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Abstract

We are concerned with the synthesis of strate-
gies for sequential decision-making in non-
deterministic dynamical environments where the
objective is to satisfy a prescribed temporally ex-
tended goal. We frame this task as a Fully Observ-
able Non-Deterministic planning problem with the
goal expressed in Linear Temporal Logic (LTL), or
LTL interpreted over finite traces (LTL¢). While
the problem is well-studied theoretically, existing
algorithmic solutions typically compute so-called
strong-cyclic solutions, which are predicated on an
assumption of fairness. In this paper we introduce
novel algorithms to compute so-called strong solu-
tions, that guarantee goal satisfaction even in the
absence of fairness. Our strategy generation algo-
rithms are complemented with novel mechanisms
to obtain proofs of unsolvability. We implemented
and evaluated the performance of our approaches in
a selection of domains with LTL and LTL¢ goals.

1 Introduction

We are concerned with the synthesis of strategies in dis-
crete, dynamical environments that are fully observable
and where the outcomes of actions are non-deterministic
(FOND). FOND planning provides a computational core for
many applications and sequential decision-making problems
including two-player games, web-service composition, and
the synthesis of controllers for devices and systems. In FOND
planning, two classes of solutions are commonly considered:
strong solutions guarantee eventual satisfaction of the goal,
whereas in strong-cyclic solutions such guarantee is predi-
cated on the assumption that the dynamics of the system is
fair (e.g., [Cimatti er al., 2003]).

The focus of this paper is on the development of al-
gorithms for the synthesis of solutions to FOND planning
with temporally extended goals — in particular, strong so-
lutions. Different languages have been used for the spec-
ification of temporally extended goals in planning. In this
paper, we follow on recent work in so-called LTL FOND
and LTL¢ FOND planning that use Linear Temporal Logic
(LTL) and LTL interpreted over finite traces (LTL¢), respec-
tively (e.g. [Patrizi et al., 2013; Camacho er al., 2017,
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Type of solutions

strong-cyclic strong
LTLs FOND Camacho et al. [2017]  This paper
LTLFOND  Camacho et al. [2017] This paper

Patrizi et al. [2011]

Table 1: Existing approaches to FOND planning with LTL¢ and LTL
goals. Patrizi et al.’s approach is limited to a subset of LTL.

De Giacomo and Rubin, 2018; Camacho et al., 2019]). Our
techniques complement early work on FOND planning with
temporally extended goals expressed in CTL [Pistore et al.,
2001]. Note, CTL and LTL are non-equivalent languages,
although both can be transformed into automata. Our tech-
niques exploit automata transformations of the goal specifi-
cation, and can therefore be extended for use with any goal
specification language that can be transformed into automata
—e.g. PSL, CTL, Past LTL (PLTL), and (finite) Linear Dy-
namic Logic (LDL¢) [De Giacomo and Vardi, 2013], as well
as PDDL3.0 temporal operators [Gerevini ez al., 2009].

The complexity of LTL FOND and LTL; FOND plan-
ning is now well understood [De Giacomo and Rubin, 2018;
Camacho et al., 2019]. The latter paper provides a clear
correspondence with LTL synthesis and game structures, and
identifies fragments of LTL and LTL¢ for which planning can
be done more efficiently. Despite increasing interest in the
area, the number of algorithmic approaches to LTL FOND
and LTL¢ FOND planning remains limited. To date, existing
tools have focused on the computation of strong-cyclic solu-
tions whose validity is predicated on the fairness assumption
(cf. Table 1). The synthesis of strong solutions had remained
elusive, and is the focus of this paper.

We provide the first algorithmic approach to strong LTL
FOND and LTL¢ FOND planning. Our approach exploits au-
tomata transformations of the goal formula, and compiles the
problem into a standard goal-oriented FOND planning prob-
lem that can be solved with off-the-shelf planners. We fur-
ther provide an analysis of the different sources of algorithmic
complexity. Whereas we adopt LTL and LTL¢ as goal specifi-
cation languages, our techniques can be extended to any lan-
guage that can be transformed into automata. This includes
PSL, CTL, PLTL, LDL¢, and PDDL3.0 temporal operators.
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Our algorithms have been implemented and evaluated em-
pirically. Experiments demonstrate the effectiveness of our
approach to computing strong solutions. They also suggest
that assuming fairness and computing strong-cyclic solutions
via existing approaches can ease the burden of computation.

2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) over a finite set of atomic
propositions AP extends propositional logic with temporal
operators next (O) and until (/). Namely,

pu=pleAploVel|-p|lop| Uy

where p € AP. Other operators are usually considered, such
as eventually (O = TUp) and always (Op = —O—p).
LTL was initially conceived for model checking of proper-
ties of logical circuits [Pnueli, 1977], and over the years it
has been used in a myriad of applications: from specification
language for the synthesis of programs [Pnueli and Rosner,
19891, to goal specification language for automated planning
[Bacchus and Kabanza, 1998]. In automated planning in par-
ticular, variants of LTL interpreted over finite traces have been
widely studied. Here, we use LTL¢. The syntax of LTL¢ is the
same as for LTL, and differs in the semantics.

A finite trace p = s1--- S, is a model of LTL¢ formula
(and we write p = @) pif p, 1 = ¢, where

pilEpifpe APandp € s;
p, 1 = @ if o is a propositional formula and s; = ¢

p,i = —pif p,i b= @, ie., itis not the case that p,i = ¢
pyiE @ A2 if pyi = @1 and p,i = @2
piEOpifi+1<|plandp,i+ 1 ¢

i = oilhps if p,j = o for some i < j < |p| and
p Kk |E @y foreveryi <k <j

The semantics of LTL is similar, with the exception that for-
mulae are evaluated over infinite traces (i.e., |p| = c0). In the
sequel, we refer to the size of an LTL or LTL¢ formula ¢ as the
number of temporal and logical operators, plus the number of
atomic propositions in .

2.2 LTL and Automata

LTL and LTL¢ have a well-known correspondence with au-
tomata, that we review here (cf. [Baier and Mcllraith, 2006b;
Kupferman and Vardi, 2005]). An automaton is a tuple
A = (Q,%,q0,T, ), where Q) is a finite set of automaton
states, X is a finite alphabet of input symbols (in this paper,
¥ = 24P7) ¢y € Q is the initial state, and 7 C Q x ¥ x Q
is the transition relation. The transition relation is deter-
ministic when a unique triplet (¢, s,q’) € T exists for each
pair (¢,8) € @ x X. A run of A on an infinite word
w = Sp81 - - - € X is a (possibly infinite) sequence qoq; - - -
where (g;, $;, qi+1) € T foreachi > 0. The seta C @ serves
to characterize the set of runs that are accepting. Different
types of automata exist according to their acceptance condi-
tion. Here, we are interested in Universal Co-Biichi Word
(UCW) and Non-deterministic Finite Word (NFW) automata.

A UCW automaton accepts an infinite word w if all the
runs on w hit a finite number of states in o. In contrast, a
NFW automaton accepts a finite word w if some run on w
has the same length as w and finishes in one of the states in
a. NFW automata with deterministic transition relation are
called Deterministic Finite Word (DFW) automata. We say
that automaton A is a transformation of an LTL (resp. LTLy)
formula ¢ if A accepts all and only the models of (.

Property 1. LTL (resp. LTL¢) formulae can be transformed
into UCW (resp. NFW) automata in worst-case exponential
time, and so that the number of states is worst-case exponen-
tial in the size of the formula.

Property 2. LTL¢ formulae can be transformed into DFW
automata in worst-case double exponential time, and so that
the number of states is worst-case double exponential in the
size of the formula.

3 Planning with Temporally Extended Goals

Automated planning is a popular model-based approach to
sequential decision-making. The world dynamics — i.e., the
dynamics of the system under observation — is assumed to
be given to the agent by means of a planning domain that
describes how the world reacts in response to the agent’s ac-
tions. The objective in a planning problem is to synthesize
an agent strategy that guarantees satisfaction of a prescribed
goal. We formalize these concepts below.

3.1 Planning Domains

In this paper we focus on planning domains that are fully
observable and non-deterministic (FOND). We represent
FOND domains compactly (Definition 1), following the nota-
tion in Ghallab et al. [2016]. The set of fluents, F, represents
properties of the world. A planning state is a complete truth
assignment over the set of fluent variables, and is usually rep-
resented with the subset of fluents s C F that hold true in
such state. Regarding the dynamics, an action a € A is ap-
plicable in a state s if (s,a) € Poss. The result of applying
action a in state s is a state s’ € (s, a). We say an action a is
deterministic when |§(s, a)| = 1 in all states s for which a is
applicable. Note that, in general, the result of applying an ac-
tion is non-deterministic and cannot be predicted in advance.

Definition 1. A FOND planning domain is a tuple
(F,A,0,Poss), where F is a finite set of fluent symbols,
A is a finite set of action symbols, Poss C 27 x A, and

§:2F x A — 227 The size of the domain is | .

Fairness over Executions. Executions of a planning do-
main D = (F, A, §, Poss) from state so are (possibly infi-
nite) sequences of state-action pairs (sg, ag)($1,a1) - -+ such
that (s,,a,) € Poss and s,41 € 0(sp,a,). It is common
in FOND planning to presume fairness over executions, that
is, that all the non-determinism of the actions manifests in-
finitely in the limit (cf. [Cimatti et al., 2003]). An execution
7 is unfair if || = oo and there exists s,a and s’ € (s, a)
such that the pair (s, a) appears infinitely often in 7, but the
number of occurrences of consecutive pairs (s1,a1)(s2, a2)
with s1 = s, a1 = a, and sy = s’ is finite. Fair executions
are those that are not unfair.
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3.2 Planning Problems

A FOND planning problem is a tuple (D, ¢, @), where: D
is a FOND domain; ¢  is a formula that describes the (com-
plete) initial state of the world'; and ¢ is a formula that
describes the objective of the agent.

Compact Problem Representations. Planning problems are
commonly encoded with a compact representation of states,
actions, and state transitions. For the reader not familiar with
STRIPS-like languages, such as PDDL, a planning problem is
atuple (F,I,0,G), where F'is the set of fluents, I is the ini-
tial state, O is the set of operators, and G is the goal condition.
For final-state goals, GG is usually the set of literals that hold
true in a goal state. States are sets of fluents that represent
what holds true in the world. For a fluent f, we write s = f
if f €s,ands = ~fif f € s. Foraset of literals ®, we write
skE=®if s =1 foreachl € ®. An action a € O is defined in
terms of its preconditions (Pre,) and effects (Eff ,). The pre-
conditions are a set of literals that need to hold true in a state s
for a to be applied, that is, s = Pre,. The result of applying
action a in s is a state s’ characterised non-deterministically
by one of the Eff}, in Eff, = {Eff., ..., Eff i }. Each Eff},
contains a set of conditional effects that add and delete fluents
from s. More formally, each Eff! contains pairs ¢ — e. A
fluent f holds in s’ iff: (i) s |= ¢ for some ¢ — e in Eff’,
and f € ¢; or (ii) s | f and for all ¢ — e in Eff; such
that s = ¢, = f € c. Sometimes we abuse notation and write
Eff o = {cj = e}, ;U oneof {Eff.,..., Eff2} to denote
that each ¢; — e; is a conditional effect in all Eff;,, and we
omit writing it in their explicit description. We also omit writ-

ing cin ¢ — e when ¢ = (). An execution finishing in state s
satisfies a final-state goal G if s = G.

3.3 Strong and Strong-Cyclic Solutions

In this paper, solutions to a FOND planning problem take
the form of strategies. Following Camacho et al. [2019], a
strategy for a FOND planning domain D = (F, A, J, Poss)
is a function o : (27)* — AU {end}. For a strategy to
be well-defined, we require actions o(sg - - - s,,) be applica-
ble in s,. An execution of strategy ¢ in domain D from ini-
tial state so = ¢ is a sequence m = (Sg,ap)(s1,a1) -
with the following properties: (i) a,, = o(sg - - - s,) for each
n < |r|; (i) for each n < |7| — 1, a,, € A is an action ap-
plicable in s,, and $,,+1 € d(Sn,an) is a result of applying
action a,, in s,; (iii) if n = |r| — 1, then a,, = end. Intu-
itively, end is a special action symbol that indicates the fermi-
nation of the execution. Non-terminating executions are infi-
nite, and we write || = oco. Strategies can be implemented
compactly as finite-state controllers (FSCs) (cf. [Geffner and
Bonet, 2013]). Goal formulae are evaluated with respect to
execution traces, which are simply rewritings of executions
7 = (80,a0)(s1,a1)--- in the form of sequences of sets

pr = (s0U{ao})(s1U{ai})---.

'If ; is only partially defined, the problem can be polynomially
reduced to FOND planning with a (completely defined) dummy ini-
tial state s; and dummy action az, only applicable at state sy, that
non-deterministically maps s; to some state s (and henceforth ;)
that models the original ¢;.

Definition 2 (Strong Solutions). A strategy o is a strong so-
lution to FOND planning problem (D, ¢, q) with tempo-
rally extended goal formula o if all execution traces of o
that commence in so |= @7 satisfy o .

Definition 3 (Strong-Cyclic Solutions). A strategy o
is a strong-cyclic solution to FOND planning problem
(D, o1, pc) with temporally extended goal formula ¢ ¢ if all
fair execution traces of o that commence in so |= @ satisfy
PG-

Our definitions for the classes of strong and strong-cyclic
solutions to FOND planning with temporally extended goals
extend those defined by Cimatti et al. [2003] for FOND
planning with final-state goals. We highlight three differ-
ences worth noting. First, we define solutions to be strategies,
whereas solutions as for Cimatti e al. [2003]’s paper take the
more restricted form of policies, or memoryless strategies o
such that o(sg---s,) = o(sy) for each sq - - s,. Second,
execution of solutions to FOND planning with temporally ex-
tended goals may not terminate. In contrast, (fair) executions
of solutions to FOND planning with final-state goals always
terminate upon achievement of a goal state. Finally, strong
policies that are solution to a FOND planning problem with
final-state goal are acyclic. This property no longer holds, in
general, for temporally extended goals.

3.4 FOND Planning with LTL and LTLf Goals

Throughout the paper, we use LTL and LTL¢ as goal specifi-
cation languages and refer to the subsequent problems as LTL
FOND and LTL¢ FOND, respectively. Nevertheless, our tech-
niques can be extended to any formal language that can be
transformed into automata (e.g. PSL, CTL, PLTL, and LDLy).
For simplicity, we limit the algorithms presented here to tem-
poral formulas defined over the set of propositional variables
AP = F. Note, our techniques can be naturally extended to
handle propositional variables F U A, allowing goal formu-
lae to describe state-action execution traces by means of the
addition of new fluents occ(a) that are made true after each
action a is executed (cf. [Bienvenu et al., 2011]).

LTL¢ FOND Planning. The model of LTLf FOND plan-
ning is concerned with the synthesis of terminating strategies
whose executions satisfy a prescribed temporally extended
goal expressed with an LTL¢ formula over fluent variables.

LTL FOND Planning. The objective in LTL FOND planning
is to synthesize non-terminating strategies whose executions
satisfy a prescribed temporally extended goal expressed with
an LTL formula over fluent variables.

3.5 Related Work

Existing tools to solve FOND planning with LTL¢ and LTL
goals were limited to the computation of strong-cyclic solu-
tions (cf. Table 1). In the context of planning with determinis-
tic actions, a variety of planners exist for temporally extended
goals expressed in LTL¢ (e.g. [Baier and Mcllraith, 2006b;
Baier and Mcllraith, 2006a; Torres and Baier, 2015])), LTL
(e.g. [Patrizi et al., 2011]), and with temporal operators in the
syntax of PDDL3.0, a standard language for modeling plan-
ning problems [Gerevini er al., 2009]. The aforementioned
approaches follow a similar schema that we also adopt.
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Goal Solution FOND Automaton Compilation Size gf search space wrt. .. Complete?
planner (transf.) domain autom. goal

LTL, strong strong AFW (LIN)  Camacho et al. [2017] EXP EXP  EXP No
str.-cyclic  str.-cyclic

LTL strong SUOng ___ NEW (EXP)  Camacho ef al. [2017] EXP  EXP  2EXP Yes
str.-cyclic  str.-cyclic

LTL strong SUONE___ pEW (2EXP)  Camacho ef al. [2017] EXP  LIN  2EXP Yes
str.-cyclic  str.-cyclic

LTL str.-cyclic  str.-cyclic ABW (LIN)  Camacho er al. [2017] EXP EXP EXP No

LTL str.-cyclic ~ str.-cyclic  NBW (EXP)  Camacho et al. [2017] EXP EXP 2EXP Yes

LTL str.-cyclic  str.-cyclic  DBW (2EXP)  Camacho er al. [2017] EXP LIN 2EXP No

LTL str.-cyclic  str.-cyclic  DBW (2EXP)  Patrizi e al. [2013] EXP LIN 2EXP No

LTL strong str.-cyclic ~ UCW (EXP)  This paper EXP EXP 2EXP Yes

Table 2: Summary of existing compilation-based approaches to LTL¢ FOND and LTL FOND. For each type of goal formula (LTL¢ or LTL)
and solution sought (strong or strong-cyclic), we list the type of automaton used by different compilations, the off-the-shelf planner that
has to be used to obtain the desired solution, the sources of computational complexity, and whether the approach is complete. Interestingly,
NFW-based (resp. NBW-based) compilations in Camacho et al. (2017) for LTLs FOND (resp. LTL FOND) planning can be also used with
deterministic (DFW) automata without affecting the domain, goal, and overall worst-case computational complexity of the approach.

(1) Transform the goal formula ¢ into automata

(2) Construct a new planning problem P’ by augmenting P
with the states and dynamics of the automata

(3) Solve P’ with an off-the-shelf planner
(4) Extract a solution to PP from a solution to P’

LTLs FOND and LTL FOND planning have been well stud-
ied theoretically. Strong and strong-cyclic plan existence are
EXP-complete in the size of the domain, and 2EXP-complete
in the size of the goal formula [De Giacomo and Rubin, 2018;
Camacho et al., 2019]. FOND planning with final-state goals
is EXP-complete, and can be solved in polynomial time in
the size of the search space [Rintanen, 2004]. Motivated by
these recent results, we conducted an analysis of the sources
of computational complexity of existing compilation-based
approaches to LTLf FOND and LTL FOND planning. Table
2 reports the size of the search space in the compiled FOND
planning problems in terms of the sizes of the original do-
main, the automaton transformation, and the goal formula.
We determined that existing complete approaches can com-
pute solutions in exponential time in the size of the original
domain, and double exponential time in the size of the goal
formula — matching the complexity of the decision problems.

4 Algorithms for LTLf FOND Planning

The approach taken by Camacho er al. [2017] to strong-
cyclic LTL¢ FOND planning takes an LTLs FOND planning
problem P = (D, ¢, ¢ ) and constructs a final-state FOND
problem, P’. Strong-cyclic solutions to P can be extracted
from strong-cyclic solutions to P’. In essence, the compila-
tion does a cross-product of the original domain and the au-
tomaton transformation of the formula. Figure 1 shows the
details — we introduced minor changes that do not affect cor-
rectness. We convey that strong solutions to P can be also
obtained from the same compilation, P’, by simply searching
for strong solutions. We elaborate on the approach below.

Step 1: Transformation of ¢ into NFW or DFW. In
the first step, a CNF representation of the LTL¢ goal formula

e = wg) ARERIAN gp(G”) is transformed into multiple NFW
A one per each clause 99(5). The traces that satisfy ¢ g are
in correspondence with the traces that are accepted by all the
A® i =1..n. Automata decompositions of o are optional,
and enable to scale to larger goal formulas. The compilation
also works with DFW transformations of the LTL; formula,
as DFW automata are a particular type of NFW automata.

Step 2: Construction of a new FOND problem. In the sec-
ond step, a problem P’ is constructed that integrates the dy-
namics of the NFW obtained in the first step. The details of
the compilation are shown in Figure 1. In a nutshell, planning
states in P’ keep track of automaton runs on the partial plan
being simulated. To this end, execution of the actions in P are
followed by actions that synchronize the automaton states.

Step 3: Solving the compiled problem. An off-the-shelf
strong or strong-cyclic planner is used to compute a solution
to P’. Strong (resp. strong-cyclic) solutions to P can be ex-
tracted from strong (resp. strong-cyclic) solutions to P’.

Step 4: Extraction of a strategy. A strategy o that is solu-
tion to P is constructed from the solution ¢’ found in Step 3.
Actions o(sg - - - s, ) are obtained by unfolding ¢’ in P’.

Correctness. Theorem 1 states the soundness and complete-
ness of the approach. We omit the proof for space reasons,
but it follows from the following properties: (i) State-action
plans in P’ simulate state-action plans in P; (ii) State-action
plans in P’ do bookkeeping of (some, or all) the runs of the
automata; and (iii) An state-action plan in P satisfies ¢ iff the
counterpart state-action plan in P’ that simulates it and does
bookkeeping of all the automata runs achieves the goal.

Theorem 1. An LTL¢ FOND problem P has a strong (resp.
strong-cyclic) solution iff the compiled FOND problem P’ de-
scribed in Figure I has a strong (resp. strong-cyclic) solution.

Computational complexity. Our compilation-based ap-

5526



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Components of the compilation:
F":=F U {sync,world}

U {o1dF(q), newF(q)}, .o U U{goal(i)}

I' =T U {sync} U U{OldF(Qéi))}

K3
O :={a' |a€ O} U{trans(t)},.; U {continue}
G = U{goalm}
i
Stage 1: World actions:
Pre, :=Pre, U {world}

Eff ., =Eff, U {-world, sync}
Stage 2: Actions that simulate transitions t = (¢, ®,q’) € T

Pregrans(x) = {sync,0ldF(q)} U ®
] {newF(q’),goalm} if ¢ € o
Eﬁtrans(t) = ’ o (%)
{newF(q')} ifg ¢

Action that reestablishes the dynamics of the problem:
Precontinie = {sync}

Eﬁcontinue = {World, ‘!Sync}
U {ﬁnewF(q)}qu U U{—'goal(l)}

U {newF(q) — OldF(q)}qu
U{—newF(q) — ﬁOldF(q)}qu

Figure 1: Components of the compiled FOND problem P’ =
(F',I',0',G") for an LTL¢ FOND problem P = (F,I,0,¢¢c)
with pg = 90<Gl> Ao A Lp(él) and A; = (Qm, 27 q((f), T“), a(i)>.
For convenience, we write @ = | J, QW and T := U, T,

proach to strong and strong-cyclic LTL¢ FOND planning can
compute solutions in worst-case time that matches the com-
plexity of the decision problem (Theorem 2). The result fol-
lows by looking at the size of the search space in P’ with
respect of the size of the search space in P and the size of
automata transformations of the goal formula. Interestingly,
the worst-case computational complexity does not depend on
whether NFW or DFW automata transformations are used
(Corollary 1).> This is because the extra exponential cost
incurred by DFW automata transformations is compensated
with an exponentially reduced size of the search space in the
compiled problem (w.r.t. compact domain representations).

Theorem 2. A strong (resp. strong-cyclic) solution to an
LTLs FOND planning problem P = (D, o, v ) can be com-
puted in worst-case exponential time in the size of the D, and
double-exponential time in the size of ¢ via the compila-
tions to FOND planning described in Figure 1.

Proof. The size of the search space in the compiled problem,
P’, is linear in the size of the search space of P and exponen-
tial in the size of NFW automata transformations of the goal
formula. The desired result follows by observing that NFW
automata transformations are worst-case exponential in the
size of ¢, and FOND planning can be solved in polynomial
time in the size of the search space [Rintanen, 2004].

2 We thank Moshe Vardi for a question that inspired this result.
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DFW automata transformations are worst-case double-
exponential. To obtain the desired result, we need to observe
that with deterministic automata the size of the search space
in P’ augments only linearly (not exponentially) with the au-
tomata sizes — because in P’ only one automaton state fluent
per DFW automaton can be made true at a time. O

Corollary 1. The worst-case domain and goal complexity of
the compilation-based approach to strong and strong-cyclic
LTL¢ FOND planning does not depend on whether the LTL¢
goal formula is transformed into NFW or DFW automata.

5 Bounded LTL FOND Planning

To date, no algorithms for computing strong solutions to LTL
FOND planning had been studied. Unlike with LTL¢ FOND,
we cannot simply take Camacho et al. [2017]’s approach to
strong-cyclic LTL FOND planning and replace the strong-
cyclic planner by a strong planner. The reason is complex,
and is related to the type of automaton that was used — Non-
deterministic Biichi Word (NBW) automata. In essence, all
approaches to LTL synthesis rely, in one way or another, to
automata determinization. The problem with using NBW is
that it cannot be determinized, in general. Because LTL syn-
thesis can be reduced to strong LTL FOND planning [Cama-
cho et al., 2019], we can expect similar determinization re-
quirements in algorithms for strong LTL FOND planning
Noteworthy, we use a type of automaton that is particularly
new to the planning community: UCW automata. In what fol-
lows, we say that the co-Biichi index of a word w (wrt a UCW
automaton A = (Q, X, qo, J, ) is the maximum k for which
there exists a run of A on w that hits k states in . Theorem
3 sets bounds on the co-Biichi index required to guarantee
existence of solutions. In contrast to analogous results for
bounded LTL synthesis, the bounds also depend on the do-
main size. In the next section, we will design algorithms for
bounded plan synthesis in strong LTL FOND planning.

Lemma 1. Strategy executions traces of a strong solution
to an LTL FOND planning problem yield accepting runs of
UCW transformations of the goal formula.

Theorem 3 (Bounded plan synthesis). Ler P = (D, o1, pa)
be an LTL FOND planning problem, and let Ac be a UCW
transformation of @ g. If P has a strong solution, then there
exists a strategy o that is a strong solution to P such that all
executions traces of o yield accepting runs of Ag with co-
Biichi index bounded by some k < oo exponential in the size
of Ag, and exponential in the size of D.

Proof. From the reductions of LTL FOND into game struc-
tures, and further reductions into parity games, we know that
a finite-state controller M that implements a strategy o that
is a strong solution to P can be synthesized in exponential
time in the size of D, and exponential time in the size of Ag
(cf. [Camacho et al., 2019]). The size of such controller,
|M], is worst-case exponential in the size of D, and expo-
nential in the size of Aq. It must be the case that the runs
of A¢ on executions traces of M have finite co-Biichi index
— because M implements a solution (Lemma 1). Moreover,
the co-Biichi index must be bounded by k£ = |M]| - |Ag|.
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Algorithm 1 Strong solutions to LTL FOND planning

Components of the compilation:

Input: P= <D7 PI, QOG>
1: Transform ¢ into UCW A,,. Fix k =1
2: Construct P;, = XPRODUCT(P, A, k)
3: If P}, has no solution, increment & by one and go to 2
4: return solution

Otherwise, a loopy behaviour could be generated that yields
executions traces with infinite co-Biichi index. The bound &
is exponential in the sizes of A and D. O

6 Algorithms for LTL FOND Planning

Our approach to compute a strong solution f to a LTL FOND
planning problem P compiles the problem into a series of
standard FOND planning problems P}, with final-state goal.
The compilations simulate the dynamics of P, and keep track
of the runs of a UCW automata transformations of the goal
formula. The parameter k in P; bounds the maximum co-
Biichi index allowed on the executions traces of f. Solutions
to P can be directly extracted from solutions to P..
Algorithm 1 summarizes the steps of our approach, that we
detailed below. We combine ideas from strong-cyclic LTL
FOND planning [Camacho er al., 2017] and LTL synthesis
via strong-cyclic FOND planning [Camacho er al., 2018b].

Step 1: Transformation of ¢ into UCW. A CNF repre-
sentation of the LTL formula o = pi A -+ A @7 is trans-
formed into multiple UCW A;, one for each clause <piG, The
traces that satisfy ¢ are in correspondence with the traces
that are accepted by every A;, i = 1..n. As usual, automata
decompositions serve to scale to larger goal formulas.

Step 2: Construction of a new FOND problem. In the sec-
ond step, we construct a FOND problem P, that integrates
the dynamics of the UCW within the original LTL FOND
problem, P. Details are shown in Figure 2. The resulting
problem is constructed in a way that enforces that strategy
execution traces yield UCW runs with co-Biichi index no
greater than input parameter k, starting with £ = 1. The non-
determinism induced by action continue is a recourse used
to generate non-terminating plans. It is important to note that
the dynamics simulate all the runs of the UCW, and fluents
newCnt(q,m) do bookkeeping of the maximum co-Biichi in-
dex among all the runs that finish in ¢ € . The dynam-
ics of the FOND domain enforces that those runs never hit o
more than k times. Certainly, a deadend is induced when-
ever one run hits « exactly k£ + 1 times. This is because
actions syncF(q,m) can only synchronize automaton states
with associated co-Biichi index not greater than k. Hence,
automaton state fluents newF(q) with associated co-Biichi in-
dex 01dCnt(q,k + 1) cannot be made false, preventing the
action continue from being applied.

Step 3: Solving the compiled problem. An off-the-shelf
planner is used to compute a strong-cyclic solution to the
compiled FOND problem. If no solution exists, parameter
k is incremented by one and the algorithm goes to Step 2.

Step 4: Extraction of a strategy. Similar to the strategy
extraction procedure for LTL¢ FOND, a strong solution to P
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F":=F U {01dF(q), newF(q)},co
U {sync, aut, world, goal}

U {o1dCnt(q,m), newCnt(q, m)}qu,ogmgk+1

I' =I'U{aut} U|_J{o1dF(qS"), 0oldCnt(qs”, 0)}

O’ :={a’ | a€ O} U{startSync, continue}
U {trans(q,m), syncF(q, m)}qu,ogmgk

G :={goal}

World actions:

Pre, :=Pre, U {world}

Eff ., =Eff, U {—world, aut}

Actions that simulate UKCW transitions:

Pregrans(qm) = {aut, 01dF(q), 01dCnt(q, m)}

Eﬁtrans(q,m) = {_‘OIdF(q)}
U{® —{newF(q'),newCnt(q’,m + 1(q' € a))}}(g,8.¢')eT
Actions that synchronize UKCW states:
Prestartsyne = {aut} U {-01dF(q)},cq
EﬁstattSync = {Syl’lC, _‘aut}
U {—0ldCnt(q, m)}quyongk
Pregycr(qm) = {sync,newF(q), newCnt(q,m)}
U {-newCnt(q,n)}, <4
EﬁsyncF(q,m) = {OldF(q)7 _'neWF(q)7 Oldcnt(q7 m)}

U {—mewCnt(q,n)}; <
Action that reestablishes the dynamics of the problem:

Precontinmie = {sync} U {-mewF(q)} .,
E-[fcontinue = oneof({goal} ) {world, _'Sync})

Figure 2: Components of the compiled FOND problem P;, =
(F',I',0',G") for an LTL FOND problem P = (F, I, O, ¢ ¢) with
0o =8 A AU and A; = QW 27, q((f%Tv(i)7 o). For
convenience, we write @ = |J, QW and T := U, T,

can be obtained by unfolding a strong-cyclic solution to P’.

Correctness. Theorem 4 establishes the correctness of our
compilation-based approach to computing strong solutions to
LTL FOND planning. Note that a strong-cyclic planner is
needed to obtain strong solutions.

Theorem 4. An LTL FOND problem P = (D, p1,pc) has a
strong solution iff the compiled FOND problem P;, described
in Figure 2 has a strong-cyclic solution for some k < oo

double exponential in the size of p g, and exponential in the
size of D.

Proof sketch. We will exploit the following property: a strat-
egy f is a strong-cyclic solution to a goal-oriented FOND
planning problem iff the goal condition can be reached from
any state that is reachable by f from the initial state.
Suppose P has a strong solution. By Theorem 3, there
exists a strong solution f and k < oo worst-case double ex-
ponential in the size of ¢ ¢ and D so that execution traces
of f generate automata runs with co-Biichi index not greater
than k. Let f/ be a strategy for ’P,; that simulates f, i.e., that
outputs the same actions as f in response to the plans being
simulated. The goal of P;, is reachable from all states that are
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reachable by f’ from the initial state. Le., f’ is a strong-cyclic
solution to P;, (in the form of a strategy). Finally, if a FOND
planning problem with final-state goal has a solution in the
form of a strategy, then it also has one in the form of a policy.

In the other direction, we will see that a strong-cyclic so-
lution 7 to P, yields a strong solution f to P. Certainly,
consider f to be the strategy that results from unfolding 7 on
the simulated plans, and choosing the non-deterministic ef-
fect of action continue that does not lead to the goal. It is
easy to see that f yields infinite-length plans with co-Biichi
index not greater than k, and therefore is a strong solution to
‘P. The bounds follow from Theorem 3. O

Computational complexity. Our compilations can be used to
compute strong solutions to an LTL FOND problem in worst-
case time that matches the complexity of the decision prob-
lem (Theorem 5).

Theorem 5. A strong solution to an LTL FOND problem P =
(D, vr1,9q) can be computed in worst-case exponential time
in the size of the size of D, and double exponential time in
the size of @ via the compilations to strong-cyclic FOND
planning described in Figure 2 and Algorithm 1.

Proof. The goal formula ¢ can be transformed into an
UCW automaton A¢ in exponential time, with a number of
states |@Q] that is exponential in the size of ¢ and D (cf.
Property 1). A strong solution to P can be extracted from a
strong-cyclic solution to P, in linear time. The size of the
search space in P}, is exponential in the size of D, and poly-
nomial in k!9l (cf. Figure 2). The desired result follows by
exploiting the bounds on the co-Biichi index stated in The-
orem 3, and observing that FOND planning can be solved
in polynomial time in the size of the search space, and the
bounded number of iterations in Algorithm 1. O

6.1 Proofs of Unsolvability

Whereas planning algorithms have been traditionally focused
on the search for solutions, detecting when a planning in-
stance is unsolvable is a topic of growing interest (e.g. [Eriks-
son et al., 2017]). The absence of strong solutions to an LTL
FOND problem can be assessed when the compiled FOND
problem P}, obtained with k£ exponential in () has no strong-
cyclic solution (cf. Theorem 4). Unfortunately, the bounds on
k are prohibitively large to assess unsolvability in practice.
We present an alternative method to obtain a proof that an
LTL FOND problem has no strong solution. We follow on re-
cent work by [Camacho et al., 2018a] to check unrealizability
of specifications for LTL synthesis via reduction to reachabil-
ity games, and adapt their techniques to LTL FOND planning
LTL FOND can be interpreted as a two-player game between
the agent — that decides on actions — and the environment —
that decides on the outcome of the actions [Camacho et al.,
2019]. The agent has the objective to satisfy ¢ . Observe
that P is unsolvable iff the environment has a strategy to de-
feat the agent, that is, a strategy to satisfy —p . With this
in mind, we reason on the dualization of the problem. We
transform —p s into UCW automata, and compute an agent
strategy that forces a run with co-Biichi index greater than k,
for some hyperparameter k. If no such strategy exists, we
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Algorithm 2 Proof unsolvability in LTL FOND planning
Input: P = (D, o1, ¢c)

1: Transform —¢¢ into UCW A,,. Fix k =1

2: Construct P, = XPRODUCTUNSOL(P, Ay, k)

3: If P}, has strong solution, increment k by one and go to 2
4: return unsolvable

can conclude that the game is winning for the environment.
In other words, P has no strong solution. Note, we do not
obtain a environment counter-strategy, but a proof that one
exists. The details of our approach follow below.

Step 1: Transformation of -5 into UCW. The negation
of the goal formula is transformed into one or multiple UCW.

Step 2: Construction of a new FOND problem. The con-
struction of a problem P, = XPRODUCTUNSOL(P, A, k)
follows that of Figure 2, with three exceptions: (i) the
UCW automata used in the compilation are transformations
of ~p¢; (ii) the goal of Py, is achieved when one of the fluents
newCnt(q,m) with m = k is achieved; and (iii) the action to
restablish the world dynamics of the problem is replaced by:
Precontinue = {sync} U {ﬁnewF(q)}qu

Eﬁcontinue = {WOI‘ld, _\SYIIC}
Step 3: Solving the compiled problem. A FOND planner is
used to search for strong solutions to Py. If no solution exists,
the LTL FOND problem is deemed unsolvable. Otherwise, k
is incremented by one and Step 2 is repeated.

Correctness. Theorem 6 states the correctness of our
compilation-based approach to determining the existence of
strong solutions to LTL FOND planning. Note that a strong
planner is needed to search for solutions to P = (D, o1, 0 G).
The proof follows the mechanics of the proofs of Theorems 3
and 4, and we omit it here for space reasons.

Theorem 6. An LTL FOND problem P = (D, ¢, vq) has
no strong solution iff for some k < oo double exponential in
the size of v @, and exponential in the size of D, the compiled
FOND problem Py, has no strong solution

Computational complexity. Our compilation-based ap-
proach to determine the existence of solutions to LTL FOND
problem described in Algorithm 2 runs in worst-case time that
matches the complexity of the decision problem (Theorem 7).

Theorem 7. Non-existence of strong solutions to an LTL
FOND problem P = (D, ¢1,pq) can be proved in worst-
case exponential time in the size of the size of D, and double
exponential time in the size of pg via the compilations to
strong FOND planning Py, and Algorithm 2.

Proof sketch. Analogous to the proof of Theorem 5. (]

7 Experiments

To the best of our knowledge, ours are the first algorithmic
approaches to compute strong solutions to LTLs FOND and
LTL FOND planning. Our compilations are implemented in
Python, and take (and produce) PDDL files. We used Spot
[Duret-Lutz et al., 2016] to transform LTL to UCW, and Baier
and Mcllraith [2006b]’s code to transform LTL¢ to NFW.
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We conducted a series of experiments to evaluate the effi-

ciency of our methods in the Clerk, Lift, and Waldo domains
from [Patrizi et al., 2013], detailed below. Goal formulas
were interpreted as LTL¢ (resp. LTL) for LTLf FOND (resp.
LTL FOND) planning. Strong policies to the compiled prob-
lems were computed with myND planner [Mattmiiller et al.,
20101, and PRP planner was used to compute strong-cyclic
policies [Muise et al., 2012]. Because myND does not sup-
port conditional effects, we replaced action continue in Fig-
ure 1 with a cascade of actions without conditional effects.
Our experiments ran in Ubuntu machines with an Intel(R)
Xeon(R) 2.30GHz CPU. Runtime was limited to 30 minutes,
and memory usage never exceeded 1GB.
Clerk. The agent has to process orders of different types of
packages (n in problem p,,). Each package can be served or
stored in a designated location, with n locations in total. The
agent can request orders, in which one of the n products is
non-deterministically requested to be served, or put on hold
for restock. The objective of the agent is to continuously com-
plete orders. which we encoded with the following formula:

O¢(active_request)A
O((active_request) — O((pkg-served) V (pkg-stored))

Lift. The agent controls a lift in a building with a number of
floors (n floors in problem p,,). Each timestep, the elevator
receives one or more requests from some of the floors (this
is modeled in PDDL with a cascade of sequential actions).
The objective is to compute a controller for the elevator that
serves each request. This is modeled with the formula:

O0(—(at £-.1) — (called)) A /”\ O0((reqf-i) — (at £-1))

i=1

Waldo. The agent can inspect rooms, numbered in consecu-
tive order, in a circular corridor. Problem ps,, has 2n rooms.
The n-th and 2n-th rooms have a special property: Waldo
may non-deterministically appear when visiting one of those.
The dynamics of the problem forces the agent to visit the 2n-
th room before revisting the n-th room (and vice versa). Each
time both rooms are visited, a special fluent search_again
is made true for only one timestep and a new cycle starts. The
objective is to find a strategy that searches for Waldo, i.e.,

OO ((search_again) V (seen))

In the search for strong solutions to LTL¢ FOND, strong plan-
ner myND detected unsolvability of the Clark problems rela-
tively fast. The goals in the Lift problems resulted trivial. The
Waldo problems show a more interesting scalability.

Strong solutions to LTL FOND in the Lift and Waldo do-
mains are, conceptually, not very different than strong so-
Iutions to LTLs FOND, except that the agent has to cycle.
Noteworthy, we observed that the performance of the plan-
ning step in LTL FOND suffered significantly (at least with
PRP) in comparison with the planning step in LTL¢ FOND.
Also in comparison, the search for strong-cyclic solutions to
those LTL FOND problems (with Camacho et al. [2017]’s
compilation) showed much better scalability. We conjecture
three aspects that may challenge scalability in our approach to
strong LTL FOND: (i) conditional effects affect performance
of planners like PRP (ii) FOND planners based on plan aggre-
gation, like PRP, may suffer from myopic behaviour because
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LTL FOND LTLs FOND

problem co—Bﬁchl poh_cy Tun pohcy Tun

index size time size  time
clerk-pl 6 164 0.98 N/A  0.46
clerk-p2 8 339 1.66 N/A 1.26
clerk-p3 10 1753 18.4 N/A  3.62
clerk-p4 12 1963 281 N/A 12.5
clerk-p5 - — timeout N/A 67.4
lift-p1 1 38 0.06 1 0.03
lift-p2 7 290 1.02 1 0.02
waldo-p10 8 250 8.18 50 0.19
waldo-p20 13 477 84.1 85 0.38
waldo-p30 18 687 448 120  0.61
waldo-p40 23 — timeout 155 0.65

Table 3: Summary of our experiments to compute strong solutions
LTL FOND and LTL¢ FOND planning via compilations to FOND
planning. N/A indicates unsolvable problem. Timouts after 30 min.

the compiled problem P’ non-deterministically yields a goal
state at each simulated timestep. (iii) it is challenging for the
planner to generalize policies accross macrostates that vary
on the co-Biichi idexes asociated to automaton state fluents.

The first two items identified above could be mitigated by
new FOND planners. The third item is more delicate. If our
conjecture (iii) is true, then bounded LTL FOND planning
would suffer with final-state goals (e.g. {¢, for some propo-
sitional formula ) and other temporally extended goals that
require a large makespan, which translates into a large co-
Biichi index. Our experiments suggest the need for more ef-
fective methods in LTL FOND that handle large co-Biichi in-
dexes without severely affect performance.

8 Discussion and Future Work

Synthesizing programs for sequential decision-making in dy-
namical environments is a central problem in artificial intel-
ligence. The problem can be cast as FOND planning with
temporally extended goals expressed in LTL and its vari-
ant over finite traces, LTLs. While the problem is well un-
derstood theoretically, the number of existing tools is lim-
ited. We provided the first algorithmic approach to comput-
ing strong solutions to LTLf FOND and LTL FOND plan-
ning. Our techniques complement previous techniques for
computing strong-cyclic solutions, collectively providing a
complete battery of tools for strong and strong-cyclic FOND
planning. We conducted an analysis of the sources of com-
putational complexity, and determined that our techniques for
plan synthesis are computationally effective in the sense that
they match the domain and goal complexity of the plan ex-
istence decision problems. We evaluated the performance of
our approaches and identified potential sources of complexity
that make it challenging to compute strong solutions to LTL
FOND, relative to computing strong-cyclic ones.
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