
A Bayesian Sampling Approach to
Exploration in Reinforcement Learning

John Asmuth† Lihong Li† Michael L. Littman†
†Department of Computer Science

Rutgers University
Piscataway, NJ 08854

Ali Nouri† David Wingate‡
‡Computational Cognitive Science Group

Massachusetts Institute of Technology
Cambridge, MA 02143

Abstract

We present a modular approach to reinforce-
ment learning that uses a Bayesian repre-
sentation of the uncertainty over models.
The approach, BOSS (Best of Sampled Set),
drives exploration by sampling multiple mod-
els from the posterior and selecting actions
optimistically. It extends previous work by
providing a rule for deciding when to re-
sample and how to combine the models.
We show that our algorithm achieves near-
optimal reward with high probability with a
sample complexity that is low relative to the
speed at which the posterior distribution con-
verges during learning. We demonstrate that
BOSS performs quite favorably compared
to state-of-the-art reinforcement-learning ap-
proaches and illustrate its flexibility by pair-
ing it with a non-parametric model that gen-
eralizes across states.

1 INTRODUCTION

The exploration-exploitation dilemma is a defining
problem in the field of reinforcement learning (RL).
To behave in a way that attains high reward, an agent
must acquire experience that reveals the structure of
its environment, reducing its uncertainty about the dy-
namics. A broad spectrum of exploration approaches
has been studied, which can be coarsely classified as
belief-lookahead, myopic, and undirected approaches.

Belief-lookahead approaches are desirable because
they make optimal decisions in the face of their uncer-
tainty. However, they are generally intractable forcing
algorithm designers to create approximations that sac-
rifice optimality. A state-of-the-art belief-lookahead
approach is BEETLE (Poupart et al., 2006), which
plans in the continuous belief space defined by the
agent’s uncertainty.

Myopic (Wang et al., 2005) approaches make decisions
to reduce uncertainty, but they do not explicitly con-
sider how this reduced uncertainty will impact future
reward. While myopic approaches can lay no claim
to optimality in general, some include guarantees on
their total regret or on the number of subtoptimal de-
cisions made during learning. An example of such an
algorithm is RMAX (Brafman & Tennenholtz, 2002),
which distinguishes “known” and “unknown” states
based on how often they have been visited. It explores
by acting to maximize reward under the assumption
that unknown states deliver maximum reward.

Undirected (Thrun, 1992) approaches take exploratory
actions, but without regard to what parts of their
environment models remain uncertain. Classic ap-
proaches such as ε-greedy and Boltzmann exploration
that choose random actions occasionally fall into this
category. The guarantees possible for this class of algo-
rithms are generally weaker—convergence to optimal
behavior in the limit, for example. A sophisticated
approach that falls into this category is Bayesian
DP (Strens, 2000). It maintains a Bayesian poste-
rior over models and periodically draws a sample from
this distribution. It then acts optimally with respect
to this sampled model.

The algorithm proposed in this paper (Section 2) is
a myopic Bayesian approach that maintains its uncer-
tainty in the form of a posterior over models. As new
information becomes available, it draws a set of sam-
ples from this posterior and acts optimistically with
respect to this collection—the best of sampled set (or
BOSS). We show that, with high probability, it takes
near-optimal actions on all but a small number of tri-
als (Section 3). We have found that its behavior is
quite promising, exploring better than undirected ap-
proaches and scaling better than belief-lookahead ap-
proaches (Section 4). We also demonstrate its compat-
ibility with sophisticated Bayesian models, resulting in
an approach that can generalize experience between
states (Section 5).



Note that our analysis assumes a black box algo-
rithm that can sample from a posterior in the ap-
propriate model class. Although great strides have
been made recently in representing and sampling from
Bayesian posteriors, it remains a challenging and often
intractable problem. The correctness of our algorithm
also requires that the prior it uses is an accurate de-
scription of the space of models—as if the environment
is chosen from the algorithm’s prior. Some assump-
tion of this form is necessary for a Bayesian approach
to show any benefits over an algorithm that makes a
worst-case assumption.

2 BOSS: BEST OF SAMPLED SET

The idea of sampling from the posterior for deci-
sion making has been around for decades (Thompson,
1933). Several recent algorithms have used this tech-
nique for Bayesian RL (Strens, 2000; Wilson et al.,
2007). In this context, Bayesian posteriors are main-
tained over the space of Markov decision processes
(MDPs) and sampling the posterior requires drawing
a complete MDP from this distribution.

Any sampling approach must address a few key ques-
tions: 1) When to sample, 2) How many models to
sample, and 3) How to combine models. A natural ap-
proach to the first question is to resample after every
T timesteps, for some fixed T . There are challenges
to selecting the right value of T , however. Small T
can lead to “thrashing” behavior in which the agent
rapidly switches exploration plans and ends up mak-
ing little progress. Large T can lead to slow learning
as new information in the posterior is not exploited be-
tween samples. Strens (2000) advocates a T approx-
imating the depth of exploratory planning required.
He suggests several ways to address the third ques-
tion, leaving their investigation for future work.

BOSS provides a novel answer to these questions. It
samples multiple models (K) from the posterior when-
ever the number of transitions from a state–action pair
reaches a pre-defined threshold (B). It then com-
bines the results into an optimistic MDP for decision
making—a process we call merging. Analogously to
RMAX, once a state–action pair has been observed
B times, we call it known.

In what follows, we use S to refer to the size of the
state space, A the size of the action space, and γ the
discount factor. All sampled MDPs share these quan-
tities, but differ in their transition functions. For sim-
plicity, we assume the reward function is known in ad-
vance; otherwise, it can be encoded in the transitions.

Given K sampled models from the posterior,
m1,m2, · · · ,mK , merging is the process of creating a

new MDP, m#, with the same state space, but an
augmented action space of KA actions. Each action
ai,j in m#, for i ∈ {1, · · · ,K}, j ∈ {1, · · · , A}, corre-
sponds to the jth action in mi. Transition and reward
functions are formed straightforwardly—the transition
function for ai,j is copied from the one for aj in mi,
for example. Finally, for any state s, if a policy in m#

is to take an action aij , then the actual action taken
in the original MDP is aj . A complete description of
BOSS is given in Algorithm 1.

Algorithm 1 BOSS Algorithm
0: Inputs: K, B
1: Initialize the current state s1.
2: do sample← TRUE.
3: qs,a ← 0,∀s, a
4: for all timesteps t = 1, 2, 3, . . . do
5: if do sample then
6: Sample K models m1,m2, · · · ,mK from the

posterior (initially, the prior) distribution.
7: Merge the models into the mixed MDP m#.
8: Solve m# to obtain πm# .
9: do sample← FALSE.

10: end if
11: Use πm# for action selection: at ← πm#(st),

and observe reward rt and next state st+1.
12: qst,at

← qst,at
+ 1.

13: Update the posterior distribution based the
transition (st, at, rt, st+1).

14: if qst,at
= B then

15: do sample← TRUE
16: end if
17: end for

BOSS solves no more than SA merged MDPs, requir-
ing polynomial time for planning. It draws a maximum
of KSA samples. Thus, in distributions in which sam-
pling can be done efficiently, the overall computational
demands are relatively low.

3 ANALYSIS

This section provides a formal analysis of BOSS’s ef-
ficiency of exploration. We view the algorithm as a
non-stationary policy, for which a value function can
be defined. As such, the value of state s, when visited
by algorithm A at time t, denoted by V At(st), is the
expected discounted sum of future rewards the algo-
rithm will collect after visiting s at time t. Our goal
is to show that, when parameters K and B are cho-
sen appropriately, with high probability, V At(st) will
be ε-close to optimal except for a polynomial number
of steps (Theorem 3.1). Our objective, and some of
our techniques, closely follow work in the PAC-MDP
framework (Kakade, 2003; Strehl et al., 2006).



3.1 A GENERAL SAMPLE COMPLEXITY
BOUND FOR BOSS

Let m∗ be the true MDP. When possible, we denote
quantities related to this MDP, such as V ∗

m∗ , by their
shorthand versions, V ∗. By assumption, the true MDP
m∗ is drawn from the prior distribution, and so after
observing a sequence of transitions, m∗ may be viewed
as being drawn from the posterior distribution.

Lemma 3.1 Let s0 be a fixed state, p′ the posterior
distribution over MDPs, and δ1 ∈ (0, 1). If the sam-
ple size K = Θ( 1

δ1
ln 1

δ1
), then with probability at least

1 − δ1, a model among these K models is optimistic
compared to m∗ in s0: maxi V ∗

mi
(s0) ≥ V ∗(s0).

Proof (sketch). For any fixed, true model m∗, define
P as the probability of sampling an optimistic model
according to p′:

P =
∑

m∈M
p′(m)I (V πm

m (s0) ≥ V πm∗
m∗ (s0)) ,

where I(·) is the set-indicator function andM is the set
of MDPs. We consider two mutually exclusive cases.
In the first case where P ≥ δ1/2, the probability that
none of the K sampled models is optimistic is (1 −
P )K , which is at most (1 − δ1/2)K . Let this failure
probability (1− δ1/2)K be δ1/2 and solve for K to get

K =
log(δ1/2)

log(1− δ1/2)
= Θ

(
1
δ1

log
1
δ1

)
.

The other case where P < δ1/2 happens with small
probability since the chance of drawing any model, in-
cluding m∗, from that part of the posterior is at most
δ1/2. Combining these two cases, the probability that
no optimistic model is included in the K samples is at
most δ1/2 + δ1/2 = δ1. �

Lemma 3.2 The sample size K = Θ(S2A
δ ln SA

δ ) suf-
fices to guarantee V ∗

m#(s) ≥ V ∗(s) for all s during the
entire learning process with probability at least 1− δ.

Proof (sketch). For each model-sampling step,
the construction of m# implies V ∗

m#(s) ≥ V ∗
mi

(s).
By a union bound over all state–action pairs and
Lemma 3.1, we have V ∗

m#(s) ≥ V ∗(s) for all s with
probability at least 1−Sδ1. During the entire learning
process, there are at most SA model-sampling steps.
Applying a union bound again to these steps, we know
V ∗

m#(s) ≥ V ∗(s) for all s in every K-sample set with
probability at least 1 − S2Aδ1. Letting δ = S2Aδ1

completes the proof. �

To simplify analysis, we assume that samples in a
state–action pair do not affect the posterior of transi-
tion probabilities in other state–actions. However, the

result should hold more generally with respect to the
posterior induced by the experience in the other states.
Define the Bayesian concentration sample complexity,
f(s, a, ε, δ, ρ), as the minimum number c such that, if
c IID transitions from (s, a) are observed, then with
probability 1 − δ the following holds true: an ε-ball
(measured by `1-distance) centered at the true model
m∗ has at least 1− ρ probability mass in the posterior
distribution. Formally, with probability at least 1− δ,

Pr
m∼posterior

(‖Tm(s, a)− Tm∗(s, a)‖1 < ε) ≥ 1− ρ.

We call ρ the diffusion parameter.

Lemma 3.3 If the knownness parameter B =
maxs,a f(s, a, ε, δ

SA , ρ
S2A2K ), then the transition func-

tion of all the sampled models are ε-close (in the `1
sense) to the true transition function for all the known
state–action pairs during the entire learning process
with probability at least 1− δ − ρ.

Proof (sketch). The proof consists of several appli-
cations of the union bound. The first is applied to all
state–action pairs, implying the posterior concentrates
around the true model for all state–action pairs with
diffusion ρ′ = ρ

S2A2K with probability at least 1− δ.

Now, suppose the posterior concentrates around m∗

with diffusion ρ′. For any known (s, a), the probabil-
ity that a sampled MDP’s transition function in (s, a)
is ε-accurate is at least 1 − ρ′, according to the defi-
nition of f . By the union bound, the sampled MDP’s
transition function is ε-accurate in all known state–
action pairs with probability at least 1 − SAρ′. A
union bound is applied a second time to the K sam-
pled models, implying all K sampled MDPs’ transi-
tion functions are ε-accurate in all known state–action
pairs with probability at least 1−SAKρ′. Finally, us-
ing a union bound a third time to all model-sampling
steps in BOSS, we know that all sampled models have
ε-accurate transitions in all known (s, a) with proba-
bility at least 1 − S2A2Kρ′ = 1 − ρ. Combining this
result with the δ failure probability in the previous
paragraph completes the proof. �

Theorem 3.1 When the knownness parameter B =
maxs,a f

(
s, a, ε(1− γ)2, δ

SA , δ
S2A2K

)
, then with proba-

bility at least 1− 4δ, V At(st) ≥ V ∗(st)− 4ε in all but
ζ(ε, δ) = O

(
SAB

ε(1−γ)2 ln 1
δ ln 1

ε(1−γ)

)
steps.

Proof (sketch). The proof relies on a general PAC-
MDP theorem by Strehl et al. (2006) by verifying
their three required conditions hold. First, the value
function is optimistic, as guaranteed by Lemma 3.2.
Second, the accuracy condition is satisfied since the
`1-error in the transition probabilities, ε(1 − γ)2,



translates into an ε error bound in the value func-
tion (Kearns & Singh, 2002). Lastly, the agent visits
an unknown state–action at most SAB times, satisfy-
ing the learning complexity condition. The probability
that any of the three conditions fails is, due to a union
bound, at most 3δ: the first δ comes from Lemma 3.2,
and the other two from Lemma 3.3. �

3.2 THE BAYESIAN CONCENTRATION
SAMPLE COMPLEXITY

Theorem 3.1 depends on the Bayesian concentration
sample complexity f . A full analysis of f is beyond
the scope of this paper. In general, f depends on cer-
tain properties of the model space as well as the prior
distribution. While it is likely that a more accurate es-
timate of f can be obtained in special cases, we make
use of a fairly general result by Zhang (2006) to relate
our sample complexity of exploration in Theorem 3.1
to certain characteristics of the Bayesian prior. Fu-
ture work can instantiate this general result to special
MDP classes and prior distributions.

We will need two key quantities introduced by
Zhang (2006; Section 5.2). The first is the criti-
cal prior-mass radius, εp,n, which characterizes how
dense the prior distribution p is around the true model
(smaller values imply denser priors). The second is the
critical upper-bracketing radius with coefficient 2/3,
denoted εupper,n, whose decay rate (as n becomes
large) controls the consistency of the Bayesian pos-
terior distribution. When εupper,n = o(1), the poste-
rior is consistent. Now, define εn = 4εp,n + 3

2εupper,n.
The next lemma states that as long as εn decreases
sufficiently fast as n → ∞, we may upper bound the
Bayesian concentration sample complexity.

Lemma 3.4 If there exists a constant c > 0
such that εn = O(n−c), then f(s, a, ε, δ, ρ) =
max{O(ε−

2
c δ−

1
c ), O(ε−2δ−1 ln 1

ρ )}.

Proof (sketch). We set ρ = 1/2 and γ = 2 as used in
Corollary 5.2 of Zhang (2006) to solve for n. Zhang’s
corollary is stated using Rényi-entropy (DRE

1
2

) as the
distance metric between distributions. But, the same
bound applies straightforwardly to `1-distance because
DRE

1
2

(q||p) ≥ ‖p− q‖21/2. �

We may further simplify the result in Lemma 3.4 by
assuming without loss of generality that c ≤ 1, result-
ing in a potentially looser bound of f(s, a, ε, δ, ρ) =
O(ε−

2
c δ−

1
c ln 1

ρ ). A direct consequence of this simpli-
fied result, when combined with Theorem 3.1, is that
BOSS behaves ε-optimally with probability at least

1− δ in all but at most

Õ

(
S1+ 1

c A1+ 1
c

ε1+
2
c δ

1
c (1− γ)2+

4
c

)

steps, where Õ(·) suppresses logarithmic dependence.
This result formalizes the intuition that, if the
problem-specific quantity εn decreases sufficiently fast,
BOSS enjoys polynomial sample complexity of explo-
ration with high probability.

When an uninformative Dirichlet prior is used, it
can be shown that f is polynomial in all relevant
quantities, and thus Theorem 3.1 provides a perfor-
mance guarantee similar to the PAC-MDP result for
RMAX (Kakade, 2003).

4 EXPERIMENTS

This section presents computational experiments with
BOSS, evaluating its performance on a simple do-
main from the literature to allow for a comparison with
other published approaches.

Consider the well-studied 5-state chain problem
(Chain) (Strens, 2000; Poupart et al., 2006). The
agent has two actions: Action 1 advances the agent
along the chain, and Action 2 resets the agent to the
first node. Action 1, when taken from the last node,
leaves the agent where it is and gives a reward of 10—
all other rewards are 0. Action 2 always has a reward
of 2. With probability 0.2 the outcomes are switched,
however. Optimal behavior is to always choose Ac-
tion 1 to reach the high reward at the end of the chain.

The slip probability 0.2 is the same for all state–action
pairs. Poupart et al. (2006) consider the impact of
encoding this constraint as a strong prior on the tran-
sition dynamics. That is, whereas in the Full prior,
the agent assumes each state–action pair corresponds
to independent multinomial distributions over next
states, under the Tied prior, the agent knows the un-
derlying transition dynamics except for the value of a
single slip probability that is shared between all state–
action pairs. They also introduce a Semi prior in which
the two actions have independent slip probabilities.
Posteriors for Full can be maintained using a Dirichlet
(the conjugate for the multinomial) and Tied/Semi can
be represented with a simple Beta distribution.

In keeping with published results on this problem, Ta-
ble 1 reports cumulative rewards in the first 1000 steps,
averaged over 500 runs. Standard error is on the order
of 20 to 50. The optimal policy for this problem scores
3677. The exploit algorithm is one that always acts
optimally with respect to the average model weighted
by the posterior. RAM-RMAX (Leffler et al., 2007)



Table 1: Cumulative reward in Chain
Tied Semi Full

BEETLE 3650 3648 1754
exploit 3642 3257 3078
BOSS 3657 3651 3003
RAM-RMAX 3404 3383 2810

is a version of RMAX that can exploit the tied pa-
rameters of tasks like this one. Results for BEETLE
and exploit are due to Poupart et al. (2006). All
runs used a discount factor of γ = 0.95 and BOSS
used B = 10 and K = 5.

All algorithms perform very well in the Tied scenario
(although RAM-RMAX is a bit slower as it needs
to estimate the slip probability very accurately to
avoid finding a suboptimal policy). Poupart et al.
(2006) point out that BEETLE (a belief-lookahead
approach) is more effective than exploit (an undi-
rected approach) in the Semi scenario, which requires
more careful exploration to perform well. In Full, how-
ever, BEETLE falls behind because the larger pa-
rameter space makes it difficult for it to complete its
belief-lookahead analysis.

BOSS, on the other hand, explores as effectively as
BEETLE in Semi, but is also effective in Full. A
similarly positive result (3158) in Full is obtained by
Bayesian DP (Strens, 2000).

5 BAYESIAN MODELING OF
STATE CLUSTERS

The idea of state clusters is implicit in the Tied prior.
We say that two states are in the same cluster if their
probability distributions over relative outcomes are the
same given any action. In Chain, for example, the out-
comes are advancing along the chain or resetting to the
beginning. Both actions produce the same distribution
on these two outcomes independent of state, Action 1
is 0.8/0.2 and Action 2 is 0.2/0.8, so Chain can be
viewed as a one-cluster environment.

We introduce a variant of the chain example, the two-
cluster Chain2, which includes an additional state clus-
ter. Cluster 1—states 1, 3, and 5—behaves identically
to the cluster in Chain. Cluster 2—states 2 and 4—
has roughly the reverse distributions (Action 1 0.3/0.7,
Action 2 0.7/0.3).

RAM-RMAX can take advantage of cluster struc-
ture, but only if it is known in advance. In this sec-
tion, we show how BOSS with an appropriate prior
can learn an unknown cluster structure and exploit it
to speed up learning.

5.1 A NON-PARAMETRIC MODEL OF
STATE CLUSTERING

We derive a non-parametric cluster model that can si-
multaneously use observed transition outcomes to dis-
cover which parameters to tie and estimate their val-
ues. We first assume that the observed outcomes for
each state in a cluster c are generated independently,
but from a shared multinomial parameter vector θc.
We then place a Dirichlet prior over each θc and inte-
grate them out. This process has the effect of coupling
all of the states in a particular cluster together, imply-
ing that we can use all observed outcomes of states in
a cluster to improve our estimates of the associated
transition probabilities.

The generative model is

κ ∼ CRP(α)
θκ(s) ∼ Dirichlet(η)
os,a ∼ Multinomial(θκ(s))

where κ is a clustering of states (κ(s) is the id of s’s
cluster), θκ(s) is a multinomial over outcomes associ-
ated with each cluster, and os,a is the observed out-
come counts for state s and action a. Here, CRP is a
Chinese Restaurant Process (Aldous, 1985), a flexible
distribution that allows us to infer both the number of
clusters and the assignment of states to clusters. The
parameters of the model are α ∈ R, the concentration
parameter of the CRP, and η ∈ NN , a vector of N
pseudo-counts parameterizing the Dirichlet.

The posterior distribution over clusters κ and multino-
mial vectors θ given our observations os,a (represented
as “data” below) is

p(κ, θ|data) ∝ p(data|θ)p(θ|η)p(κ|α)

=
∏
s,a

p(os,a|θκ(s))p(θκ(s)|η)p(κ|α)

=
∏
c∈κ

∏
s∈c

∏
a∈A

p(os,a|θc)p(θc|η)p(κ|α)

where c is the set of all states in a particular clus-
ter. We now integrate out the multinomial parame-
ter vector θc in closed form, resulting in a standard
Dirichlet compound multinomial distribution (or mul-
tivariate Polya distribution):

p(data|κ) =
∏
c∈κ

∫
θc

∏
s∈c

∏
a∈A

p(os,a|θc)p(θc|η) = (1)

∏
c∈κ,a∈A

Γ(
∑

i ηi)∏
i Γ(ηi)

∏
s Γ(

∑
i os,a

i + 1)∏
i,s Γ( os,a

i + 1)

∏
i Γ(
∑

s os,a
i + ηi)

Γ(
∑

i,s os,a
i + ηi)

.

Because the θc parameters have been integrated out
of the model, the posterior distribution over models



is simply a distribution over κ. We can also sample
transition probabilities for each state by examining the
posterior predictive distribution of θc.

To sample models from the posterior, we sample clus-
ter assignments and transition probabilities in two
stages, using repeated sweeps of Gibbs sampling. For
each state s, we fix the cluster assignments of all other
states and sample over the possible assignments of s
(including a new cluster):

p(κ(s)|κ−s,data) ∝ p(data|κ)p(κ)

where κ(s) is the cluster assignment of state s and κ−s

is the cluster assignments of all other states. Here,
p(data|κ) is given by Eq. 1 and p(κ) is the CRP prior

p(κ|α) = αr Γ(α)
Γ(α +

∑
i κi)

r∏
i=1

Γ(κi)

with r the total number of clusters and κi the number
of states in each cluster.

Given κ, we sample transition probabilities for each
action from the posterior predictive distribution over
θc, which, due to conjugacy, is a Dirichlet distribution:

θc|κ, η, α, a ∼ Dirichlet(η +
∑
s∈c

os,a).

5.2 BOSS WITH CLUSTERING PRIOR

We ran BOSS in a factorial design where we varied the
environment (Chain vs. Chain2) and the prior (Tied,
Full, vs. Cluster, where Cluster is the model described in
the previous subsection). For our experiments, BOSS
used a discount factor of γ = 0.95, knownness param-
eter B = 10, and a sample size of K = 5. The Cluster
CRP used α = 0.5 and whenever a sample was re-
quired, the Gibbs sampler ran for a burn period of 500
sweeps with 50 sweeps between each sample.

Figure 1 displays the results of running BOSS with
different priors in Chain and Chain2. The top line on
the graph corresponds to the results for Chain. Moving
from left to right, BOSS is run with weaker priors—
Tied, Cluster, and Full. Not surprisingly, performance
decreases with weaker priors. Interestingly, however,
Cluster is not significantly worse than Tied—it is able
to identify the single cluster and learn it quickly.

The second line on the plot is the results for Chain2,
which has two clusters. Here, Tied’s assumption of
the existence of a single cluster is violated and perfor-
mance suffers as a result. Cluster outperforms Full by a
smaller margin, here. Learning two independent clus-
ters is still better than learning all states separately,
but the gap is narrowing. On a larger example with
more sharing, we’d expect the difference to be more

Figure 1: Varying priors and environments in BOSS.

Figure 2: Varying K in BOSS.

dramatic. Nonetheless, the differences here are statis-
tically significant (2× 3 ANOVA p < 0.001).

5.3 VARYING K

The experiments reported in the previous section used
model samples of size K = 5. Our next experiment
was intended to show the effect of varying the sam-
ple size. Note that Bayesian DP is very similar to
BOSS with K = 1, so it is important to quantify the
impact of this parameter to understand the relation-
ship between these algorithms.

Figure 2 shows the result of running BOSS on Chain2
using the same parameters as in the previous section.
Note that performance generally improves with K.
The difference between K = 1 and K = 10 is sta-
tistically significant (t-test p < 0.001).



Figure 3: Diagram of 6x6 Marble Maze.

5.4 6x6 MARBLE MAZE

To demonstrate the exploration behavior of our al-
gorithm, we developed a 6x6 grid-world domain with
standard dynamics (Russell & Norvig, 1994). In this
environment, the four actions, N, S, E and W, carry
the agent through the maze on its way to the goal.
Each action has its intended effect with probability
.8, and the rest of the time the agent travels in one
of the two perpendicular directions with equal likeli-
hood. If there is a wall in the direction the agent tried
to go, it will remain where it is. Each step has a cost of
0.001, and terminal rewards of −1 and +1 are received
for falling into a pit or reaching the goal, respectively.
The map of the domain, along with its optimal policy,
is illustrated in Figure 3.

The dynamics of this environment are such that each
local pattern of walls (at most 16) can be modeled as a
separate cluster. In fact, fewer than 16 clusters appear
in the grid and fewer still are likely to be encountered
along an optimal trajectory. Nonetheless, we expected
BOSS to find and use a larger set of clusters than in
the previous experiments.

For this domain, BOSS used a discount factor of γ =
0.95 and a CRP hyperparameter of α = 10. Whenever
an MDP set was needed, the Gibbs sampler ran for
a burn period of 100 sweeps with 50 sweeps between
each sample. We also ran RMAX in this domain.

The cumulative reward achieved by the BOSS vari-
ants that learned the cluster structure, in Figure 4,
dominated those of RMAX, which did not know the
cluster structure. The primary difference visible in the
graph is the time needed to obtain the optimal pol-
icy. Remarkably, BOSS B = 10 K = 10 latches onto
near optimal behavior nearly instantaneously whereas
the RMAX variants required 50 to 250 trials before
behaving as well. This finding can be partially ex-
plained by the choice of the clustering prior and the

Figure 4: Comparison of algorithms on 6x6 Marble
Maze.

outcomes it drew from, which effectively put a lower
bound on the number of steps to the goal from any
state. This information made it easy for the agent to
ignore longer paths when it had already found some-
thing that worked.

Looking at the clustering performed by the algorithm,
a number of interesting features emerge. Although it
does not find a one-to-one mapping from states to pat-
terns of walls, it gets very close. In particular, among
the states that are visited often in the optimal policy
and for the actions chosen in these states, the algo-
rithm groups them perfectly. The first, third, fourth,
and fifth states in the top row of the grid are all as-
signed to the same cluster. These are the states in
which there is a wall above and none below or right,
impacting the success probability of N and E, the two
actions chosen in these states. The first, second, third,
and fifth states in the rightmost column are similarly
grouped together. These are the states with a wall to
the right, but none below or left, impacting the suc-
cess probability of S and E, the two actions chosen in
these states. Other, less commonly visited states, are
clustered somewhat more haphazardly, as it was not
necessary to visit them often to obtain high reward in
this grid. The sampled models used around 10 clusters
to capture the dynamics.

5.5 COMPUTATIONAL COMPLEXITY

The computation time required by BOSS depends on
two distinct factors. First, the time required for per-
step planning using value iteration scales with the
number of sampled MDPs, K. Second, the time re-
quired for sampling new MDPs depends linearly on K
and on the type of prior used. For a simple prior, such



as Full, samples can be drawn extremely quickly. For a
more complex prior, such as Cluster, samples can take
longer. In the 6x6 Marble Maze, samples were drawn
at a rate of roughly one every ten seconds. It is worth
noting that sampling can be carried out in parallel.

6 CONCLUSIONS

We presented a modular approach to exploration
called BOSS that interfaces a Bayesian model learner
to an algorithm that samples models and constructs
exploring behavior that converges quickly to near op-
timality. We compared the algorithm to several state-
of-the-art exploration approaches and showed it was
as good as the best known algorithm in each scenario
tested. We also derived a non-parametric Bayesian
clustering model and showed how BOSS could use
it to learn more quickly than could non-generalizing
comparison algorithms.

In future work, we plan to analyze the more general
setting in which priors are assumed to be only ap-
proximate indicators of the real distribution over en-
vironments. We are also interested in hierarchical ap-
proaches that can learn, in a transfer-like setting, more
accurate priors. Highly related work in this direction
was presented by Wilson et al. (2007).

An interesting direction for future research is to con-
sider extensions of our clustered state model where
the clustering is done in feature space, possibly using
non-parametric models such as the Indian Buffet Pro-
cess (Griffiths & Ghahramani, 2006). Such a model
could simultaneously learn how to decompose states
into features and also discover which observable fea-
tures of a state (color, texture, position) are reliable
indicators of the dynamics.

We feel that decomposing the details of the Bayesian
model from the exploration and decision-making com-
ponents allow for a very general RL approach. Newly
developed languages for specifying Bayesian mod-
els (Goodman et al., 2008) could be integrated directly
with BOSS to produce a flexible learning toolkit.
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