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Abstract

A robust system for ontology-based data access
should provide meaningful answers to queries even
when the data conflicts with the ontology. This
can be accomplished by adopting an inconsistency-
tolerant semantics, with the consistent query an-
swering (CQA) semantics being the most promi-
nent example. Unfortunately, query answering un-
der the CQA semantics has been shown to be com-
putationally intractable, even when extremely sim-
ple ontology languages are considered. In this pa-
per, we address this problem by proposing two new
families of inconsistency-tolerant semantics which
approximate the CQA semantics from above and
from below and converge to it in the limit. We
study the data complexity of conjunctive query an-
swering under these new semantics, and show a
general tractability result for all known first-order
rewritable ontology languages. We also analyze the
combined complexity of query answering for ontol-
ogy languages of the DL-Lite family.

1 Introduction

In ontology-based data access (OBDA) [Poggi et al., 2008],
an ontology provides an abstract and formal representation of
the domain of interest, which is used as a virtual schema when
formulating queries over the data. Current research in OBDA
mostly focuses on ontology specification languages for which
conjunctive query answering is first-order (FO) rewritable.
In a nutshell, FO-rewritability means that query answering
can be performed by rewriting the input query into a first-
order query which encodes the relevant knowledge from the
ontology, and then evaluating the resulting query over the
data. Among FO-rewritable ontology languages, description
logics (DLs) of the DL-Lite family [Calvanese et al., 2007,
Artale et al., 2009] have played an especially prominent role
and notably served as the inspiration for the OWL 2 QL pro-
file ! of the OWL web ontology language.

In real-world applications involving large amounts of data
and/or multiple data sources, chances are that the data will
be inconsistent with the ontology. Standard OBDA querying
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algorithms are next to useless in such circumstances, since
first-order logic semantics (upon which DLs and standard on-
tology languages are based) dictates that everything can be
derived from a contradiction. Appropriate mechanisms for
handling inconsistent data are thus critical to the success of
OBDA in practice. Clearly, the best solution is to restore
consistency by removing the pieces of data that are respon-
sible for the inconsistencies. However, this strategy cannot
always be applied, since the system may not have enough in-
formation to localize the errors, or may lack the authorization
to modify the data (as is often the case in information inte-
gration applications). Thus, a robust OBDA system must be
capable of providing meaningful answers to user queries in
the presence of inconsistent data.

Recently, several approaches have pursued the idea of
adopting an inconsistency-tolerant semantics for OBDA, tak-
ing inspiration from the work on consistent query answering
in databases [Arenas et al., 1999; Bertossi, 2011]. The most
well-known and intuitive among such semantics, which we
will call the CQA semantics, considers as a repair of a knowl-
edge base (KB) consisting of an ontology 7 and a dataset A,
a maximal subset of A that is consistent with 7. Query an-
swering under the CQA semantics then amounts to comput-
ing those answers that hold in every repair of the KB. Un-
fortunately, conjunctive query answering (as well as simpler
forms of reasoning) under CQA semantics is computationally
hard, even for extremely simple ontology languages for which
reasoning under classical semantics is tractable [Lembo et al.,
2010; Bienvenu, 2012].

To overcome this computational problem, approximations
of the CQA semantics have been recently proposed. In partic-
ular, [Lembo et al., 2010; 2011] introduces a sound approxi-
mation (called IAR semantics) that evaluates queries over the
intersection of all the repairs of the CQA semantics. It was
shown that conjunctive query answering under this semantics
is tractable (in particular, it is first-order rewritable) for logics
of the DL-Lite family. However, the IAR semantics has the
drawback that it often constitutes a very rough approxima-
tion of the CQA semantics, and desirable query answers may
be missed. In an effort to obtain more answers than the AR
semantics, a family of parameterized inconsistency-tolerant
semantics, called k-lazy consistent semantics, was proposed
in [Lukasiewicz et al., 2012a] and shown to converge in the
limit to the CQA semantics. However, since the convergence



is not monotone in k, these semantics are not sound approx-
imations of the CQA semantics. Moreover, these semantics
do not retain the nice computational properties of the IAR se-
mantics: the polynomial data complexity result shown for lin-
ear Datalog+/- ontologies only holds for atomic queries, and
it follows from results in [Bienvenu, 2012] that conjunctive
query answering under k-lazy consistent semantics is cONP-
hard in data complexity, for every k > 1.

In this paper, we address the above issues and provide the
following contributions:

(i) we propose two new families of inconsistency-tolerant
semantics, called k-defeater and k-support semantics, that
approximate the CQA semantics from above (complete ap-
proximations) and from below (sound approximations), re-
spectively, and converge to the CQA semantics in the limit;

(i) we study the data complexity of conjunctive query
answering under the new semantics, and show a general
tractability result for a broad class of ontology languages that
includes all known first-order rewritable languages, in partic-
ular almost all DLs of the DL-Lite family and several rule-
based languages of the Datalog+/- family [Cali et al., 20111,

(iii) we analyze the combined complexity of instance
checking and conjunctive query answering under the above
semantics for ontology languages of the DL-Lite family.

The k-support and k-defeater semantics proposed in this
paper provide the basis for a semantically grounded and com-
putationally tractable approximation of the CQA semantics in
OBDA systems. In particular, we envision a flexible, iterated
execution of query g under both k-support and k-defeater se-
mantics with increasing values of &k, which stops as soon as
the answers to ¢ under both semantics coincide, or when the
user is not interested in (or does not want to pay further com-
putational cost for) an exact classification of the tuples that
are answers to g under the CQA semantics.

2 Preliminaries

Ontologies and KBs An ontology T is a finite set of first-
order logic sentences, and an ontology (specification) lan-
guage L is a (typically infinite) set of first-order logic sen-
tences. If 7 C L, then T is called an L ontology. A knowl-
edge base (KB) is a pair consisting of an ontology 7 and a
finite set A of ground facts. A KB (7, .A) is said to be con-
sistent if the first-order theory 7 U.4 has a model. Otherwise,
it is inconsistent, which we denote by (T, A) = L.

We are interested in the problem of answering instance
queries and conjunctive queries over KBs. Without loss
of generality, and for ease of exposition, we only consider
Boolean queries (i.e. queries without free variables). A first-
order (FO) query, or simply query, is a first-order sentence.
An instance query (1Q) is a FO query consisting of a single
ground fact. A conjunctive query (CQ) is a FO query of the
form Ix(a; A ... A ay,) where every «; is an atom whose
arguments are either constants or variables from x. A query
q is entailed by a KB K under classical semantics (denoted
by K [ ¢) if ¢ is satisfied in every model of KC. The instance
checking problem consists in deciding, for a KB X and IQ ¢,
whether K |= ¢. The conjunctive query entailment problem
is defined analogously, but with g a CQ.
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We introduce some terminology for referring to sets of
facts which are responsible for inconsistency or query en-
tailment. A set S of ground facts is called T -consistent if
(T,S) ¥ L. A minimal T-inconsistent subset of A is any
S C A such that (7,S) = L and every S’ C S is T-
consistent. A set of facts S C A is said to be a T -support
for query ¢ in A if S is T-consistent and (7, S) |= ¢, and it
is called a minimal T -support for ¢ in A if no proper subset
of S'is a T -support for g in .A. We sometimes omit “for ¢” or
“in A”, when these are understood.

Given a set of ground facts A, we define Z4 as the in-
terpretation isomorphic to A, i.e., the interpretation defined
over the domain of constants occurring in A and such that
the interpretation of every relation R in Z 4 is equal to the set

(@ | R@) € A).

DL-Lite ontology languages We focus on DLs of the DL-Lite
family [Calvanese er al., 2007; Artale et al., 2009] and re-
call the syntax and semantics of two specific dialects, called
DL-Lite* and DL-Lite ., A DL-Lite ontology consists of a
finite set of inclusions B T C, where B and C are defined
according to the following syntax:

B— A|3R C— B|-B R— P| P

with A a concept name (unary relation) and P a role name
(binary relation). In DL-Litef,r,, inclusions take the form
BiM...NB, C C,with By,...,B, and C as above.

The classical semantics of DL-Lite and DL-Liter,,, On-
tologies is obtained by translating inclusions into first-order
sentences using the following function ®:

®(A(z)) = A(z)
®(3P(z)) = Fy(P(z,y))
®(3P (z)) = 3Fy(P(y,x))
®(-B(z)) = ~®(B(2))
(B By(x)) = P(Bi(z)) A P(Bz(z))
BCCD) = Ya(d(C(z)) - ®(D(z))

The classical semantics of a DL-Lite ., KB (T, A) (and in
particular, the notions of model, consistency, and entailment)
corresponds to the semantics of the first-order KB (®(7), A).
Note that when considering DL KBs, one typically assumes
that the dataset .4 uses only unary and binary relations.

First-order rewritability We say that an ontology 7T is first-
order (FO) rewritable (for CQ answering) under semantics S
if, for every CQ ¢, there exists an effectively computable FO
query ¢’ such that, for every set of ground facts A, (T ,.A)
entails ¢ under semantics S iff ¢’ is satisfied in Z4 (in the
classical sense). Such a query ¢’ is called a FO-rewriting of
q relative to 7 under semantics S. Moreover, we say that an
ontology language L is FO-rewritable (for CQ answering)
under semantics S if every £ ontology is FO-rewritable for
CQ answering under S.

Complexity There are two common ways of measuring the
complexity of query entailment. The first, called combined
complexity, is with respect to the size of the whole input

2This DL is referred to as DL-Litecore in [Calvanese et al., 2007;
Artale et al., 2009].



(T, A, q), whereas the second, called data complexity, is only
with respect to the size of .A. Our complexity results utilize
standard complexity classes, such as NLSPACE, P, NP, and
coNP. We also require the following classes which may be
less well-known: AC® (problems which can be solved by a
family of circuits of constant depth and polynomial size, with
unlimited fan-in AND gates and OR gates), IT5 (problems
whose complement is solvable in non-deterministic polyno-
mial time with access to an NP oracle), and A5[O(logn)]
(problems which are solvable in polynomial time with at most
logarithmically many calls to an NP oracle).

3 Inconsistency-tolerant Semantics

In this section, we formally introduce the consistent query an-
swering (CQA) semantics and other relevant inconsistency-
tolerant semantics.

All of the semantics considered in this paper rely on the
notion of a repair, defined as follows:

Definition 1. A repair of a KB K = (T, A) is an inclusion-
maximal subset of A that is T -consistent. We use Rep(K) to
denote the set of repairs of /.

The repairs of a KB correspond to the different ways of
achieving consistency while retaining as much of the origi-
nal data as possible. Hence, if we consider that the data is
mostly reliable, then it is reasonable to assume that one of the
repairs accurately reflects the correct portion of the data.

The consistent query answering semantics (also known as
the AR semantics [Lembo er al., 2010]) is based upon the
idea that, in the absence of further information, a query can
be considered to hold if it can be inferred from each of the
repairs. Formally:

Definition 2. A query ¢ is entailed by a KB £ = (T, A)

under the consistent query answering semantics, written

(T, A) Ecqa ¢, if (T, B) = ¢ for every repair B € Rep(K).
The following example illustrates the CQA semantics.

Example 1. Consider the DL-Lite ontology Tyniv:

Prof C Faculty Lect C Faculty Fellow C Faculty
Prof C —Lect Prof C —Fellow Lect C —Fellow

Prof C dteaches Lect C Jteaches dteaches™ C —Faculty

which states that professors, lecturers, and research fellows
are disjoint classes of faculty, that professors and lecturers
must teach something, and that whatever is taught is not fac-
ulty. Now let Ag,, be as follows:

{Prof(sam), Lect(sam), Fellow(sam)}

It is easy to see that KB (Tuniv, Asam) is inconsistent and has
three repairs: Ry = {Prof(sam)}, Ry = {Lect(sam)} and
R3 = {Fellow(sam)}. Observe that from each of the repairs,
we can infer ¢g; = Faculty(sam), so (Tuniv, Asam) Fcqa ¢1-
However, g2 = Jx.Faculty(sam) A teaches(sam, z) is not
entailed from (Tiniv, R3), 80 (Tuniv, Asam) FEcqa go-

Unfortunately, while the CQA semantics is intuitively ap-
pealing, it is well-known that answering queries under this se-
mantics is usually intractable w.r.t. data complexity [Lembo
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et al., 2010; Bienvenu, 2012]. This stems from the fact that
the number of repairs of (7,.A) may be exponential in the
size of A, even when 7 is formulated in extremely simple
ontology languages.

To overcome the computational problems of the CQA se-
mantics, a sound approximation of it, called the AR seman-
tics, was proposed in [Lembo et al., 2010].

Definition 3. A query g is entailed by a KB K = (T, A) un-
der the IAR semantics, written (T, A) Eiar ¢,1f (T,D) E¢q

where D = (e gepic) B-

The TAR semantics is more conservative than the CQA se-
mantics, as it only uses those facts which are not involved in
any contradiction. This has the advantage of yielding query
results which are almost surely correct, but also the drawback
that some plausible inferences may be missed, as demon-
strated by the following example.

Example 2. Reconsider the KB (Tiniv, Asam) and CQ ¢;
from Example 1. The intersection of the repairs R1NRaNR3
is the empty set, 0 (Tuniv, Asam) FEiar ¢1, despite the fact
that all the information in Ag,,, Supports g1 being true.

From the computational perspective, the IAR semantics
can be much better-behaved than the CQA semantics. In-
deed, it was shown in [Lembo et al., 2011] that DL-Lite 4
is FO-rewritable for CQ answering under the IAR semantics,
and this result was recently extended to linear Datalog +/- on-
tologies [Lukasiewicz et al., 2012b].

Finally, to obtain a natural overapproximation of the CQA
semantics, we introduce its brave version.

Definition 4. A query ¢ is entailed by a KB K = (T, A) un-
der the brave semantics, written (T, A) Furave ¢, if (T, B) E
q for some repair B € Rep(K).

We illustrate the brave semantics on our running example.

Example 3. As ¢y is entailed by (7univ,R1), we have
(Tanivs Asam) Ebrave 2. Also note that every fact in Agm
appears in some repair, hence, all facts in Aq,, are entailed
under the brave semantics.

As Example 3 demonstrates, the brave semantics has the
undesirable feature of allowing contradictory statements to
be entailed. Nonetheless, this semantics can still serve a use-
ful role by providing a means of showing that a query is not
entailed under the CQA semantics.

4 Approximations of the CQA Semantics

In this section, we propose two new families of inconsistency-
tolerant semantics, which provide increasingly fine-grained
under- and over-approximations of the CQA semantics. As
these semantics will be shown in Section 5 to enjoy the same
nice computational properties as the IAR semantics, our new
approach allows us to marry the advantages of the IAR and
CQA semantics.

We begin by presenting our new family of sound approx-
imations of the CQA semantics. The intuition is as follows:
if a query ¢ is entailed under the CQA semantics, then this is
because there is a set {S, ..., S, } of T-supports for ¢ such
that every repair contains some .S;. The k-support semantics
we propose is obtained by allowing a maximum of k different
supports to be used.



Definition 5. A query ¢ is entailed by X = (T,.A) under
the k-support semantics, written K |=g_supp ¢, if there exist
(not necessarily distinct) subsets S, ..., Sy of A satisfying
the following conditions:

e each S; is a T -support for ¢ in A
e forevery R € Rep(K), there is some .S; with S; C R

Example 4. The three repairs of (7iniv, Asam) all use differ-
ent supports for g;. We thus have (Tuniv, Asam) F3-supp ¢1
but <7:|niV7 Asam> %Q-Supp q1.

The following theorem resumes the important properties of
the family of k-support semantics, showing that they interpo-
late between the IAR and CQA semantics.

Theorem 1. Let K = (T, A) be a KB and q a query. Then:
1. K Fiar q if and only if K F1.supp ¢
2. K =cqa ¢ if and only if K [=g.supp ¢ for some k
3. foreveryk >0, if K Eg-supp ¢ then K =k 41-supp 4

The k-support semantics allows us to approximate more
and more closely the set of queries entailed under the CQA
semantics, but provides no way of showing that a particular
query is not entailed under this semantics. This motivates the
study of complete approximations of the CQA semantics.

The observation underlying our new family of complete
approximations is the following: if a query ¢ is not en-
tailed under the CQA semantics, this is because there is a 7T -
consistent set of facts which contradicts all of the 7 -supports
of q. The k-defeater semantics corresponds to there being no
way to construct such a “defeating” set using at most & facts.

Definition 6. A query q is entailed by K = (T, A) under the
k-defeater semantics, written K [Eg.gef g, if there does not
exist a T -consistent subset S of A with |S| < k such that
(T,SUC) = L for every minimal 7 -support C C A of q.

Note that if ¢ has no T -support, then it is not entailed under
0-defeater semantics since one can simply take S = (.

Example 5. We have (Tuniv, Asam) F1-def G2, since by choos-
ing S = {Fellow(sam)}, we can invalidate the two minimal
T -supports of g2, which are {Prof(sam)} and {Lect(sam)}.

The next theorem shows that the family of k-defeater se-
mantics provides increasingly closer over-approximations of
the CQA semantics, starting from the brave semantics pre-
sented in Section 3.

Theorem 2. Let K = (T, A) be a KB and q a query. Then:
1. K Fbrave q if and only if K F=o.def q
2. K Ecaqa qifand only if K [Fp.def q for every k
3. foreveryk > 1, if K Egti-def ¢ then K Ex def ¢

5 Data Complexity

In this section, we study the data complexity of conjunctive
query answering under the k-support and k-defeater seman-
tics. Our main result is the following theorem which shows
that, for a broad class of ontology languages, conjunctive
query answering under these semantics can be done using
FO-rewriting, and hence is in AC® w.r.t. data complexity.
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Theorem 3. Let T be an ontology that is FO-rewritable for
CQ answering under classical semantics and such that for
every CQ q, there exist £, m such that for every A, every min-
imal T -support for q relative to A has cardinality at most ¢,
and every minimal T -inconsistent subset of A has cardinality
at most m. Then:

(i) for every k > 1, T is FO-rewritable for conjunctive
query answering under the k-support semantics;

(ii) for every k > 0, T is FO-rewritable for conjunctive
query answering under the k-defeater semantics.

Proof sketch. Let T be as stated, and let g be a CQ. By as-
sumption, we can find ¢ and m such that for every A, the
minimal 7 -supports for ¢ relative to A have cardinality at
most ¢, and the minimal 7 -inconsistent subsets of A have
cardinality bounded by m. For point (i), a FO-rewriting of ¢
relative to T for the k-support semantics can be obtained by
considering the first-order query ¢, = q1 V...V gy, where the
disjuncts g; correspond to the different possible choices of &
T -supports for g of cardinality at most ¢, and each ¢; asserts
that the chosen supports are present in A and that there is
no 7 -consistent subset of A of cardinality at most km which
conflicts with each of the supports. For point (ii), the desired
FO-rewriting of ¢ takes the form —(¢; V...V ¢, ), where ev-
ery q; asserts the existence of a 7 -consistent set of facts of
cardinality at most k& which conflicts with every minimal 7 -
support for g. Here we again utilize the fact that the size of
minimal 7 -supports is bounded by ¢, and hence there are only
finitely many supports to consider. O

Theorem 3 significantly strengthens earlier positive results
for the IAR semantics [Lembo et al., 2011; Lukasiewicz et
al., 2012a] by covering a full range of semantics and an entire
class of practically relevant ontology languages. Indeed, it is
easy to verify that all ontology languages that are currently
known to be first-order rewritable under classical semantics
satisfy the hypotheses of Theorem 3: that is, all logics of the
original DL-Lite family [Calvanese et al., 2007] and almost
all members of the extended DL-Lite family [Artale et al.,
2009], as well as all dialects of Datalog+/- that are known to
be FO-rewritable under classical semantics [Cali ef al., 2012].

The following examples illustrate the construction of FO-
rewritings for the k-support and k-defeater semantics.
Example 6. We consider how to rewrite the CQ ¢; under the

k-support semantics. When & = 1, we can take as our FO-
rewriting the disjunction of the following formulas:

Faculty(sam) A =3z teaches(z, sam)

Prof(sam) A —3x teaches(x, sam) A —Lect(sam) A —Fellow(sam)
Lect(sam)A—3z teaches(x, sam) A —Prof (sam) A —Fellow(sam)
Fellow(sam) A—3x teaches(x, sam) A —Lect(sam) A =Prof(sam)
Note that each disjunct expresses that one of the four pos-
sible T -supports is present and is not contradicted by other
facts. To obtain the rewriting for £ = 2, we must introduce
additional disjuncts which assert that a pair of 7 -supports is
present and cannot be simultaneously contradicted. We ob-

tain three new disjuncts (the other combinations being sub-
sumed by one of the other disjuncts):

Prof(sam) A Lect(sam) A =3z teaches(z, sam) A —Fellow(sam)



Lect(sam) A Fellow(sam) A =3z teaches(x, sam) A =Prof(sam)
Fellow(sam) A Prof(sam) A =3z teaches(x,sam) A —Lect(sam)

Finally, for k¥ = 3, we must add further disjuncts to check
for the existence of a triple of 7 -supports which are present
and cannot be defeated. In our case, this leads to one new
(non-subsumed) disjunct:

Prof(sam) A Lect(sam) A Fellow(sam) A =3z teaches(z, sam)

Note that this last disjunct is satisfied in Z 4, witnessing the
entailment (7yniv, Asam) F3supp ¢1. Notice also that in this
particular example, the CQA and 3-support semantics coin-
cide, and so the FO-rewriting we have constructed is also a
FO-rewriting under the CQA semantics.

Example 7. We now consider how to rewrite the query ¢, un-

der the k-defeater semantics. When k£ = 0, the construction
yields the following FO-rewriting:

= (= (3« Faculty(sam) A teaches(sam, z)) A =Prof(sam)
A —Lect(sam) A —(3z Fellow(sam) A teaches(sam, z)))

Inside the negation, there is a single disjunct which asserts
that the empty set conflicts with every 7 -support, or equiv-
alently, that there are no 7 -supports. When & = 1, we
must add further disjuncts inside the negation to capture sin-
gle facts which conflict with all 7 -supports. In our case, we
must add two new disjuncts:

Iz teaches(z, sam) Fellow(sam) A —teaches(sam, )

The first disjunct is required since any fact of the form
teaches(z,sam) contradicts Faculty(sam), and hence every
T-support for ¢2. The second disjunct treats the case where
there is no atom of the form teaches(sam,x), in which
case the only possible T -supports for ¢o are Prof(sam) and
Lect(sam), both of which are contradicted by Fellow(sam).
Notice that this last disjunct holds in Z 4_,_,, which proves that

<7:Jniva -Asam> bé q2.

We briefly remark that polynomial data complexity is not
preserved under the new semantics. Indeed, in the lightweight
DL ££,, CQ answering and unsatisfiability are P-complete
w.r.t. data complexity, but it was shown in [Rosati, 2011] that
instance checking under the IAR (equiv. 1-support) semantics
is coNP-hard w.r.t. data complexity, and it is not hard to show
intractability also for the brave (equiv. 0-defeater) semantics.

6 Combined Complexity

To gain further insight into the computational properties
of the different inconsistency-tolerant semantics considered
in this paper, we study the combined complexity of in-
stance checking and CQ entailment under these semantics for
DL-Lite and DL-Lite .., KBs.

The results of our analysis are reported in Figure 1. Be-
fore presenting the results in more detail, let us begin with
some general observations. First, it is interesting to note
that for DL-Lite KBs, the complexities obtained for the AR,
k-support, brave, k-defeater, and classical semantics all co-
incide, and are strictly lower than the complexity w.r.t. the
CQA semantics. By contrast, for DL-Lite ;,,» KBs, instance
checking under any of the considered inconsistency-tolerant
semantics is of higher complexity than under classical seman-
tics. Moreover, we lose the symmetry between the sound and
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complete approximations. Indeed, if we consider CQ entail-
ment, then we find that the complexities of the sound approx-
imations (IAR and k-support) is higher than for the complete
approximations (brave and k-defeater semantics).

Finally, we remark that in several cases, and in particular,
for the k-support semantics, the complexity for DL-Lite rj o,
is higher than for DL-Lite. This can be explained by the
fact that for DL-Lite KBs, the size of a minimal 7 -support
of a query is linear in the size of the query and independent
of T, whereas for DL-Liter,,,, KBs, the bound on minimal
T -supports depends also on the size of 7. Overall, these re-
sults suggest that while the k-support and k-defeater seman-
tics are tractable w.r.t. data complexity for both DL-Lite and
DL-Lite 1oy, it will likely be much easier to obtain practical
algorithms for DL-Lite KBs.

We now present our different complexity results and some
brief ideas concerning the proofs. We start by showing that
for DL-Lite, instance checking under the proposed semantics
has the same low complexity as under classical semantics.

Theorem 4. In DL-Lite, instance checking under the
k-support semantics is NLSPACE-complete w.r.t. combined
complexity, for every k > 1. The same holds for the
k-defeater semantics, for every k > 0.

Proof idea. The proof exploits the fact that when 7 is a
DL-Lite ontology, minimal 7 -supports for IQs consist of sin-
gle facts, and minimal 7 -inconsistent subsets contain at most
two facts. This means in particular that every k-tuple of
minimal 7 -supports contains at most k facts, and at most k
facts are needed to contradict all £ supports. This enables a
NLSPACE procedure which guesses k facts and verifies that
each fact is a T -support, and that there is no set with at most
k facts which contradicts all of the guessed facts. The upper
bound for the k-defeater semantics uses similar ideas. O

In DL-Liter,rn, instance checking is intractable already
for the IAR and brave semantics, and the lower bounds can
be used to show intractability also for the k-support and
k-defeater semantics. For the k-defeater semantics, a match-
ing upper bound follows from Theorem 6, while the precise
complexity for the k-support semantics remains open.

Theorem 5. Instance checking in DL-Lite oy, is coNP-
complete w.r.t. combined complexity under the IAR semantics,
coNP-hard w.r.t. combined complexity under the k-support
semantics, and NP-complete w.r.t. combined complexity un-
der both the brave semantics and the k-defeater semantics.

Proof idea. We sketch the coNP lower bound for the IAR
semantics, which is by reduction from UNSAT. Let ¢ = ¢ A
... A ¢y, be a propositional CNF over variables z, ..
Consider the DL-Lite g, KB with
T:{Ti cC Oj | x; € Cj}U{Fi C Oj | —x; € Cj}U
{I;NFCLl]1<i<mju{Anc,n...nC,C 1}
and A = {A(a)} U{Ti(a), Fi(a) | 1 <1i < m}. Itis easily
verified that (7, A) Erar A(a) iff ¢ is unsatisfiable. O

* ’Iﬂ’L'

We next consider the complexity of CQ entailment under
our proposed semantics. For DL-Lite, we obtain precisely the
same complexity as under the classical semantics.



classical IAR k-supp (k > 1) CQA k-def (k > 0) brave
IC DL-Lite NLSPACE NLSPACE NLSPACE coNP NLSPACE NLSPACE
DL-Litegorm P coNP > coNP, < AB[O(logn)]  coNP NP NP
CQ DL-Lite NP NP NP Hg NP NP
DL-Litegorn ~ NP AP[O(logn)] AR[O(logn)] 5 NP NP

Figure 1: Combined complexity of instance checking (IC) and conjunctive query entailment (CQ) under classical semantics
and various inconsistency-tolerant semantics. All results are completeness results, unless otherwise noted.

Theorem 6. In DL-Lite, CQ entailment under the k-support
semantics is NP-complete w.r.t. combined complexity, for ev-
ery k > 1. For both DL-Lite and DL-Lite r;or, CQ entail-
ment under the k-defeater semantics is NP-complete w.r.t.
combined complexity, for every k > 1.

Proof idea. We sketch the upper bound for the k-defeater se-
mantics. Fix a DL-Litep o, KB (T, A) and a CQ ¢. Let
S1,...,Sm, be the T-consistent subsets of A with cardinality
at most k. Guess a sequence C1,...,C,, of subsets of A4 of
cardinality at most ¢ = 2 - |g| - | 7|, together with polyno-
mial certificates that (7, C;) = ¢, for each C;. Output yes
if for every 1 < ¢ < m, the certificate is valid and .S; U C;
is T-consistent. As m is polynomial in |.A| (since k is fixed),
and both conditions can be verified in polynomial time for
DL-Litej,,, KBs, we obtain an NP procedure. Correctness
relies on the fact that because 7T is a DL-Lite f,., ontology,
every minimal 7 -support for ¢ has cardinality at most c. [

For DL-Liteg,,, CQ entailment under the IAR and
k-support semantics rises to AB[O(log n)]-complete.

Theorem 7. In DL-Litey,,, CQ entailment under the
k-support semantics is AL[O(logn)]-complete w.r.t. com-
bined complexity, for every k > 1.

Proofidea. The lower bound is by a non-trivial reduction
from the Parity(SAT) problem [Wagner, 1987]. For the up-
per bound, consider the following algorithm which takes as
input a DL-Lite g, KB (T, A) and CQ g:

1. Forevery k-tuple (g, . .., ay) C AF of facts, use an NP
oracle to decide whether every repair contains some «;.
Let S contain all k-tuples for which the test succeeds.

A final oracle call checks if there is a k-tuple
(C1,...,Ck) of subsets of A of cardinality at most
¢ =2-|T|-|q| such that (i) every C; is T -consistent and
(T,C;) E g, and (ii) every k-tuple (f31,..., Bx) with
Bi € C; belongs to S. Return yes if the call succeeds,
else no.

Since every minimal 7 -support for ¢ contains at most c¢ facts,
the algorithm returns yes if (7, A) =g-supp g- Conversely, if
the output is yes, with (C1, ..., C) the k-tuple from Step 2,
then by (i), every C; is a T -support for ¢q. Moreover, (ii) en-
sures that every repair contains some C;, for it not, we could
find some k-tuple (31,...,8k) € C1 X ... x C) which does
not belong to S, contradicting (ii). Note that the algorithm
runs in polynomial time with an NP oracle, since there are
only polynomially many k-tuples to consider, for fixed k. As
the oracle calls can be organized into a tree, membership in
AL[O(log n)] follows by a result in [Gottlob, 1995]. O
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Finally, we determine the combined complexity of instance
checking and CQ entailment for the CQA semantics (prior
results for this semantics only considered data complexity).

Theorem 8. For DL-Lite and DL-Lite .., instance check-
ing (resp. CQ entailment) under the CQA semantics is coNP-
complete (resp. 115-complete) w.r.t. combined complexity.

Proof idea. The upper bounds are easy: guess a repair and
show that it does not entail the query. The coNP-lower bound
for instance checking follows from the coNP-hardness of this
problem w.r.t. data complexity. The II5-hardness result in-
volves a non-trivial reduction from 2-QBF validity. O

We should point out that although in this section we fo-
cused on two particular members of the DL-Lite family, our
proofs are quite generic and can be directly used (or trivially
extended) to obtain results for a whole rangle of DL-Lite di-
alects (as well as other ontology languages).

7 Conclusion and Future Work

In this paper, we have presented a powerful, flexible, and se-
mantically grounded approach to consistent query answering
in ontology-based data access, based upon two novel classes
of inconsistency-tolerant semantics. We have shown that our
approach is computationally feasible for a large class of prac-
tically relevant ontology languages, and in particular, for DLs
of the DL-Lite family, which underly the OWL 2 QL profile.

The present approach can be extended in several direc-
tions. First, we believe that our approach can have a practical
impact on OBDA systems, so we aim to implement and ex-
periment with the approach by extending current systems. It
would also be very interesting to investigate the connections
between our approach and approximate knowledge compila-
tion [Selman and Kautz, 1996]. In particular, it would be
important (also for practical purposes) to study the possibil-
ity of effectively “compiling” our semantics. It is also rele-
vant to extend our analysis to more complex OBDA systems,
where the ontology elements are related to the data sources
through complex mappings [Poggi et al., 2008]. Finally,
while the present approach is computationally attractive for
all known FO-rewritable ontology languages, tractable ap-
proximations of the CQA semantics for other tractable yet
non-FO-rewritable ontology languages (like ££, [Baader et
al., 2005]) are still missing.
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