∼ 55 years old. In
each age group, there are one healthy male and one healthy female subject. We keep the distance
between the subjects and the acoustic devices as 1m in the typical setting. Fig. 14 shows the result
of this evaluation, where RespTracker’s performance exhibits little variations among different age
groups. This is because the general breath patterns are similar and can be correctly selected by our
algorithm.
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Fig. 14. Experimental results in different age groups.
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Fig. 15. Experimental results for spatial resolution at different distances.
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Fig. 17. Experimental results for different multi-user movement patterns.

8.2 Experiments in the Multiple Users Scenario
Distance Resolution: To evaluate the spatial resolution of RespTracker, we invite two subjects

to sit close to each other in the hallway. We fix the distance to microphone/speaker of one user to 1
m and adjust the distance of the other user from 1.0 m to 2.5 m with an interval of 0.5 m to change
the distance between two subjects. They sit in the same direction from the microphone array and
when they are both 1.0m from the microphone, they sit shoulder-to-shoulder with each other. At
each separation distance, we collect 2 minutes breathing signal for five times. On top of that, we
also invite four users to sit together while the distances between them and the sound devices are
around 0.5 m, 1.0 m, 1.5 m, and 2.0 m, and try to reconstruct their breath signals.

Fig. 15 shows that RespTracker can reliably separate the breath signals of two users. Even if the
two subjects sit shoulder-to-shoulder at the 1.0 m distance, we can still separate their breath signal
by using both distance, angle and other features. As subject 2 moves away from subject 1, the error
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for subject 1 stays stable and increases slightly and the error for subject 2 increases faster. This
is because during the experiments, subject 2 move backward from the microphone in a straight
line although the distance between them increases, the angle between them is becoming narrower
(≤ 15◦). And the distance increases the acoustic signal’s becomes weaker so the error for subject
2 increases faster. Fig. 16 shows the reconstructed breath signals for four users at four different
distances. While the respiration signals are more noisy than in the single user scenario due to the
interference between users, we can still reliably measure the breath rate and breath interval time
with an average error of 0.80 BPM and 0.295 seconds.

Tracking Performance: In the multiple users scenario, we consider the movement patterns
when there is only one user moving or two users are moving away from each other. In the initial
state, the distances between two users and sound devices are 1.0 m and 1.5 m. We then request
them to conduct five moving patterns which are moving from 1.0 m to 0.5 m, moving from 1.5 m to
2.0 m, moving from 1.5 m to 0.5 m moving, moving from 1.0 m to 2.0m and simultaneously from
1.0 m to 0.5 m and 1.5 m to 2.0 m. We denote these movement patterns as pattern 1 to 5 in the
figure.
Fig. 17 shows that RespTracker can track the movement of multiple users under different

moving patterns. It appears that except for movement 1, our system can get the same level of
BPM and breath interval time error as the static experiments. The reason why the result so bad
in movement type may be that subject moved so close to the microphone and blocked the paths
of the other subjects. And we can achieve an average BPM error of 0.82, and breath interval time
error of 0.286 s.

Angle Separation Performance: In this experiment, we place two users exactly on the ellipse
formed by microphone and speaker as focus points which means the reflection distance of two
users are exactly the same. We fix the flexible ruler’s two ends with length 2.5 meters in the position
of speaker and microphone array’s center. We do our best to make the reflection distance the same,
yet, we can’t make the subjects completely static and they occasionally have some body movements
like touching face. We adjust users’ position to change the angle interval between users as 15◦, 30◦,
45◦, 60◦ and 90◦ with the ruler fasten to fix the reflection distance. To estimate the effectiveness
of beamforming and cancellation process, we compare the result with or without beamforming
process. In the control group, we use six channels’ microphone data to directly compute the CIR
and select paths like we do in single person condition. And we extract the distance features, statistic
features and breath-related features on those paths to conduct path clustering and the process after
it.

Fig. 18 shows the result of this experiment. As we can see, beamforming and cancellation process
can increase the performance in both BPM and breath interval time in this situation. However, the
promotion might not look very remarkable because in real situation, the reflection distances from
two users can rarely be exactly the same, let alone with presence of other body movements. Angle
features provide a extra dimension to increase the separability.

8.3 Micro-Benchmark
Effect of the Number ofMicrophones Used: In single user condition, compared to traditional

beamforming algorithm, our algorithm can work in any microphone number settings. We change
the number of microphones to evaluate the impact of microphone number to our solution. We
use the same distance settings as the single user range experiments and at each distance we vary
the number of microphones from 1 to 6. At each distance, we repeat the experiment for 100 times
and we randomly select different combinations of microphones for each experiment. Intuitively,
with more microphones providing more information about the breath patterns, we can get a more
accurate estimation on the BPM and breath interval time. Fig. 19 shows the result of this experiment,
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Fig. 18. Effect of beamforming process.
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Fig. 19. Effect of the number of microphones used.

which is consistent with our intuition. At the same distance, the results with more microphone
combined provide a more accurate estimation. Furthermore, our solution can achieve an acceptable
accuracy when using only two microphones.

Effect of Multipaths: In Section 5, we chose the reflection paths with an amplitude threshold
β = 0.2 of the maximum dynamical path. In this experiment, we evaluate the effect of multipaths
by changing the threshold of β . With bigger β , we consider less reflection paths to reconstruct the
waveform and with smaller β , we take more paths into consideration. We evaluate β in a descending
manner with its value β = [0.01, 0.02, 0.1, 0.2, 0.5, 0.7, 0.9] at distance 1.0m and 2.5m. Fig. 20
shows the result. Our results show that in closer range, e.g., 1.0m, the number of multipaths hardly
affect the result because the reflection signal is strong and we can use smaller number of reflection
paths without severe performance drop. For longer range, e.g., 2.5m, the errors grow larger with
higher threshold β because the direct reflection is weak in this situation and we need to take more
multipaths into account to get a better respiration waveform. Therefore, it is necessary to combine
a proper number of multipaths by setting the threshold β around 0.2.

Effect of Users’ Orientation and Blockage:We evaluate our system in different user orien-
tations and under blockage. Fig. 21(a) exhibits the experiment setting, where users turn different
sides toward the microphones and speaker. Furthermore, we evaluate the performance under
blockage, using a three-folding screen made with cardboard placed around 5 cm away from the
microphones and speaker. This experiment is conducted in a typical bedroom environment, and
the distance between the user and the sound devices is 1.0m. Fig. 21(b) and 21(c) show the result of
this experiment, and we can observe that the orientation of users does not affect the performance
too much. However, the cardboard blockage will influence the result, which may be caused by
two reasons. First, the cardboard would absorb some sound passing through and make the overall
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Fig. 23. Effects of Noises.

signal strength weaker. Second, the distance between the screen and the speaker is too close, which
blocks some paths reflected from nearby reflectors.

Effect of Interference and Users Activities: To evaluate the performance under interference,
we expose our system under different interference during data collection, including air conditioner,
static electric fan, rotating electric fan, and another person walking around. The fan is a normal
rotating electric fan. The person walks around 0.5 to 1.5 meters away from the subject during data
collection, and he is not the target of respiration monitoring. We conduct this experiment in a
typical bedroom environment, and the distance between the sound devices and target is 1.0m.
Fig. 22 shows the result of this experiment. We observe that interference from other objects would
not degrade the performance of RespTracker too much. This is because external interference has
patterns different to respiration, e.g., different in frequency and cross wider range bins, and the
breath-SNR calculation step can help to avoid selecting these paths. However, our system can not
tackle the situation when the monitoring targets move continuously during the session, and we
discuss this situation in Section 9.

Impact of Noise: During the data collection, we expose our system under different types
of environmental noise, including music, speech and white noise to test the impact of noise on
RespTracker. We play those noise with a mobile phone at a distance of 30 cm from the microphones
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Table 2. Processing Time on Different Platforms

Single User Multiple Users

PC (RespTracker) 0.1338 s 0.3061 s (w/o BF)
0.5963 s (w BF)

PC (Delay-and-Sum) 14.5805 s -

Raspi (RespTracker) 2.0830 s 4.4681 s (w/o BF)
12.2938 s (w BF)

and speaker and set the volume to the maximum of the phone. We conduct this experiment in a rest
room and fix the distance between the user and microphone to 1.0 m. Since the music and speech
has different frequency components from RespTracker in general cases, which will not affect our
system’s performance. And white noise covers the whole frequency band including our working
range, so it may affect the modulated ZC sequence’s CIR estimation. Fig. 23 shows the CDF of
errors in BPM with different types of noise presence. As we can observe, the BPM estimation error
are only slightly degraded with presence of these noises. To understand the reason behind this
observation, we plot the CIR map and the phase of CIR map after removing the mean complex CIR
value. Fig. 24(a) to 24(d) show the CIR amplitude and phase with and without presence of white
noise. As we can observe, the amplitude of the CIR (Fig. 24(a) and 24(b)) is more robust against the
white noise’s influence and phase is more fragile to them (Fig. 24(c) and 24(d)). Signal with a small
amplitude added on the same frequency band might greatly influence the phase of the complex
valued CIR. In the extreme condition when the environment are too noisy, the loud noise might
cause clipping distortion in the receiver side which will devastate both the amplitude and phase.
We can decrease the microphone’s gain to handle this situation.

Performance Experiments: Our algorithm are designed as a light-weight algorithm so that
it can be deployed on resource-limited mobile devices. To evaluate the computational cost of our
algorithm, we run the system on different types of devices, including a Raspberry Pi 3B+ and a
desktop computer with an i7-9700 CPU and 16GB memory. On each device, we process the data of
both the single user and multiple users experiments and report the average processing time.

Table 2 shows the computational time for RespTracker to process audio data of one observation
slot (20 seconds) on different devices using different methods. The source data is six-channel
recorded sound signals at a sample rate of 48 kHz with 32 bit float precision. We observe that
our algorithm out performs the delay and sum scheme by more than one hundred times on the
same platform. Even on resource constrained platforms like Raspberry Pi, our system can handle
the incoming data efficiently where the average processing time for a 20 s observation slot is
2.0830 s, 4.4681 s and 12.2938 s for single user and multiple users (with or without beamforming
process). It’s worth noting that the Raspberry Pi 3B+ has limited memory and we have to use the
swap space which is slower. The reason why the delay-and-sum method is so slow is that it has
to search exhaustively in all azimuth and elevation in all possible distance bins to find the valid
delay and combine the signal from all 6 microphones. And our method perform beamforming
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with 2 microphones each time and the times of combination is smaller. There are some possible
directions to further improve the performance. First, we could use the high-performance library
with multi-thread processing functions like FFTW. Second, we could replace the python with C/C++
to improve the efficiency. Third, we may adjust the loop nest or the data layout to find a way that
suits the hardware platform, Raspberry Pi.

Power Consumption. To evaluate the power consumption of our algorithm on Raspberry Pi
3B+, we plug a current and voltage meter between the device and the power source to evaluate the
overall power consumption of signal processing and audio playback and recording. We measure
the absolute power consumption and the power consumption difference between running the
processing and idle standby. The average power consumption for signal processing and audio
playback and recording are 349.3mW and 175.4mW when RespTracker is operating continuously.

9 DISCUSSIONS AND LIMITATIONS
While developing RespTracker, we have the following discoveries in the limitation of our

system.
Interference from Environments: Our system uses distance and angle estimation to separate

different target with a resolution of 8.5 cm and 15 degree and can be increased higher easily. To
increase the ranging resolution, we can expand the ZC working bandwidth. To increase the angle
resolution, we can increase the number of preset azimuth to compute and physically use an array
with more microphones and smaller interval. Distance resolution are very easy to increase with
few changes on the parameters and the interference beyond the distance resolution can be filtered
out. And in most of condition, distance metrics itself can work well.

Measure while Moving: Our system ignores the signal segment when targets are moving and
only performs respiration estimation when all users are static. When the users are moving, the
breath related paths are very likely affected by the movements from the limbs that are close to the
chest. Those irregular movements are unlikely to be totally removed from the respiration related
signal with signal processing techniques. As the signals are not reliable for breath estimation, we
choose to ignore these parts of signal. It can be considered to use deep learning based method to
recover respiration signals from movements. However, this is beyond the scope of our work.

Using Amplitude instead of Phase: After we conduct the signal processing parts that use the
original complex signal, RespTracker reconstructs the respiration waveform with the amplitude
of the candidate paths. The reason is that users’ chest/belly movements caused reflection distance
changes are usually larger than distance between sample points (3.5 mm for round trip), so the
breath related patterns on single distance bin may appear and disappear alternately. Therefore, the
phase of a single bin is not reliable and we need to combine the phase in different distance bin and
different time to reconstruct the breath signal. Such phased based solutions could be more accurate
but have a higher complexity. We also observe that amplitude is more robust compare to phase with
the presence of white-noise because some minor phase turbulence will greatly affect the original
phase shape, and we showcase this observation in Section 8.3. Phase information can be used when
the distance bin resolution is poor and the chest caused movements lie within each distance bin,
e.g. Wi-Fi/RF signal [20] or acoustic devices working under low sampling rate of 16 kHz [58].

Detailed Breath Patterns: In this work, we focus on the respiration rate and interval between
each breath instead of the detailed breath patterns. Because the breath strength measured by the
respiration belt could be affected by the tightness of the belt, which is not accurate. Furthermore,
in the long distance scenario, the signal’s attenuation could be severe and the detailed information
of the breath reflection could be lost. We leave this part as the future work.

Reflection from Long Distance: As we previously mentioned, we assume the multipath are
around the direct reflection path. However, if there are strong reflectors, e.g., a wall or ceiling
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that has a flat surface, the multipath may appear very far from the direct reflection path. Multiple
reflection with the nearby wall can also cause this phenomenon. The reflection at around 280 cm
in Fig. 2(b) exhibit similar patterns as the breath. Extra breath related features may be extracted
from them with knowledge of the surrounding environment although their signal strength is weak.
However, we do not explore this part of information in this work.

10 CONCLUSION
In this paper, we present new insights on how to tackle the design challenges for long-range,

multiple users domestic respiration tracking systems. We propose to exploit the multipath effect to
recombine the reflections in order to improve system sensitivity and robustness. In this way, we
expand the sensing range of acoustic respiration patterns from the 0.7 to 1.0 meters in previous
works to a room-scale of 3.0 to 4.0 meters. We believe our new insights could bring new opportunity
for domestic sensing application.
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