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Abstract

The classical multiwinner rules are designed for
particular purposes. For example, variants of k-
Borda are used to find & best competitors in judg-
ing contests while the Chamberlin-Courant rule is
used to select a diverse set of k products. These
rules represent two extremes of the multiwinner
world. At times, however, one might need to find an
appropriate trade-off between these two extremes.
We explore continuous transitions from k-Borda to
Chamberlin-Courant and study intermediate rules.

1 Introduction

The multiwinner voting rule k-Borda [Debord, 1992] and
the rule of Chamberlin and Courant [1983] are based on
very different ideas and they are used for very different pur-
poses. For example, k-Borda is a maximum likelihood esti-
mator [Procaccia et al., 2012], which means that it works well
when there is an objectively best committee and all the votes
are noisy perceptions of the truth. Intuitively speaking, this
means that we assume that votes “closer to the truth” are more
likely than those “farther from the truth” and so we seek the
area of the “highest density of the votes” to derive the winning
committee from the votes there (ignoring outliers and voter
groups of smaller density). One consequence of this approach
is that the members in the winning committee under k-Borda
tend to be very similar to each other (for a visual justification
of these intuitive claims, we point the reader to the work of
Elkind et al. [2017a] and to the histograms in our experimen-
tal section). Thus, k-Borda is very suitable for applications
such as finding finalists of various competitions (based on the
rankings provided by the judges)', or—generally speaking—
for shortlisting tasks where the candidates are evaluated on
a single criterion (Barbera and Coelho [2008] and Elkind et
al. [2017b] offer discussions regarding shortlisting tasks).

*Piotr Faliszewski was supported by the National Science Cen-
tre, Poland, under project 2016/21/B/ST6/01509, Piotr Skowron was
supported by a Humboldt Research Fellowship for Postdoctoral Re-
searchers, Arkadii Slinko was supported by the Royal Society of NZ
Marsden Fund UOA-254.

ISee, e.g., the work of Gordon and Truchon [2008], where the
problem of aggregating the judges’ rankings in figure skating is
treated from the maximum likelihood perspective.
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The Chamberlin-Courant rule (the CC rule), on the other
hand, was designed to determine as diverse set of alternatives
as possible (e.g., a set of movies that an airline may offer
on its long-range flights [Elkind er al., 2017bl]) so that ev-
ery shade of preference existing in the society is catered for
(Elkind et al. [2017a] justify this intuition visually; see also
our experimental section). Consequently, the CC rule is very
well suited for applications where we select a set of items
from which each voter chooses one that he or she desires
most (see the works of Lu and Boutilier [2011], Skowron et
al. [2016a], and Faliszewski et al. [2016a] for further relevant
scenarios in addition to choosing movies). However it is pos-
sible that some members of the Chamberlin-Courant elected
committee will be liked by a minority of voters and will not
score high on the excellence criterion.

To summarize, k-Borda and Chamberlin—Courant are very
different rules and pursue different objectives: excellence ver-
sus diversity. These are two opposing objectives and the two
rules are as far apart in the ‘space of voting rules’ as possible.

Nonetheless, there are many applications where neither ex-
cellence nor diversity are the most appropriate goals to aim
for. For example, consider shortlisting candidates for an aca-
demic position in computer science. On the one hand, we
may wish to shortlist simply the strongest candidates, but,
on the other hand, we would also like to secure certain di-
versity among the selected candidates with respect to areas of
specialization, gender balance, etc. Thus, while excellence is
still a crucial criterion, we would also like to put significant
weight on diversity (this is also related to proportional rep-
resentation with respect to multiple external attributes [Lang
and Skowron, 2016]).

Similarly, in the movie-selection example, while the desire
to choose a diverse set of movies is our main driving force,
usually we also want to make sure that more popular types of
movies appear in greater numbers than the less popular ones
(indeed, on a typical long-range flight we see more Holly-
wood blockbuster movies than, say, documentaries).

This means that many real-life, business-driven applica-
tions of multiwinner voting require rules that strike some
sort of a compromise between excellence and diversity, some-
times putting more focus on the former and sometimes giv-
ing priority to the latter (see also the discussion of Ratliff
and Saari [2014]). However, until recently, in the literature
we have had a discrete set of voting rules and nothing in be-
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tween them. In this paper we attempt to rectify this situation
by introducing families of rules that, in a certain sense, lie on
a “path between k-Borda and the Chamberlin—Courant rule”.
This is made possible due to the recently introduced class of
committee scoring rules [Faliszewski et al., 2016a] and by
the fact that both k-Borda and the Chamberlin—Courant rule
belong to this class. The committee scoring rules work as fol-
lows. To each possible committee, each voter assigns a score
based on the positions of the committee members in his or
her ranking. These scores are summed up and, as a result,
each committee obtains a societal score. The committee with
the highest societal score wins.

Both k-Borda and the Chamberlin-Courant rule use classi-
cal Borda scores to evaluate individual committee members.
If the total number of alternatives is m and a candidate is
ranked in the ¢th position in a voter’s ranking, then this voter’s
Borda score of that candidate is m — <. For calculating the
score of a committee, according to a given voter, under k-
Borda we sum up all the scores of the committee members
while Chamberlin-Courant takes the maximal score. For ex-
ample, if the Borda scores of the committee members (from
an individual voter) are by > by > ... > bg, then the k-
Borda score of this committee (from this voter) would be
b1+ by + ...+ by, while the Chamberlin-Courant score (from
the same voter) would be b;.

Skowron et al. [2016a] suggested to calculate the commit-
tee score as A\1by + ... + Agbg, where A = (Aq,...,\g) isa
vector of numbers between 0 and 1, referred to as the ordered
weighted average operator (OWA); the rules that use OWA
operators in calculating the scores of committees are called
OWA-based. In particular, k-Borda and Chamberlin—Courant
rules are OWA-based relative to the vectors (1,...,1) and
(1,0,...,0), respectively. We consider two families of OWA-
based rules that connect these two extremes. The first is de-
fined by vectors with ¢ ones followed by k — ¢ zeros (where ¢
ranges between 1 and k), and the second one uses vectors of
the form (1,1/29, /3¢, ..., 1/k9), for ¢ € (0, 00).

Another way to connect k-Borda and the Chamberlin-
Courant rule is to observe that summing up the Borda scores
of the committee members—as in k-Borda—simply means
taking the /;-norm of the vector of those Borda scores,
whereas taking the maximal score—as in CC—means taking
the {~.-norm. Thus, we consider the family of rules between
k-Borda and Chamberlin—-Courant that use the £,,-norms with
p € [1,00) (we refer to these rules as ¢,-Borda rules).

We test our rules on elections from the 2D Euclidean do-
main, following Elkind et al. [2017a]. The rules behave in a
rather unexpected way. For example, as we move from ¢;-
Borda to £.,-Borda, we first observe a rapid phase transition
from rules that are similar to k-Borda to rules that resem-
ble the Bloc rule (a rule that, at first sight, does not seem to
have anything to do with £,-Borda rules) and then there is a
smooth transition to rules that are similar to CC. Rules using
our first family of OWA vectors behave similarly (but “more
smoothly”, which is quite surprising given that these OWAs
have a much more discrete nature), whereas the rules based
on the second family of OWAs follow a very different path.

As a consequence of our studies, we also find more decisive
variants of the k-Borda and Chamberlin—Courant rules.
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2 Preliminaries

In this paper we focus on committee scoring rules defined by
Elkind et al. [2017b]. In our model, an election E = (C, V)
consists of a set C' = {cy,..., ¢y} of candidates and a col-
lection V' = (v, ...,v,) of voters, where each voter v; has
a preference order >;, thereby ranking the candidates from
the most desirable to the least desirable one. For a candidate
¢ and a voter v, we write pos, (c) to denote the position of ¢
in v’s preference order (e.g., pos,(c) = 1 if v ranks c in the
top position and pos, (c) = m if v ranks c last). We refer to
subsets of C' as committees and if S is a committee and v is
a voter, then by pos, (.S) we mean the sequence obtained by
sorting the set {pos,(c) | ¢ € S} in the increasing order.

For positive integers m and k, we write [m] to denote the
set {1,...,m} and [m]; to denote the set of all length-% in-
creasing sequences of elements from [m]. In other words, for
a preference order over m candidates, [m] is the set of all
candidate positions in the voters’ rankings and [m]y, is the
set of all possible positions that a committee of size k can
occupy. For two committee positions I = (iy,...,1) and
J = (j1,...,Jr) from [m], we say that I dominates J, de-
noted I > J, if for each t € [k], it holds that i; < j;.

A multiwinner rule R is a function that, given an elec-
tion E = (C,V) and a positive integer k, outputs a family
R(E, k) of size-k committees that tie as winners of F (we
typically expect a single winning committee, but there can be
more due to symmetries in the preference orders).

A committee scoring function, for elections with m candi-
dates and committees of size k, is a function f, i : [m]x — R
that assigns a numerical score to each committee position,
so that if I, J € [m], are two positions and I > J, then
f(I) > f(J).For an election E = (C, V') with m candidates
and a size-k committee S, we define the f,,, ,-score of .S as:

scorefm,k (S, E) = Z?)EV fm,k(posv(s))’

Definition 1. Let f = {fu i f1<k<m be a family of commit-
tee scoring functions. A committee scoring rule R y is a multi-
winner rule that, given an election E = (C, V') and commit-
tee size k, outputs those committees S (of size k) for which
scorey ., , (S, ) is the highest.

For m candidates, the (single-winner) Borda score awarded
to a candidate for occupying position ¢ in a ranking of some
voter is f3,,(¢) = m — i. The k-Borda and Chamberlin—
Courant committee scoring rules are defined through the fol-
lowing scoring functions:

1. For the k-Borda rule, the scoring functions are:

i) = Bm(in) + ...+ Bm(ik).

To find a k-Borda winning committee it suffices to com-
pute the Borda scores separately for each candidate and
pick those k candidates with the highest scores. That is,
k-Borda does not consider any dependencies between
the candidates and simply picks the &k best ones accord-
ing to the Borda social welfare function which ranks all
candidates by their Borda scores.

k-Borda
m,k (217

2. For the CC rule, the scoring functions are:

FOG G, i) = Bm(in).
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Intuitively, under the CC rule each voter treats his or her
highest-ranked committee member as his or her repre-
sentative and the score of a committee is the sum of the
Borda scores that the voters give to their representatives.

In our discussion, we will also refer to the Bloc rule:

3. Under Bloc, each voter names his or her k favorite candi-
dates and the winning committee consists of those men-
tioned most frequently. In other words, Bloc uses the
scoring functions

ELI,?CC(ZI» cesig) = Do arliy),

where o (i) = 1 for i < k and o (i) = 0 otherwise.
Example 1. Consider an election with the following votes:

ta=b-c-d=e>f=g>h,
cf=hs=es=g-d=c>b>a,
ca=b=g>=h=ex f>=c—d,
ta=c-d=-g-h>=b>f>=e.

U1
V2
U3
V4

Under 4-Borda, the unique winning committee of size 4 is
{a,b,c, g}, under CC all committees that include a and f
win.

While winning committees for k-Borda and Bloc can be
computed in polynomial time, the CC rule is computationally
hard [Procaccia et al., 2008; Lu and Boutilier, 2011; Betzler et
al., 2013]. Nonetheless, CC becomes polynomial-time solv-
able under certain domain restrictions [Betzler ef al., 2013;
Skowron et al., 2015b; Yu et al., 2013; Peters and Elkind,
2016] and there are approximation algorithms and heuristics
for it [Skowron et al., 2015a; Faliszewski et al., 2016c].

Naturally, many other committee scoring rules exist. We
point the reader to the works of Faliszewski et al. [2016a;
2016b] for an overview of the internal structure of the class
of committee scoring rules, and to the work of Skowron et
al. [2016b] for their axiomatic characterization.

3 Three Paths Between k-Borda and CC

Below we describe the three families of rules that we view
as paths between k-Borda and CC. We start with two fami-
lies based on OWA operators, then we introduce the £,,-Borda
family of rules, and finally we discuss convergence of the
rules in our families to CC and to k-Borda, as well as some
of their properties.

The OWA-Based Paths. A family A = (A¥),cn of OWA
operators, A¥ = (Ak, ... AF), with one operator for each di-
mension, defines a committee scoring rule with the following
scoring functions:

FA Wity yin) = MBn (i) + -+ AiBm (i) (1)

Multiwinner rules of this type were introduced by Skowron
et al. [2016a] in a somewhat more general context (i.e., not
focusing only on the Borda scores), and were later studied by
Faliszewski et al. [2016a].?

We consider the following OWA operators A*:

2See also the work of Aziz et al. [2017]. Goldsmith et al. [2014]
and Elkind and Ismaili [2015] provide other ways in which OWA
operators can be used in voting rules.
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1. For each positive integer ¢, the ¢-Best family of OWA
operators has vectors of ¢ ones followed by ¢t — k zeros.

2. For each non-negative real number p, the p-Harmonic
OWA operators are of the form (1, 1/27,1/37, ... 1/k?).

For each ¢, we set t-Borda to be the rule defined using Equa-
tion (1) and the ¢-Best OWA operators (note that this nota-
tion is consistent with the name k-Borda), and for each non-
negative real number p, we let p-HarmonicBorda be defined
analogously, but using the p-Harmonic OWAs. (1-Harmonic
OWAs are also used in the definition of the PAV rule [Thiele,
1895; Kilgour and Marschall, 2012], that was shown to have
very good axiomatic properties [Aziz et al., 2017].)

Example 2. Consider the election from Example 1. The
2-Borda rule, for k = 4, chooses committees {a,b, f,h}
and {a,c, f,h} (both of which are winning under CC),
2-HarmonicBorda chooses only {a,b, f ,h}, while 1/2-
HarmonicBorda chooses {a,b, c,h}, which differs from the
4-Borda winning committee only by replacing g with h.

Intuitively, as p gets larger, p-HarmonicBorda becomes
more similar to CC (and !/p-HarmonicBorda becomes more
similar to k-Borda). This intuition is almost correct and later
we will make it formal.

The rules on our paths (with the exception of k-Borda) are
NP-hard to compute (this follows immediately from the re-
sults of Skowron et al. [2016al).

Proposition 1. For each positive integer t > 1, it is NP-hard
to decide if a winning committee under t-Borda has at least a
given score. The same holds for each positive real number p
and p-HarmonicBorda.

While the above result speaks of values of ¢ that are con-
stant (and, in particular, do not depend on k), Skowron et al.
also showed that, e.g., (k — 1)-Borda is NP-hard to compute.

The £,-Path. Let p be a real number, p > 1. By ¢,,-Borda
we mean the committee scoring rule defined by the committee
scoring functions:

for

m,k

7ik) = {/ﬁm(il)p +...+ Bm(ik)p~

That is, under ¢,-Borda, the score associated with a com-
mittee position (i1,...,4) is the ¢,-norm of the vector
(B(i1),...,B(ir)). Naturally, ¢1-Borda is k-Borda and ¢.-
Borda is CC. We are interested, however, in £,,-Borda rules
where p is not co.

(in, . .

Example 3. Consider the election from Example 1. {2-Borda
chooses committee {a, b, c, f}, a CC winning committee that
is close to the k-Borda winning committee (the fact that the
committee is winning under CC is mostly a coincidence).
Note that the rule in this example and all the rules in Ex-
amples 1 and 2 give different sets of committees as outcomes.

All the ¢,-Borda rules for p > 1 are NP-hard to compute.
Theorem 2. For each rational p > 1, deciding whether there
is a winning committee with at least a given score is NP-hard.

In principle, the idea behind the proof of this theorem is
close to that behind the proof of the NP-hardness of CC [Lu
and Boutilier, 2011]. However, it requires significant techni-
cal work to introduce sufficient (but polynomially-bounded)
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paddings that, roughly speaking, ensures that ¢,-Borda rules
behave similarly to CC.

Convergence of the Rules on the Paths. While the ¢-
Borda family of rules contains k-Borda and CC by defini-
tion, the situation is more intricate for the £,-Borda and p-
HarmonicBorda families. In particular, we are interested in
convergence of p-HarmonicBorda and ¢,-Borda to both k-
Borda and CC. (Note that 0-HarmonicBorda and ¢;-Borda
are simply nicknames for k-Borda, but the rules that could be
dubbed lim,,_,(+ p-HarmonicBorda and lim,_,+ £,-Borda
offer some advantages regarding decisiveness; due to limited
space, we mostly focus on convergence to CC, however).

We next show how well the CC winning committees ap-
proximate the £,,-Borda and p-HarmonicBorda winning ones.

Definition 2. Let Ry be a committee scoring rule de-
fined through a family of committee scoring functions f =
(fmk)1<k<m. Let E (C,V) be an election and W
be a winning committee of E under Ry. Let o be a real
number such that 0 < o« < 1. We say that a commit-
tee S is an a-approximate winner for the R ¢-election E, if
scorey, ., (S, E) > a -scoref,, (W, E).?

Proposition 3. Let E be an election with m candidates and
let k be the target committee size.

1.

For each p > 1, each CC winning committee for E is a
ﬁ-appmximate £y,-Borda winner for E.

For each p > 0, each CC winning committee for F

isal/(32F i1 '/3%)-approximate p-HarmonicBorda win-
ner for E.

Proof. We consider the case of /,-Borda (the case of p-
HarmonicBorda is analogous and omitted due to restricted
space). Let W), be an £,,-Borda winning committee for £ and
let W, be a CC winning committee For brevity, we write f

to refer to the scoring function f
S and each voter v we have:

F(pos,(9)) < Vk - £5.5(00s,(S)) < ¥k - f(pos,(S))).
Thus it holds that:

5 Fora given committee

scores (W, E) = ZUEV f(pos, (Wp))
< k- Zvev (pos (W)
<k ey £55 (pos,(Wa))

k- scoref(Wao, E),
O

<Vk-Y,ev f(pOSU(Woo)) =

which proves the statement.

The estimates in Proposition 3 are asymptotically tight.

Example 4. Let m, n, and k be three positive integers
such that m > 2k. Consider an election E with candidates
Cl, -, Cm and with n + (k — 1) voters, where k is the tar-
get committee size. For each i € [k — 1), the ith voter ranks
Cm—i+1 first; and each of the following n voters has pref-
erence order ¢y > co > -+ > Cp. For large enough n,
we have that: (a) ¢y, . . ., cy is the unique winning committee

3This definition relies on the particular scoring functions used.
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under each {,-Borda and each p-HarmonicBorda rule; (b)
C1,CmsCm—1,- - - Cm—k+2 IS the unique CC winning com-
mittee; (c) this committee is an O(1/3/k)-approximate {,,-
Borda winner for E and an O(l/(zj 1 le))-approximate
p-HarmonicBorda winner for E.

For a given committee size, Proposition 3 indicates which
values of p may lead to rules very similar to the CC rule.

Example 5. Let us consider some election E and the
committee size k 20. CC winning committees are
0.54-approximations of {s-Borda winning committees (so,
intuitively, we should not expect {5-Borda and CC re-
sults to be similar), while they are 0.94-approximations
of {s0-Borda winning committees (so we expect sim-
ilarity). Similarly, CC winning committees are 0.62-
approximations of 2-HarmonicBorda winning committees,
but 0.96-approximation of 5-HarmonicBorda ones.

Above, we studied convergence of the scores of the win-
ning committees. Now we move to the convergence of actual
winning committees (these issues differ as one could imagine
two disjoint committees with nearly identical scores).

Definition 3. Let (R;);en be a family of multiwinner voting
rules. We say that this sequence converges election-wise, if
for each election E and each target committee size k, there
exists a positive integer iy such that R;,(E, k) = R;(E, k)
for each i > 1.

A sequence (R;);en of rules that converges election-wise
defines a new multiwinner rule: Given an election F and a
target committee size k, it outputs the committee R;(F, k)
for sufficiently large ¢ (when the sequence of outputs becomes
stable).

A multiwinner rule R is a refinement of a rule Q if for each
election E and each committee size k, R(E, k) C Q(FE, k).

Theorem 4. The sequence of rules (p-HarmonicBorda),en
converges, as p — 00, to a refinement of CC. The se-
quence (1/p-HarmonicBorda),en converges to a refinement
of k-Borda.

Proof. Let us consider the sequence (p-HarmonicBorda),en.
We may assume that p changes continuously, i.e., that p is a
real number. We fix an election E and the size of committee
k. For a committee Z, we write score,(Z) to denote its p-
HarmonicBorda score in E. It suffices to show that for each
two distinct committees X and Y, starting from some py and
for all p > pg, we have either score,(X) > score,(Y') or
score,(X) = score,(Y) or score,(X) < score,(Y). Sup-

X)={V, ... ,155;')}. Then,

score,(X) = Yory Y8 LB, (457
= Zj:l '3 Zi:l B (¢ J )) =X

where a; = Y o, Bm(ﬁgi)). Similarly, score,(Y")
Zf 1 pr for some by,...,b,. If aj = b; forall j € [k],

then the scores of X and Y are always the same, irrespective
of the value of p. Suppose this does not happen.

pose pos,, (

B
i=1 37 %"
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As p grows, the relation between score, (X ) and score, (Y)
may change several times, but we claim that this number of
changes is smaller than k. We will show that the difference

score, (X) — score,(Y) = S2%_ L(a; —b;)

j=137
cannot be equal to zero for & distinct values of p. Assume the

contrary, i.e., that it is equal to zero for py, .. ., pg. Then:
1 (2)m (1/k)P1 a; — by 0
1 (1/2)r2 (1/k)P2 az — by 0
1 (1/2)P (1/k)P* by 0

Since a; — b; # 0 for at least one j € [k], the determinant
of the matrix on the left-hand side must be zero. However,
this is a generalized Vandermonde matrix which is known to
have a non-zero determinant [Wen and Zhang, 2006]. This
completes the proof of our claim that the relations between
the scores of committees are fixed for sufficiently large p.

As p approaches oo, for any committee X we have
score,(X) — scores(X); thus, the winning committees
of the limiting voting rule have to be CC winning commit-
tees and it is a refinement of CC. The argument for k-Borda
(p — 0) is similar. O

The situation with £,-Borda rules is much more difficult
and we only obtain a weaker result.

Proposition 5. For each election E and each committee size
k, there is a value py such that for each p > py, {,-Borda(E,k)
is a set of CC winning committees.

Decisiveness of the Rules on the Paths. Consider the next

example.

Example 6. In Examples 2 and 3 we have already seen that
p-HarmonicBorda and (,-Borda rules can provide results
that refine the CC rule; the same happens for the k-Borda
rule. Consider an election with m > 2k candidates and two
votes: ¢ > Co > --- = cn, and its reverse. For the target
committee size 2k, the 2k-Borda rule outputs all committees
of size 2k. On the other hand, each {,,-Borda rule (withp > 1)
and each p-HarmonicBorda rule (with p > 0) output a unique
winning committee {C1,...,Ck,Cmy -y Crn—k+1}-

Indeed, our new rules can quite substantially improve the
decisiveness of k-Borda and C'C. We have generated 30, 000
elections with 10 candidates and 10 voters each (using the Im-
partial Culture assumption, i.e., we chose each voter’s prefer-
ence order uniformly at random) and computed all winning
committees of size k = 4. Table 1 shows the results that we
have obtained (we used brute-force search to compute all win-
ning committees). Indeed, it seems that (the limiting variants
of) the ¢,-Borda and p-HarmonicBorda rules can be used as
natural, more decisive, variants of k-Borda and CC.

4 Experimental Results

In this section the goal is to illustrate our three paths between
k-Borda and CC using the recent visual approach of Elkind et
al. [2017a] (who computed graphical representations of elec-
tion results for a number of rules and distributions of the can-
didates and voters in a two-dimensional space).
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avg. num. of max. num. of
rule win. committees ~ win. committees
k-Borda 1.206 10
1/10-HarmonicBorda 1.00003 2
{1.01-Borda 1.00 1
CC 2.119 28
5-HarmonicBorda 1.00016 2
{50-Borda 1.00007 2

Table 1: Average number of winning committees and the highest
number of winning committees observed; under Impartial Culture
assumption withn = m = 10 and k = 4.

In the 2D Euclidean model of preferences, voters and can-
didates are represented as points on a plane (often referred to
as the ideal points of the respective voters/candidates). Each
voter forms a preference order by sorting the candidates with
respect to the distance of their ideal points from his or hers.

In our experiments—following Elkind et al. [2017al—we
consider elections with m = 200 candidates, n = 200 voters,
and with committee size k = 20. These numbers are chosen
since they are big enough to be quite representative and ro-
bust, but small enough to make experimentation feasible. All
our elections are generated using the 2D Euclidean model,
where both the candidates’ and voters’ ideal points are dis-
tributed uniformly on a [—3,3] x [—3, 3] square. Elkind et
al. [2017a] have considered other distributions and other elec-
tion sizes, showing that the graphical results are robust to such
variations (unless we consider, e.g., very small committees).

Computing Winning Committees. Since our rules are
NP-hard, we used the following heuristic based on simulated
annealing. We begin by sampling a random committee .Sy.
Then, in each iteration i, we take the committee S;_1 and
form a temporary committee .S; by randomly replacing one
member in S;_;. If the score of S/ is greater than that of S;_1,
then we set .S; to be .S.. Otherwise, we draw a random num-
ber between 0 and 1; if it is below pg* (where p and ¢ are two
parameters, we used p = 0.2 and ¢ = 0.999), then we set
S; = SI; otherwise, we set .S; = S;_1. We execute 2000 iter-
ations and output the highest-scoring committee encountered.
We compared the results obtained from using our heuristic
to the optimal ones (for some of our OWA-based rules) and
they turned out to be very close (both in terms of the approx-
imation ratio and similarity of the histograms; see below).

The Experiment. We have generated 5,000 elections for
each of our rules and computed their results using our heuris-
tic (we considered ¢-Borda rules for ¢t € {1,2,...,20}, p-
HarmonicBorda for p € {0.1,0.2,...,5.0}, and ¢,-Borda
rules for p € {1,2,...,50}). For each of the rules, we have
computed a histogram showing how frequently candidates in
various areas of the [—3,3] x [—3,3] square are selected.
Specifically, we partitioned the square into 120 x 120 small
squares (called cells) and computed how many winners from
the generated elections fall into each. We present (some of)
the resulting histograms in Figures 1-3 (the darker a given
cell, the more winners fall there; Elkind et al. give more de-
tails on converting numerical values to colors). For compari-
son, Figure 4 contains histograms for k-Borda, Bloc, and CC.
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Figure 1: Results for the ¢-Borda rules (k = 20).
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Figure 2: Results for the p-HarmonicBorda rules.
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Figure 3: Results for the ¢,-Borda rules.

Finally, for each of the generated histograms, we computed
its earth-mover distance from the histograms for k-Borda,

197

1
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Figure 4: Histograms for k-Borda, Bloc, and CC.

Bloc, and CC. The plots showing how these distances change
depending on our rules’ parameters are shown in Figures 1-3.

Earth-Mover Distance. The earth-mover distance (EMD)
is a widely-used measure of similarity between pictures [Pe-
leg er al., 1989]. Figuratively speaking, it views each cell in
a histogram as containing some grains of sand (in proportion
to the value of the cell), and the distance between two his-
tograms is the minimum sum of Euclidean distances that all
the grains of sand need to travel to transform one histogram
into the other. To compute earth-mover distances, we used its
standard formulation as an integer linear program (ILP) and
used an ILP solver. The smaller the earth-mover distance be-
tween two histograms, the more similar these histograms are.
The EMDs computed for our histograms are all normalized
in the same way, so the results are comparable between rules.
To assess which values of the distance are “small” and which
are “large,” one may compare presented example histograms.

Analysis. Perhaps somewhat surprisingly, the graphical re-
sults that we have obtained for the ¢-Borda and ¢,,-Borda rules
progress from k-Borda to CC through histograms very simi-
lar to those for Bloc (however, there is a big difference be-
tween Bloc and these rules; for each single election, Bloc
typically chooses candidates concentrated in some parts of
the square—leading to the histogram from Figure 4 only
in the aggregate—whereas winners under ¢-Borda and /-
Borda rules are distributed very similarly to what their his-
tograms suggest; the same good property holds for the p-
HarmonicBorda rules). Further, for £,-Borda we observe a
rather abrupt transition from histograms very similar to those
for k-Borda (for p € {1,...4}) to those similar to Bloc (for
p € {5,...,17}). The further transition, however, is smooth.

On the other hand, the histograms for p-HarmonicBorda
rules do not pass though areas of similarity to Bloc (even
though the histograms are more similar to those for CC than
those for Bloc only for p > 2). Indeed, while the histograms
for t-Borda and /,,-Borda have areas of “lower density in the
center,” this never happens for p-HarmonicBorda.

5 Conclusions

We analyzed three families of committee scoring rules that
form continuous paths between the k-Borda and CC rules.
We have shown that the rules on these paths can lead to more
decisive variants of k-Borda and CC. Further, these rules may
be useful for tasks that need some compromise between ex-
cellence and diversity, provided by k-Borda and CC, respec-
tively. Quite surprisingly, we have found that two of our paths
seem to pass through rules with unexpected features.

For future research, we believe it would be interesting
to consider paths between other multiwinner rules (e.g., be-
tween approval-based rules).
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