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Abstract
Negotiation is a very common interaction between
automated agents. Many common negotiation pro-
tocols work with cardinal utilities, even though or-
dinal preferences, which only rank the outcomes,
are easier to elicit from humans. In this work
we concentrate on negotiation with ordinal prefer-
ences over a finite set of outcomes. We study an
intuitive protocol for bilateral negotiation, where
the two parties make offers alternately. We ana-
lyze the negotiation protocol under different set-
tings. First, we assume that each party has full
information about the other party’s preference or-
der. We provide elegant strategies that specify a
sub-game perfect equilibrium for the agents. We
further show how the studied negotiation protocol
almost completely implements a known bargaining
rule. Finally, we analyze the no information set-
ting. We study several solution concepts that are
distribution-free, and analyze both the case where
neither party knows the preference order of the
other party, and the case where only one party is
uninformed.

1 Introduction
Negotiation is a dialogue between two or more parties over
one or more issues, where each party has some preferences re-
garding the discussed issues, and the negotiation process aims
to reach an agreement that would be beneficial to the parties.
The basic automated negotiation protocol, which consists of
two parties that alternate offers, was introduced by [Rubin-
stein, 1982]. Since then a lot of work has been done to de-
velop other types of protocols, and to extend the basic bilat-
eral negotiation protocol [Fatima et al., 2014].

Many common negotiation protocols work with cardinal
utilities, i.e., with utility functions that give different out-
comes a specific numerical value, according to the agents’
preferences. This representation requires the agents to spec-
ify the magnitude of how much they prefer one outcome over
another. However, this specification is not always readily
available. Moreover, in many cases the agents need to act
on behalf of humans, and the use of cardinal utilities for rep-
resenting human preferences has been widely criticized on

the grounds of cognitive complexity, difficulty of elicitation,
and other factors (e.g., [Ali and Ronaldson, 2012]). On the
other hand, ordinal preferences only rank the outcomes, so
they reduce cognitive burden and are easier to elicit.

Indeed, there are some negotiation protocols that work with
ordinal preferences. However, these protocols only start with
the ordinal preferences, and they then convert them to a car-
dinal utility according to some assumptions [Nash Jr, 1950;
Shapley, 1969]. Moreover, the traditional assumption in the
negotiation theory is that there is a continuum of feasible
outcomes. However, many real-life situations involve a fi-
nite number of outcomes, such as two managers choosing
from among a few job candidates, or a couple choosing from
among a few apartments. Even in negotiation over monetary
payoffs, the number of outcomes is bounded by the indivisi-
bility of the smallest monetary unit.

In this paper we study negotiation with ordinal preferences
over a finite set of outcomes, without converting the ordinal
preferences to a cardinal utility 1. We analyze an intuitive
protocol for bilateral negotiation that was introduced by [An-
barci, 1993], where the two parties make alternating offers.
Each offer is a possible outcome, and we allow the parties
to make any offer they would like, in any order. The only re-
striction is that no offer can be made twice, thus if there are m
possible outcomes the negotiation will last at most m rounds.

We analyze the negotiation protocol in different settings.
First, we assume that each party has full information about
the other party’s preference order, and she will thus take this
into account and act strategically when deciding what to of-
fer. We provide elegant strategies that specify a Sub-game
Perfect Equilibrium (SPE) for the parties. Specifically, our
strategies are easy to implement, and we improve the previ-
ous result of [Anbarci, 2006] and find a SPE strategy in linear
time instead of quadratic time.

We note that there are several works that studied bargaining
rules with ordinal preferences over a finite set of outcomes,
but they are inherently different from non-cooperative nego-
tiation protocols. A bargaining rule is a function that assigns
to each negotiation instance a subset of the outcomes, which
are considered the result of the negotiation. These rules are

1This is also the assumption in most of the voting litera-
ture [Brandt et al., 2016], but see [Boutilier et al., 2015] that an-
alyzes social choice functions after extracting cardinal utilities from
ordinal preferences.
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useful only in a cooperative environment, or where there is
a central authority that can force the parties to offer specific
outcomes in a specific order.

The proof that our proposed strategies specify a SPE pro-
vides us with a deep understanding of the negotiation pro-
tocol, which enables us to establish a connection to the re-
sults of the designed Rational Compromise (RC) bargaining
rule [Kıbrıs and Sertel, 2007]. Surprisingly, the SPE result
of the negotiation protocol is always part of the set of results
returned by the RC rule, even though the protocol does not
force the parties to offer specific outcomes in a specific order
as the RC rule does. This connection also enables us to prove
that the SPE result of the protocol is monotonic.

We then move on to analyze the no information setting.
We analyze the case where neither party knows the prefer-
ence order of the other party nor do they know prior prob-
ability distribution over possible orders. In this setting we
first show that an ex-post SPE does not exist. We then pro-
vide the maxmin strategy and the maxmin value of the game
that is imposed by our protocol. We also show that in our
setting, surprisingly, any pair of maxmin strategies also spec-
ifies a robust-optimization equilibrium. Finally, we consider
the case where one party has full information while the other
party has no information, and show how the informed party is
able to use her information so that the negotiation result will
be better for her.

The contribution of this work is threefold. First, we in-
troduce elegant strategies that specify a SPE, and provide a
substantial analysis for showing that they indeed form a SPE.
We also provide an improved algorithm for computing a SPE
strategy for the studied negotiation protocol. The second con-
tribution of our work is that we show how the studied negotia-
tion protocol almost completely implements the RC rule. As
noted by [Kıbrıs and Sertel, 2007], who studied the RC rule,
the descriptive relevance of the RC rule for real-life bargain-
ing depends on the existence of non-cooperative games that
implement it, and to the best of our knowledge our paper is
the first to find such a connection. Finally, we provide an
analysis of the negotiation protocol under a no information
setting, which has not been considered before.

2 Related Work
Negotiation protocols and the strategic interaction they imply
have been extensively studied. We refer to the books of [Os-
borne and Rubinstein, 1990], [Kraus, 2001], and [Fatima et
al., 2014] for extensive coverage of the different approaches.
The traditional assumption in negotiation theory is that there
is a continuum of feasible outcomes, but many real-life ne-
gotiation scenarios violate these assumptions. Indeed, there
are several works that consider problems with a finite num-
ber of outcomes. For example, see [Zlotkin and Rosenschein,
1996], [Mariotti, 1998], [Nagahisa and Tanaka, 2002] and re-
cently [Nunez and Laslier, 2015]. All of these works focus
on negotiation when the preferences are represented by a car-
dinal utility, while we study negotiation with ordinal prefer-
ences.

Many other works study negotiation with ordinal prefer-
ences over a finite set of outcomes (for example, [Zhang

and Zhang, 2008]). Sequential procedures, in particular
the fallback bargaining method, have attracted consider-
able interest [Sprumont, 1993; Hurwicz and Sertel, 1999;
Brams and Kilgour, 2001; Kıbrıs and Sertel, 2007; Conley
and Wilkie, 2012], since they satisfy some nice theoretical
properties. All of these works study bargaining rules that are
useful in a cooperative environment. We study a negotiation
protocol that is useful in a non-cooperative environment, and
show that its SPE almost completely implements the individ-
ually rational variant of the fallback bargaining method, i.e.,
the RC rule [Kıbrıs and Sertel, 2007]. We note that the RC
bargaining rule is equivalent to Bucklin voting with two vot-
ers, and thus our result can also be interpreted as a (weak)
SPE implementation of the Bucklin rule where there are two
voters.

There are few works that study negotiation protocols with
ordinal preferences over a finite set of outcomes. [De Clip-
pel et al., 2014] study the problem of selection of arbitrators,
and they concentrate on two-step protocols. The most closely
related works are Anbarci’s papers. In [Anbarci, 1993] he in-
troduces the Voting by Alternating Offers and Vetoes (VAOV)
negotiation protocol, which we study here, and shows the
possible SPE results in different scenarios. Implicitly, this
work shows that the SPE result is unique and Pareto optimal.
In [Anbarci, 2006] he introduces three additional negotiation
protocols. Moreover, he sharpens his previous result by ex-
actly identifying the SPE result of the VAOV protocol, and
by providing an algorithm that computes a SPE strategy. He
also shows that if the outcomes are distributed uniformly over
the comprehensive utility possibility set and as the number of
outcomes tends to infinity the VAOV protocol converges to
the equal area rule [Thomson, 1994]. We provide a more effi-
cient algorithm that finds an elegant SPE strategy. In addition,
we were able to establish the relationship between the VAOV
protocol and the RC rule, which works with a finite number
of outcomes, and we also analyze the no information setting.

3 The Negotiation Protocol
We assume that there are two negotiation parties, p1 and
p2, negotiating over a set of potential outcomes O =
{o1, ..., om}, where p1 is the party that makes the first offer.
Each party has a preference order over the potential outcomes
that does not permit any ties. Formally, the preferences of a
party p are a strict order, �p, which is a complete, transitive
and irreflexive binary relation on O. We write o′ �p o to de-
note that party p strictly prefers o′ to o, and o′ �p o to denote
that o′ �p o or o′ = o (i.e o′ is the exact same outcome as
o). Clearly, each party would like to maximize her utility, i.e.,
that the result of the negotiation will be the outcome that is
placed as high as possible according to her preferences.

We analyze the following negotiation protocol, which is the
VAOV protocol of [Anbarci, 1993]. The parties make offers
alternately. No offer can be made twice, but an agreement
must be reached since we assume that any agreement is pre-
ferred by both parties over a no-agreement result. We also
assume that lotteries are not valid offers, as in most real-life
negotiations. Formally, denote by Ot the set of available out-
comes at round t, and the let O1 = O. At round 1, party p1
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offers an outcome o ∈ O1 to p2. If p2 accepts, the negotiation
terminates successfully with o as the result of the negotiation.
Otherwise, party p2 offers an outcome o′ ∈ O2 = O1 \ {o}.
If p1 accepts, the negotiation terminates successfully with o′

as the result of the negotiation. Otherwise, p1 offers an out-
come o′′ ∈ O3 = O2 \ {o′} to p2, and so on. If no offer
was accepted until round m then the last available outcome is
accepted in the last round as the result of the negotiation. We
denote by pi the party whose turn it is to make an offer at a
given round, and by pj the other party. That is, pi = p1 in
odd round numbers and pi = p2 otherwise.

We first provide a general result that is useful with any
model of information. Consider the following definition:

Definition 1. In each round t, let Lj
t be the b|Ot|/2c lowest

ranked outcomes in �pj . If |Ot| is odd, then let Li
t be the

b|Ot|/2c lowest ranked outcomes in �pi . If |Ot| is even, then
Li
t is the |Ot|/2− 1 lowest ranked outcomes in �pi .

We show that in each round t we can identify a set of out-
comes that cannot be the negotiation result if the parties are
rational, regardless of the information they have. Intuitively,
these are all the outcomes that are in the lower parts of the
preference orders of both parties, denoted by Lowt. We de-
note all of the other outcomes by JGt.

Definition 2. Given a round t, let Lowt = {o : o ∈ Li
t∪L

j
t},

and JGt = Ot \ Lowt.

Lemma 1. Let o be the result of the negotiation if both parties
are rational. Then, o /∈ Lowt.

Proof. Starting from round t where |Ot| = mt, each party
will be able to reject all of the offers that she would receive
from the other party, except for the offer she would receive
in the last round. Specifically, if mt is odd, pi and pj can
reject at most bmt/2c offers. If mt is even, pi can reject at
most bmt/2c − 1 offers (since it is pi’s turn to offer) and
pj can reject at most bmt/2c offers. That is, each party pk,
k ∈ {1, 2}, can reject at most |Lk

t | offers. Therefore, each
party will always be able to guarantee that the result of the
negotiation will be an outcome that is placed higher than the
|Lk

t | lowest outcomes in her preference order. Therefore, o /∈
Lowt.

We now analyze the negotiation protocol under two differ-
ent models of information: full information and no informa-
tion. In each case we are interested in finding the best actions
that a party should take, given the information that she has.

4 Full Information
In this setting we assume that each party has full information
about the other party’s preference order, and she will thus
take this information into account when calculating her best
strategy. Therefore, in the full information setting we are in-
terested in finding a SPE. Since [Anbarci, 1993] showed that
the SPE result is unique, it suffices to find one set of strategies
that specify a SPE.

Recall that SPE is a mapping that maps the histories of
players’ choices. Note that in our case if an offer was ac-
cepted the game is over. Therefore, a history for pi, the party

whose turn it is to make an offer at a given round, consists
of a sequence of outcomes that were proposed and rejected in
the previous rounds. Let Hi

t = (o1, o2, ..., ot−1) be the his-
tory for pi at round t, and note that Ot = O \Hi

t . Let o−t be
the least preferred outcome in Ot according to�pj . We show
that the following strategy specifies the offering strategy in
our SPE.
Strategy 1 (OFFERING STRATEGY). Given a history Hi

t , if
It = Li

t ∩ Lj
t 6= ∅ then offer o ∈ It, else offer o−t .

A history for pj , the party whose turn it is to decide
whether to accept or reject an offer at a given round, consists
of a sequence of outcomes that were proposed and rejected
in the previous rounds and an additional outcome o that was
offered by pi in the current round. Let Hj

t = Hi
t + o =

(o1, o2, ..., ot−1, o) be the history for pj at round t. In addi-
tion, given a round t and history for pi, Hi

t , let oit be an out-
come o ∈ It = Li

t ∩ Lj
t if It 6= ∅, and o−t otherwise. Given a

round t and history for pj , Hj
t , let oa(H

j
t ) be the single out-

come in Om = O\Hi
m, where Hi

m = Hj
t +oit+1+...+oim−1.

That is, oa(H
j
t ) is the result of the negotiation if both parties

reject all of the offers that they get (except for the last offer)
from round t and on, but use the offering strategy that is spec-
ified by Strategy 1 from round t+1 and on. We show that the
following strategy specifies the response strategy in our SPE.

Strategy 2 (RESPONSE STRATEGY). Given a history Hj
t , if

o �pj oa(H
j
t ) then accept o, else reject o.

To illustrate the strategies of our SPE, consider the follow-
ing examples:
Example 1. Suppose that

�p1= o6 � o5 � o4 � o3 � o2 � o1

�p2= o1 � o3 � o2 � o6 � o4 � o5.

Following Definition 1, L1
1 = {o2, o1} and L2

1 =
{o6, o4, o5}. Therefore, I1 = ∅ and according to the offer-
ing strategy (Strategy 1) p1 would offer p2’s least preferred
outcome - o5. Then, according to the response strategy (Strat-
egy 2) p2 would reject, since oa((o5)) = o3 �p2 o5, as we
will show. In round 2, L1

2 = {o1, o2} and L2
2 = {o6, o4}, and

thus p2 would offer o1. Now p1 would reject, and offer o4, p2
would reject and offer o2, p1 would reject and offer o6, and
in the final round p2 would reject and offer o3 which is ac-
cepted as the result of the negotiation since no other outcome
is available.
Example 2. Now suppose that

�p1= o6 � o5 � o4 � o3 � o2 � o1

�p2= o1 � o3 � o6 � o2 � o4 � o5.

Following Definition 1, L1
1 = {o2, o1} and L2

1 =
{o2, o4, o5}. Therefore, I1 = {o2} and according to Strat-
egy 1 p1 would offer o2. Then, p2 will reject, since oa((o2)) =
o6 �p2 o2, as we will show. In round 2, L1

2 = {o3, o1} and
L2
2 = {o4, o5}, I2 = ∅, and thus p2 would offer o1. In each

subsequent round the parties would offer each other the least
preferred outcomes, until the final round where o6 will be ac-
cepted as the result of the negotiation.
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In order to prove that our strategies specify a SPE, we need
a deeper understating of the offering and response strategies.
We note that in the offering strategy (Strategy 1), pi offers
an outcome from the set It if it is not empty. We now show
the relation between the set It and the set JGt. Due to space
constraints, we defer the proofs of some of the lemmas to the
full version of the paper [Erlich et al., 2018].

Lemma 2. |JGt| = |It|+ 1

Considering Lemma 1, we show a simple corollary. Let oeq
be the SPE result. We get:

Corollary 1. oeq /∈ Lowt.

If we combine the findings from Corollary 1 and Lemma 2,
we get that if the set It is empty, i.e., the intersection between
the lower parts of the preference orders of the parties is empty,
then the set JGt contains only one outcome, oeq .

Corollary 2. If It = ∅ then JGt = {oeq}.
Next, we show how the transition from round t to round

t+ 1 affects the number of outcomes in Lk
t+1, k ∈ {1, 2}.

Lemma 3. Suppose that in round t, pi offered an outcome o

and pj rejected it, then in round t+1, |Li
t+1| = |L

j
t | − 1 and

|Lj
t+1| = |Li

t|

Proof. Assume |Ot| = mt is even, then by definition |Li
t| =

mt

2 − 1 and |Lj
t | = mt

2 . After that pi offered the outcome
o and pj rejected it, mt+1 is odd, and the roles are switched
between pi and pj . Therefore, |Li

t+1| = |L
j
t+1| =

⌊mt+1

2

⌋
=⌊

mt−1
2

⌋
=

⌊
mt

2 −
1
2

⌋
= mt

2 −1. Now assume that mt is odd,
then |Li

t| = |L
j
t | =

⌊
mt

2

⌋
= mt−1

2 . After that pi offered the
outcome o and pj rejected it, mt+1 is even, and the roles are
switched between pi and pj . Therefore, |Lj

t+1| = mt−1
2 and

|Li
t+1| = mt−1

2 − 1 .

We note that the number of outcomes in Lk
t is important,

since we already showed in Corollary 1 that these are the out-
comes that cannot be an equilibrium result. Indeed, it is more
important to understand how the transition from round t to
round t + 1 affects which outcomes become part of Lk

t+1.
Obviously, it depends on the offer that was made in round t.
The following three lemmas analyze this transition, based on
the offers that are made according to Strategy 1. Specifically,
Lemma 4 together with Lemma 5 cover the offering strategy
where It = ∅, and Lemma 5 together with Lemma 6 cover
the offering strategy where It 6= ∅.
Lemma 4. In round t, if pi offers o /∈ Li

t and pj rejects it,
then Lj

t+1 ← Li
t

Lemma 5. In round t, if pi offers o ∈ Lj
t and pj rejects it,

then Li
t+1 ← Lj

t \ {o}
Lemma 6. In round t, if pi offers o ∈ Li

t and pj rejects it,
then Lj

t+1 ← Li
t \ {o} ∪ {o′}

Note that when pj follows Strategy 2 she computes the out-
come oa(H

j
t ) to decide whether to accept or reject the offer

that she gets from pi. By definition,

Lemma 7. oa(H
j
t ) = oa(H

j
t + oit+1).

We now show that if, in a given round t, pi follows Strat-
egy 1, i.e., oa(H

j
t ) = oa(H

i
t + oit), then oa(H

j
t ) has some

desirable properties. For example, it is Pareto optimal in
Ot, i.e., ∀o ∈ Ot \ {oa(Hi

t + oit)}, oa(H
i
t + oit) �pi o

or oa(H
i
t + oit) �pj o. For ease of notation, let oat =

oa(H
i
t + oit).

Lemma 8. Given any history Hi
t , oit ≺pj oat, oat ∈ JGt,

and oat is Pareto optimal in Ot.

Proof. We prove by induction on m. If m = 2 and t = 1,
without loss of generality (WLOG) assume that �p2= o1 �
o2. Since It = ∅, o1t = o−t = o2 and H1

t = () by definition.
Thus, oat = oa(H

1
t + o1t ) = o1. In addition, JGt = {o1},

and therefore o1t ≺p2 oat and oat ∈ JG1 as required. Since
Ot \ {oat} = {o2} and o2 ≺p2 oat then oat is also Pareto
optimal in Ot. Now, assume that if there are m− 1 outcomes
in round t+1, oit+1 ≺pj oa(H

i
t+1+oit+1), oa(H

i
t+1+oit+1) ∈

JGt+1 and oa(H
i
t+1 + oit+1) is Pareto optimal in Ot+1. We

show that when there are m outcomes in round t, oit ≺pj

oa(H
i
t + oit) = oat, oat ∈ JGt and oat is Pareto optimal

in Ot. According to Lemma 7, if Hj
t = Hi

t + oit we get that
oat = oa(H

i
t+oit) = oa(H

i
t+oit+oit+1) = oa(H

i
t+1+oit+1).

Now, if It = ∅ and thus oit = o−t ∈ Lj
t then according to

Lemmas 4 and 5 JGt+1 = JGt. If It 6= ∅ and thus oit ∈ It
then according to Lemmas 5 and 6 JGt+1 ⊆ JGt. According
to the induction assumption, oa(Hi

t+1 + oit+1) ∈ JGt+1 and
thus oat = oa(H

i
t+1 + oit+1) ∈ JGt. In addition, oit ∈ Lj

t
by definition and since we showed that oat ∈ JGt, we get
that oit ≺pj oat. Finally, since oat is Pareto optimal in Ot+1,
Ot = Ot+1 ∪ {oit}, and oit ≺pj oat, we conclude that oat is
Pareto optimal in Ot.

Rephrasing Lemma 8, we showed that given any history
Hi

t , if both parties follow Strategies 1 and 2 from round t and
on, pj would always reject the offers that she gets from pi

(i.e., oit, o
i
t+1, ..., o

i
m−1), and the negotiation result would be

oat, which would be accepted in the last round. Moreover, the
negotiation result oat is Pareto optimal in Ot, Ot+1, ..., Om.

Before we prove that Strategies 1 and 2 specify a SPE we
need to add some definitions. We first define a distance func-
tion for each party pk, that given an outcome ox /∈ Lk

t counts
the number of outcomes o /∈ Lk

t such that ox �pk o. Intu-
itively, this is the number of outcomes a party can offer until
a round t′ where ox becomes part of Lk

t′ . Formally:

Definition 3. dk,x,t = |{o ∈ Ot : ox �pk o ∧ o /∈ Lk
t }|

where k ∈ {1, 2}
We also define the number of offers that are made before

reaching a round t′ where It′ = ∅.
Definition 4. Let `k,t be the number of offers a party pk of-
fers according to Strategy 1 from round t until round t′ where
It′ = ∅.

Recall our previous examples. In Example 1 at round 1,
I1 = ∅ and thus `1,1 = `2,1 = 0. The distance of o3 at round
1 is d1,3,1 = 1 for party p1 and d2,3,1 = 2 for party p2. In
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Example 2, I1 6= ∅ but I2 = ∅ and thus `1,1 = 1 and `2,1 = 0.
The distance of o6 at round 1 for the parties is d1,6,1 = 4 and
d2,6,1 = 1, and the distance of o3 at round 1 for the parties is
d1,3,1 = 1 and d2,3,1 = 2.

We also make the following simple observation, which is
true since we use an alternating offers protocol:

Lemma 9. At any round t, `j,t ≤ `i,t.

Our main theorem is as follows:

Theorem 10. Strategies 1 and 2 specify a SPE.

Proof. We prove by induction on m. If m = 2 and t = 1,
WLOG assume that �p2= o1 � o2. Thus, JGt = {o1}, and
according to Corollary 2, o1 is the SPE result. Indeed, accord-
ing to Strategy 1 p1 will offer o2 in the first round and p2 will
reject it according to Strategy 2 since oa((o2)) = o1 �2 o2.
In the next round pi = p2 will offer o1, p1 will accept it and
then the negotiation will end with o1 as the negotiation re-
sult. Clearly there are only two states where p2 has the option
to deviate: on the equilibrium path, i.e., where H2

t = (o2),
and off the equilibrium path, i.e., where H2

t = (o1). Where
H2

t = (o2), p2 has no incentive to deviate from the response
strategy and accept the offer of o2 from p1, since o1 �2 o2.
Where H2

t = (o1), p2 has no incentive to deviate and reject
the offer of o1, since then o2 would become the last avail-
able outcome and thus the negotiation result, but o1 �2 o2.
Similarly, there is only one state where p1 has the option to
deviate, i.e., H1

t = (). In this state p1 has no incentive to
deviate from the offering strategy and offer o1, since p2 will
accept it (because o1 �2 o2) and o1 is already the SPE result
if p1 follows the offering strategy.

Now, assume that if there are m − 1 outcomes in round
t + 1, our strategies specify a SPE. We show that they spec-
ify a SPE when there are m outcomes in round t. We first
consider the strategy of pj at round t. Note that oa(H

j
t ) =

oa(H
i
t + o) = oa(H

i
t+1) by definition, and oa(H

i
t+1) is the

SPE result of following our strategies from state Hi
t+1 ac-

cording to Lemma 8 combined with the induction assump-
tion. Clearly, if according to the response strategy (Strat-
egy 2) pj should reject the offer o, it is because oa(H

j
t ) �pj

o. Therefore, it is not worthwhile for pj to deviate and accept
o instead of oa(Hi

t+1) = oa(H
j
t ). Similarly, if according to

the response strategy pj should accept an offer o, it is because
o �pj oa(H

j
t ). Therefore, it is not worthwhile for pj to de-

viate and reject o in order to get as the negotiation result the
outcome oa(H

i
t+1) = oa(H

j
t ). Overall, pj does not have an

incentive to deviate in round t. According to the induction
assumption, Strategies 1 and 2 specify a SPE when there are
m− 1 outcomes in round t+ 1. Therefore, pj does not have
any incentive to deviate.

We now concentrate on the strategy of pi at round t, but
we first derive some general inequalities. Given a history
Hi

t , suppose that there is an outcome ox ∈ Ot such that
ox �pi oat = oa(H

i
t + oit). According to Lemma 8, since

ox �pi oat, oat �pj ox. Suppose that both parties follow
strategies 1 and 2, and let t′ be the round in which JGt′ =
{oat}. Then, in round t, `i,t < di,at,t and `j,t < dj,at,t
(otherwise, oat /∈ JGt′ ). By definition, t′ = `i,t + `j,t. In

addition, since JGt′ = {oat}, ox must be part of Lowt′′ for
some t′′ < t′ (otherwise, ox ∈ JGt′ ). Since ox �pi oat
and `i,t < di,at,t, it must be that ox is part of Lj

t′′ , that is,
dj,x,t ≤ `j,t . In summary:

`i,t < di,at,t < di,x,t
dj,x,t ≤ `j,t < dj,at,t

(1)

Now assume that in round t pi deviates, and the result
of the negotiation, if both parties follow our strategies from
round t+1, is ox. Note that pi in round t+1 is pj in round t,
and thus oat �pi ox. Therefore, we use the same arguments
as above to get

`i,t+1 < di,x,t+1 < di,at,t+1

dj,at,t+1 ≤ `j,t+1 < dj,x,t+1
(2)

Now, assume by contradiction that there is an outcome
od /∈ It such that if pi offers od the negotiation result will
be ox, ox �pi oat. We first analyze the case where pj rejects
the offer of od, since ox �pj od (otherwise, pj would have
accepted). We examine the change in the distance function
for pi and pj , for outcomes oat and ox, from round t to round
t + 1. According to Lemma 3, |Li

t+1| + 1 = |Lj
t |, and since

ox �pj od and oat �pj od, dj,x,t and dj,at,t do not change
when moving to round t+ 1. Let c be an integer. Then:

di,at,t + c = dj,at,t+1

dj,at,t = di,at,t+1

dj,x,t = di,x,t+1

(3)

If we combine (2) and (3) we get that:

`j,t+1 < dj,x,t < dj,at,t
di,at,t + c ≤ `i,t+1

Adding (1) we get that:

`i,t < `i,t+1 − c

`i,t+1 < `j,t

Adding Lemma 9 we can conclude that: `i,t+1 < `j,t ≤
`i,t < `i,t+1 − c. That is, `i,t+1 ≤ `i,t+1 − c − 2, thus
c ≤ −2. However, the distance function cannot decrease by
more than 1 when moving from round t to t+1, thus c ≥ −1.

We now analyze the case where pj accepts the offer of od,
since od �pj ox. We examine the change in the distance
function for pi and pj , for outcomes oat and ox, from round
t to round t + 1. Note that since pi deviates, od �pi oat.
According to Lemma 8, oat �pj od. According to Lemma 3,
|Li

t+1| + 1 = |Lj
t |, and since oat �pj od, dj,at,t does not

change when moving to round t+ 1. However, since od �pj

ox, dj,x,t increases by one when moving to round t + 1. Let
c be an integer. Then:

di,at,t + c = dj,at,t+1

dj,at,t = di,at,t+1

dj,x,t + 1 = di,x,t+1

(4)

If we combine (2) and (4) we get that:
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`i,t+1 < dj,x,t + 1 < dj,at,t
di,at,t + c ≤ `j,t+1

Adding (1) we get that:

`i,t < `j,t+1 − c

`i,t+1 − 1 < `j,t

Adding Lemma 9 we can conclude that: `i,t+1 − 1 < `j,t ≤
`i,t < `j,t+1 − c. That is, `j,t+1 − 1 ≤ `j,t+1 − c − 2, thus
c ≤ −1. However, in order for di,at,t to decrease by at least
one, oat �pi od, but in our case od �pi oat.

Overall, we showed that pi does not have an incentive to
deviate in round t. According to the induction assumption,
Strategies 1 and 2 specify a SPE when there are m − 1 out-
comes in round t+ 1. Therefore, pi does not have any incen-
tive to deviate.

Finally, note that trivial exploration of the whole game tree
in order to derive the SPE would take at least O(2m) oper-
ations, since there can be m − 1 rounds in which a party pi

can offer any outcome from the available outcomes and the
other party pj can decide either to accept the offer or reject
it. The complexity of finding a SPE strategy of [Anbarci,
2006] is not explicitly analyzed, but its running time is at
least O(m2). Our approach provides elegant strategies that
are easy to implement and are (computationally) more effi-
cient: given a state in the game tree (i.e. given any history Hi

t

or Hj
t ), we compute a SPE strategy from the current state in

time that is linear in m. Indeed, in our approach we only need
to simulate one branch of the tree (to find oa(H

i
t) or oa(H

j
t ))

and then trace the intersection between Li
t and Lj

t .

4.1 Properties
We first note that since we showed that the result of follow-
ing Strategies 1 and 2 is Pareto optimal, we proved that they
specify a SPE, and the SPE result is unique, we can infer
that the SPE result of the protocol is Pareto optimal. We
now move to analyze the relationship between the SPE re-
sult of the protocol and the results of the designed Rational
Compromise (RC) bargaining rule [Kıbrıs and Sertel, 2007].
The RC rule is a private case of the Unanimity Compro-
mise rule, where any agreement is preferred by both par-
ties over a no-agreement result, as we assume. With our
notations, the RC rule can be rephrased as the set RC =
{ox|maxox∈O mink∈{1,2}(dk,x,1 + |Lk

1 | − 1)}. It can also be
computed by the following steps:

1. Let v = 1

2. For each k ∈ {1, 2}, let Bk
v = {the v most preferred

outcomes in �pk}.
3. If |B1

v ∩B2
v | > 0 then return B1

v ∩B2
v as the result.

4. Else, v ← v + 1 and go to line 2.
We note that the RC rule may return either one or two out-
comes, while our protocol always results with a single out-
come. Surprisingly, the SPE result of the negotiation protocol
is always part of the set returned by the RC rule. The intu-
ition is that our strategies specify a SPE by making offers and

rejecting them until It = ∅. At this stage JGt = {oeq}, and
by definition the set JGt is the intersection of the upper parts
of the preferences of both parties, which corresponds to the
B1

v ∩B2
v returned by RC.

Theorem 11. oeq ∈ RC

Proof. Let t be the round where It = ∅ after both parties fol-
low our strategies. By Corollary 2, JGt = {oeq}. Rephras-
ing the definition of JGt we get that JGt = Bi

|Ot|−|Li
t|
∩

Bj

|Ot|−|Lj
t |

. If |Lj
t | = |Li

t|, then for any v where v ≤

|Ot| − |Lj
t | , Bi

v ∩ Bj
v = {oeq} or Bi

v ∩ Bj
v = ∅. If

|Lj
t | = |Li

t| + 1, then for any v where the v ≤ |Ot| − |Lj
t |,

Bi
v ∩Bj

v = {oeq} or Bi
v ∩Bj

v = ∅, and for v = |Ot| − |Li
t| it

is possible that Bi
v ∩ Bj

v = {oeq, ox}, for some outcome ox.
Overall, oeq ∈ RC.

Based on Theorem 11, we can derive interesting results
regarding the relationship between the RC rule and the SPE
result of the negotiation protocol:

Theorem 12. 1. If RC = {o} then oeq = o.

2. If oeq is the SPE result let oeq′ be the SPE result if p1

and p2 switch their rules (i.e., p2 starts the negotiation).
If oeq 6= oeq′ , then RC = {oeq, oeq′}

3. If m is odd and `1,1 + `2,1 is even or if m is even and
`1,1 + `2,1 is odd, then |RC| = 1.

4. If |RC| = {ox, oy} and `1,1 + `2,1 is odd then oeq = ox
and ox �pi oy . If `1,1 + `2,1 is even then oeq = oy and
oy �pj ox.

Proof. 1. An easy corollary of Theorem 11.

2. An easy corollary of Theorem 11.

3. If m is odd and `1,1 + `2,1 is even or if m is even and
`1,1+`2,1 is odd, then mt is odd. Therefore, |L1

t | = |L2
t |

by definition. Then, by Theorem 11, for any v where
v ≤ |Ot| − |L1

t | , B1
v ∩ B2

v = {oeq} or B1
v ∩ B2

v = ∅.
That is, RC = {oeq}.

4. |RC| = 2, thus there exists v such that B1
v ∩ B2

v =
{ox, oy}, and for every v′ < v, B1

v′ ∩ B2
v′ = ∅. From

Theorem 11, oeq = ox or oeq = oy . Let t be the round
such that It = ∅ and JGt = {oeq}. That is, B1

|Ot|−|L1
t |
∩

B2
|Ot|−|L2

t |
= {oeq}. Therefore, |L1

t | 6= |L2
t |, and thus

mt is even. If `1,1 + `2,1 is odd then it is p2’s turn to
offer. That is, |L2

t | + 1 = |L1
t |, and since ox �p1 oy ,

oy ∈ L1
t . Therefore, oeq = ox. Similarly, if `1,1+ `2,1 is

even then it is p1’s turn to offer. That is, |L1
t |+1 = |L2

t |,
and since oy �p2 ox, ox ∈ L2

t . Therefore, oeq = oy .

Finally, we adapt the monotonicity criterion that the RC
rule satisfies for our domain, and show that the negotiation
protocol is monotonic.

Definition 5. A negotiation protocol is monotonic if given an
instance (O,�p1 ,�p2) where the SPE result is oeq , then for
any instance (O′,�′p1 ,�′p2) such that:
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1. O ⊂ O′.

2. For any o1, o2 ∈ O, o1 6= o2, and for k ∈ {1, 2}, if
o1 �pk o2 then o1 �′pk o2.

3. For any o ∈ O′ \O, and for k ∈ {1, 2}, o �′pk oeq .

we have that o′eq �′pk oeq .

Theorem 13. The negotiation protocol is monotonic.

Proof. Given an instance (O,�p1 ,�p2), we know from The-
orem 11 that oeq ∈ RC. If we add a set of outcomes O′ \ O
such that for every outcome o ∈ O′ \ O, o � oeq for both
parties, then for every outcome o′ in the set returned by the
RC rule on the modified instance (O′,�′p1 ,�′p2), o′ � oeq
by both parties. Since o′eq ∈ RC on (O′,�′p1 ,�′p2), we get
that o′eq � oeq for both parties, as required.

5 No Information
We now consider the case of no information, where we as-
sume that neither party knows the preference order of the
other party. Moreover, the parties do not even hold any prior
probability distribution over each other’s possible preference
orders. A common solution concept for this case is an ex-
post equilibrium, or in our case, an ex-post SPE. Intuitively,
this is a strategy profile in which the strategy of each party
depends only on her own type, i.e., its preference order, and
it is a SPE for every realization of the other party’s type (i.e.
her private preference order). Formally, let sk(≺) be a strat-
egy for player k ∈ {1, 2} given a preference order ≺, and
let F([s1(≺), s2(≺′)]) be the negotiation result if both par-
ties follow their strategies. In the ex-post setting, a strat-
egy for party k ∈ {1, 2}, sk, is a best response to s3−k if
for every strategy s′k and for every preference orders ≺,≺′,
F([sk(≺), s3−k(≺′)]) �k F([s′k(≺), s3−k(≺′)]). A strat-
egy profile [s1, s2] is an ex-post equilibrium if s1 is a best
response to s2 and s2 is a best response to s1, and it is an
ex-post SPE if it is an ex-post equilibrium in every subgame
of the game. We show that ex-post SPE is too strong to exist
in our setting.

Theorem 14. There are no two strategies that specify an ex-
post SPE for our protocol.

Proof. Clearly, every ex-post SPE is also a SPE (i.e., in the
full information setting), and we can thus use our previous re-
sults that characterize the SPE. Assume by contradiction that
there are two strategies s1, s2 for parties p1, p2, respectively,
such that [s1, s2] is an ex-post SPE. Let ≺1= o1 ≺ o2 ≺
o5 ≺ o4 ≺ o3 ≺ o6, and let ≺2= o1 ≺ o2 ≺ o6 ≺ o3 ≺
o5 ≺ o4. Following our strategies we get that the SPE re-
sult is o4. Since the SPE result is unique and every ex-post
SPE is also a SPE, F([s1(≺1), s2(≺2)]) = o4. Now con-
sider ≺′1= o4 ≺ o5 ≺ o1 ≺ o2 ≺ o3 ≺ o6. According to
Corollary 1,F([s1(≺′1), s2(≺2)]) = o3. Note that o4 ≺p1 o3.
Consider the following strategy: s′1(≺) = s1(≺′1) if ≺=≺1,
and s′1(≺) = s1(≺) otherwise. That is, F([s1(≺1), s2(≺2

)]) ≺p1 F([s′1(≺1), s2(≺2)]), and thus s1 is not a best re-
sponse to s2.

We note that Theorem 14 also implies that there is no so-
lution in dominant strategies. Another approach to uncer-
tainty, which follows a conservative attitude, is that a party
pk, k ∈ {1, 2}, who wants to maximize her utility may want
to play a maxmin strategy. That is, since the preference or-
der and the strategy of the other party p3−k are not known,
it is sensible to assume that p3−k happens to play a strategy
that causes the greatest harm to pk, and to act accordingly. pk
then guarantees the maxmin value of the game for her, which
in our case is a set of outcomes such that no other outcome
that is ranked lower than all of the outcomes in this set will
be accepted as the result of the negotiation, regardless of the
preferences of p3−k. Before we show the maxmin strategy
we define the complement sets for the sets Lk

t , i.e., the sets of
highest ranked outcomes.

Definition 6. In each round t, for each party pk, k ∈ {1, 2},
Uk
t = Ot \ Lk

t .

The maxmin strategy, which is composed of offering and
response strategies, is defined as follows:

Strategy 3 (MAXMIN STRATEGY). Given a history Hi
t , offer

any o ∈ U i
t . Given a history Hj

t , if o ∈ U j
t then accept o,

else reject o.

We now prove that our strategy specifies a maxmin strat-
egy, and that a party pk that follows it can guarantee the
maxmin value of the game, which is the set Uk

1 . We denote
the party that uses Strategy 3 by pmax and the other party,
which might try to minimize the utility of pmax, by pmin.
Note that we need to handle both the case where pmax starts
the negotiation (i.e, pmax = p1) and the case where pmin

starts it (i.e., pmin = p1). We re-use Lemmas 4, 5 and 6, since
they do not depend on the full-information assumption. Fur-
thermore, we add a fourth lemma, which complements these
three lemmas by considering the fourth possible offer type.

Lemma 15. In round t, if pi offers o /∈ Lj
t and pj rejects it,

then Li
t+1 ← Lj

t \ {o′}, where o 6= o′.

For ease of notation, we write U �p o for U ⊂ O to denote
that party p strictly prefers all of the outcomes in the set U
over o. The intuition of our proof is as follows. We show that
if pmax deviates from the strategy specified by Strategy 3,
pmin is able to make the negotiation result in an outcome o,
such that Umax

1 �pmax o.

Theorem 16. Strategy 3 specifies a maxmin strategy, and the
maxmin value of the game is the set Umax

1 .

Proof. We will prove by induction on m. If m = 2 WLOG
assume that �pmax= o1 � o2. If pmax = p1 then Umax

1 =
{o1, o2} and clearly one of them will be the negotiation result.
If pmax = p2 then Umax

1 = {o1}. If pmin offers o1 in the
first round, according to our strategy pmax should accept it.
If pmin offers o2 in the first round, according to our strategy
pmax should reject it, and offer o1 in the next round. Since
this is the last round, o1 will be accepted. In any case, the ne-
gotiation result is o1. On the other hand, if pmax deviates and
rejects the offer of o1 or accepts the offer of o2, then o2 will
be the result of the negotiation, but Umax

1 �pmax o2. Now,
assume that if there are m − 1 outcomes in round t + 1 our
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strategy specifies a maxmin strategy, and the maxmin value
of the game is the set Umax

t+1 . We show that our strategy spec-
ifies a maxmin strategy, and the maxmin value of the game is
the set Umax

t when there are m outcomes in round t.
Assume that it is pmax’s turn to offer. Clearly, if pmax

deviates and offers an outcome o such that Umax
t �pmax o

then pmin can accept it, and the negotiation results in o. On
the other hand, if pmax offers any o ∈ Umax

t then pmin can
either accept or reject it. If pmin rejects it then there are m−1
outcomes in the next round, and according to the induction
assumption pmax can guarantee the maxmin value of Umax

t+1
by following our strategy. However, according to Lemma 4,
Lmax
t+1 = Lmax

t and thus Umax
t+1 ∪ {o} = Umax

t . Overall, the
maxmin value of the game is the set Umax

t .
Now assume that it is pmin’s turn to offer, and pmin of-

fers o ∈ Umax
t . Clearly, if pmax accepts then the negotia-

tion result is from Umax
t . If pmax deviates and rejects, then

according to induction assumption pmax can guarantee the
maxmin value of Umax

t+1 . However, according to Lemma 15,
Lmax
t+1 = Lmax

t \ {o′}, and thus Umax
t+1 = Umax

t \ {o} ∪ {o′}.
That is, o′ is a possible result of the negotiation even though
Umax
t �pmax o′. Finally, assume that pmin offers o /∈ Umax

t .
Clearly, if pmax deviates and accepts, then the negotiation re-
sults in o. On the other hand, if pmax follows our strategy and
rejects, then according to the induction assumption pmax can
guarantee the maxmin value of Umax

t+1 . However, according to
Lemma 5, Lmax

t+1 = Lmax
t \{o}, and thus Umax

t+1 = Umax
t .

We note that even though a party does not hold any in-
formation regarding the preference order of the other party,
she can still guarantee that the negotiation result will be from
the upper part of her preference order (i.e., Uk

1 ) by follow-
ing Strategy 3. This is possible since both parties have some
important common knowledge, which is the number of out-
comes m, as formally captured in Lemma 1.

Now, what will be the negotiation result if neither party
knows the preference order of the other party, but both are ra-
tional and will thus follow the maxmin strategy? Clearly, the
negotiation result will be an outcome o such that o ∈ U1

1∩U2
1 .

That is, an outcome from the set JG1 as defined in Defini-
tion 1. We then get an interesting observation: if I1 = ∅,
JG1 = {0eq} according to Corollary 2, thus the negotiation
result is the same for both the case of full information and the
case of no information.

In addition, we note that a party pi cannot guarantee that
the negotiation result will be from a subset U ⊂ U i

1, since
we proved that this is the maxmin value. However, she can
heuristically offer in each round t the best outcome in U i

t ,
instead of an arbitrarily chosen o ∈ U i

t . Since |U j
t | ≥ |L

j
t |,

if the other party pj is also rational and plays the maxmin
strategy, there are more cases where pj will accept this offer,
and it is thus beneficial for pi to heuristically offer in each
round t the best outcome in U i

t .
The idea of the maxmin strategy is that a party, not know-

ing the preferences of the other party, makes a worst case
assumption about the behavior of that party (i.e., that she
does not need to be rational). This assumption may seem
too restrictive, and we therefore also consider the robust-
optimization equilibrium solution concept from [Aghassi and

Bertsimas, 2006], which we adapt to out setting. Intuitively,
in this solution concept each party makes a worst case as-
sumption about the preference order of the other party, but
each party still assumes that the other party will play ratio-
nally and thus her aim is to maximize her utility. Formally,
given a strategy profile [s1, s2] and a preference order ≺, let
ws1,≺,s2 = F([s1(≺), s2(≺′)]), where ≺′ is a preference or-
der such that for all ≺′′, F([s1(≺), s2(≺′)]) �p1 F([s1(≺
), s2(≺′′)]). In the robust-optimization setting, a strategy for
party k ∈ {1, 2}, sk, is a best response to s3−k if for all s′k
and for all ≺, wsk,≺,s3−k

�pk ws′k,≺,s3−k
. A strategy profile

[s1, s2] is a robust-optimization equilibrium if s1 is a best re-
sponse to s2 and s2 is a best response to s1. We show that
in our setting, surprisingly, every pair of maxmin strategies
specifies a robust-optimization equilibrium.

Theorem 17. If s1 and s2 are maxmin strategies, then [s1, s2]
is a robust-optimization equilibrium.

Proof. Given a preference order, ≺, let ≺op be the oppo-
site preference order, i.e., if ≺= o1 ≺ o2 ≺ ... ≺ om
then ≺op= o1 � o2 � ... � om. According to Theo-
rem 16, if sk is a maxmin strategy then the negotiation re-
sult is o ∈ Uk

1 . That is, the worst negotiation result for
pk is the least preferred outcome in Uk

1 , denoted by owo.
Since the other party p3−k is also using a maxmin strategy,
o ∈ Uk

1 ∩ U3−k
1 . For every preference order, ≺, if the pref-

erence order of p3−k =≺op, Uk
1 ∩ U3−k

1 = {owo}. That
is, ws1,≺,s3−k

= owo. Assume by contradiction that there
is another strategy s′k and a preference order ≺, such that
ws′k,≺,s3−k

�pk owo. However, if the preference order of
p3−k =≺op, ws′k,≺,s3−k

/∈ U3−k
1 , in contradiction to Theo-

rem 16.

Finally, consider an asymmetric information setting, where
there exists one party that has full information about the other
party’s preference order, while the other party does not have
this information. Let pinfo be the party that has the full in-
formation, and pnull be the other party. pnull has no infor-
mation and she will thus act according to the maxmin strat-
egy (Strategy 3). pinfo would like to take advantage of her
knowledge, so the negotiation result will be better for her.
However, according to Theorem 16, the maxmin value of the
game is Unull

1 . Therefore, the best strategy for pinfo is as fol-
lows. If pinfo starts the negotiation, she should offer the best
outcome from Unull

1 according to her preferences, and pnull

will accept it. If pinfo starts the negotiation, she will offer
an outcome from Unull

1 . If this is the best outcome according
to pinfo’s preferences, she should accept it. Otherwise, in the
second round pinfo should offer the best outcome from Unull

1
according to her preferences, and pnull will accept it.

6 Conclusion
We investigated the VAOV negotiation protocol, which is
suitable for ordinal preferences over a finite set of outcomes.
We introduced strategies that specify a SPE, and improved
upon previous results by providing a linear time algorithm
that computes a SPE strategy. We provided substantial anal-
ysis of our strategies, which showed the equivalence of the
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SPE result of the protocol in a non-cooperative setting, to the
result of the RC rule in a cooperative setting. Finally, we
analyzed the no information setting. We believe that our ap-
proach is especially suitable for non-cooperative, multi-agent
systems, since we provide easy to implement strategies that
can be computed only once if both agents follow the SPE
strategy on the equilibrium path. Moreover, there is no need
for a central authority to guarantee that the negotiation result
will be Pareto optimal, if both agents are rational and follow
the SPE strategy. For future work, we would like to extend
the protocol to a multi-party setting and analyze the resulting
SPE. In addition, it is important to find additional implemen-
tation of other bargaining rules by negotiation protocols, sim-
ilar to the implementation that we showed for the RC rule by
the SPE of the VAOV protocol.

Acknowledgments
This work was supported by the Israel Science Foundation,
Grant No. 1488/14.

References
[Aghassi and Bertsimas, 2006] Michele Aghassi and Dim-

itris Bertsimas. Robust game theory. Mathematical Pro-
gramming, 107(1-2):231–273, 2006.

[Ali and Ronaldson, 2012] Shehzad Ali and Sarah Ronald-
son. Ordinal preference elicitation methods in health eco-
nomics and health services research: using discrete choice
experiments and ranking methods. British medical bul-
letin, 103(1):21–44, 2012.

[Anbarci, 1993] Nejat Anbarci. Noncooperative foundations
of the area monotonic solution. The Quarterly Journal of
Economics, 108(1):245–258, 1993.

[Anbarci, 2006] Nejat Anbarci. Finite alternating-move ar-
bitration schemes and the equal area solution. Theory and
decision, 61(1):21–50, 2006.

[Boutilier et al., 2015] Craig Boutilier, Ioannis Caragiannis,
Simi Haber, Tyler Lu, Ariel D Procaccia, and Or Sheffet.
Optimal social choice functions: A utilitarian view. Artifi-
cial Intelligence, 227:190–213, 2015.

[Brams and Kilgour, 2001] Steven J Brams and D Marc Kil-
gour. Fallback bargaining. Group Decision and Negotia-
tion, 10(4):287–316, 2001.

[Brandt et al., 2016] Felix Brandt, Vincent Conitzer, Ulle
Endriss, Ariel D Procaccia, and Jérôme Lang. Handbook
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