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Abstract

Targeted Multimodal Sentiment Classification
(TMSC) aims to identify the sentiment polarities
over each target mentioned in a pair of sentence
and image. Existing methods to TMSC failed
to explicitly capture both coarse-grained and
fine-grained image-target matching, including 1)
the relevance between the image and the target
and 2) the alignment between visual objects
and the target. To tackle this issue, we propose
a new multi-task learning architecture named
coarse-to-fine grained Image-Target Matching net-
work (ITM), which jointly performs image-target
relevance classification, object-target alignment,
and targeted sentiment classification. We further
construct an Image-Target Matching dataset by
manually annotating the image-target relevance
and the visual object aligned with the input target.
Experiments on two benchmark TMSC datasets
show that our model consistently outperforms the
baselines, achieves state-of-the-art results, and
presents interpretable visualizations.'

1 Introduction

As an important fine-grained task in multimodal senti-
ment analysis, Targeted Multimodal Sentiment Classification
(TMSC, a.k.a aspect-based multimodal sentiment classifica-
tion) has received increasing attention in recent years. Given
a pair of sentence and image, the goal of TMSC is to iden-
tify the sentiment polarities towards each opinion target in
the sentence [Xu et al., 2019b; Yu et al., 2019]. For exam-
ple, in Fig. 1, given the multimodal tweet and its two opinion
targets “Nancy Ajram” and “Salalah Tourism Festival”, it is
expected to identify that the user expresses Positive and Neu-
tral sentiments towards them, respectively.

In the literature, a myriad of deep learning approaches have
been proposed for the TMSC task. [Xu et al., 2019b] and [Yu
et al., 2020] focused on designing effective attention mech-
anisms to model the interactions among the target, text, and
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!'The source code is released at https:/github.com/NUSTM/ITM.
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[Nancy Ajram]posiive,Box-1 during the [Salalah Tourism
Festival]|ncuira, Box-N/a; beautiful as always.

Figure 1: An Example of Targeted Multimodal Sentiment Classifi-
cation (TMSC). Nancy Ajram and Salalah Tourism Festival are two
mentioned targets. Box-1 denotes the 1% bounding box is aligned
with Nancy Ajram, and Box-N/A denotes no bounding box is aligned
with Salalah Tourism Festival.

image. [Yu et al., 2019] and [Wang et al., 2021] followed the
recent pre-train and fine-tune paradigm, and adapted exist-
ing pre-trained models to capture the text-image, target-text,
and target-image interactions. More recently, [Khan et al.,
2021] proposed a Transformer-based image captioning model
to translate the image to an auxiliary sentence, and then com-
bined the original and auxiliary sentences for targeted senti-
ment classification.

However, all these existing studies failed to explicitly con-
sider the matching relations between the target and the image,
which is essential for the TMSC task for following reasons:

* Coarse-Grained Image-Target Matching. Based on our
observations of a benchmark Twitter dataset of TMSC,
around 58% of the input targets are not presented in asso-
ciated images in a benchmark dataset, and these unrelated
images will inevitably bring much noise for the TMSC task.
For example, in Fig. 1, given Salalah Tourism Festival as
the input target, the unrelated image may mislead the model
to predict its sentiment as Positive. Hence, it is crucial to
capture the image-target relevance to alleviate the visual
noise for targeted sentiment classification.

* Fine-Grained Image-Target Matching. For those target-
related images, as each image contains a number of visual
objects (i.e., fine-grained image), identifying the aligned
visual object to the input target is generally helpful for pre-
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dicting its sentiment. For example, in Fig. 1, among all the
marked bounding boxes, the bounding box with the pleas-
ant woman (i.e., Box-1) provides the most important clue
for detecting the Positive sentiment over Nancy Ajram.

Motivated by these observations, we propose a coarse-to-
fine grained Image-Target Matching network (ITM) for the
TMSC task. Specifically, we first construct an Image-Target
Matching dataset by manually annotating 1) the relevance be-
tween the image and the target and 2) the visual object (i.e.,
bounding box) aligned with the input target. With such an
annotated dataset, we propose a multi-task learning archi-
tecture ITM to jointly perform coarse-to-fine grained image-
target matching and targeted sentiment classification. ITM
contains three key modules: the first module is to identify
image-target relevance for dynamically controlling the contri-
bution of visual information; with the filtered visual informa-
tion, the second module focuses on object-target alignment to
learn appropriate weights of each visual object based on their
alignment probabilities with the input target; the last module
performs multimodal fusion and sentiment classification.

Experimental results on two benchmark datasets for the
TMSC task show that our multi-task learning model ITM
consistently outperforms a number of state-of-the-art meth-
ods, and presents insightful and interpretable visualizations,
demonstrating the importance of coarse-grained and fine-
grained image-target matching to the TMSC task.

2 Task Formulation

Given a multimodal corpus D, let wus first use
{X1,Xs,..., X|p|} to denote a set of samples in the
corpus. For each sample, we are given an n-word sentence
S = (wy,wa, ..., wy,), an image V, and an m-word opinion
target T = (¢4, to, ..., t,m ), Where T is a sub-sequence of S.We
then formulate the three tasks in our work as follows:

Image-Target Relevance. For each sample X = (S,V,T),
the target T is assumed to be associated with a relevance label
r indicating whether the image V is related to T, where r is
either Related or Unrelated. The goal of this task is to learn a
binary classification function that maps X to .

Object-Target Alignment. For each sample X = (S,V, T),
an object detection method is employed to identify K object
proposals in the image V, and the target T is associated with
its alignment distribution over the K object proposals, de-
noted by A. The goal of this task is to learn a mapping from
X to the alignment distribution A.

TMSC. For each sample X = (S, V, T), we assume that the
target T is associated with a sentiment label y, which can be
Positive, Negative or Neutral. The goal of this main task is to
learn a sentiment classifier that maps X to y.

3 Dataset

We construct an Image-Target Matching dataset for Image-
Target Relevance and Object-Target Alignment tasks.

Source. Since both tasks require the annotation of targets,
we construct our dataset based on a subset of one benchmark
dataset for the TMSC task (i.e., TWITTER-17), which has
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Split #Targets #Images #I-T #I-T #Annotated
Related  Unrelated Boxes

Train 1176 600 459 717 459

Dev 588 297 254 334 254

Test 588 280 270 318 270

Total 2352 1177 983 1369 983

Table 1: Statistic of Our Image-Target Matching Dataset.
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Figure 2: The Box/image area ratio (left) and the correlation of
Image-Target (I-T) relevance and sentiment (right) in our dataset.

annotated the targets by [Lu er al., 2018]. We randomly se-
lect 1176, 588, and 588 samples from the training, develop-
ment, and test sets of TWITTER-17, and employ two PhD
students for annotation. The annotation for the Image-Target
Relevance task reaches an agreement of 98.5%, and the agree-
ment for bounding box annotation is 92.3%, indicating the
high quality of our data. For disagreement samples, we ask a
third expert to make the final decision.

Statistics and Analysis. The basic statistic of our dataset is
shown in Table 1. It can be seen that a large percentage of
targets are unrelated to images. For each target-related im-
age, since the semantic meaning of the target is clear, only
one bounding box is annotated. Fig. 2 (left) shows the dis-
tribution of bounding box area over image area ratio. Com-
pared to images, most bounding boxes are relatively small,
which implies the challenge of object-target alignment. In
Fig. 2 (right), we further show the correlation between senti-
ment and image-target relevance. It is interesting to observe
that for targets related to the images, users tend to express ei-
ther positive or negative sentiment towards them; whereas for
targets unrelated to the images, users tend to express neutral
sentiment over them. This indicates image-target relevance
indeed provides important clues to TMSC.

4 Methodology

We propose a multi-task learning framework named coarse-
to-fine grained Image-Target Matching network (ITM), which
leverages two auxiliary tasks, i.e., image-target relevance
and object-target alignment, to improve the TMSC task. As
shown in Fig. 3, ITM consists of four modules: Feature Ex-
traction, Coarse-Grained Matching, Fine-Grained Matching,
and Multimodal Fusion. We describe the details of each mod-
ule in the following subsections.

4.1 Feature Extraction

Contextualized Target Representation. Given an input
sentence S and its target T, we split S into two parts, i.e.,
the target and the remaining context, and combine them as
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Figure 3: (a) Overview of Coarse-to-Fine Grained Image-Target Matching Network.

the contextualized target input T. An example is shown in
the bottom of Fig. 3.a, where we replace the target Emily in
S with a special token $T$ as its context, and concatenate
the context with Emily as the input. With the transformed
target input T, we feed it to a widely-used pre-trained model
RoBERTa [Liu et al., 2019] to obtain the contextualized target
representation: Hp = RoBERTa(T’), where Hy € R¥*", d
is the hidden dimension, and n is the input length.

Image Representation. Given an image V, we use a
widely-used object detection method Faster R-CNN [Ren et
al., 2015] to detect object proposals and obtain their regional
representations as our visual features [Anderson et al., 2018].
We then sort detected proposals by object category detec-
tion probabilities, and keep the top-100 object proposals in
order to retain more small objects for target alignment. Let
R = Faster R-CNN(V) denote the regional representations,
where R € R2048x100  To model the interactions between
objects, we feed R to Transformer to obtain object-level
image representations: Hy = Transformer(W%R), where
WR c [R2048><d and HV c RdxlOO‘

4.2 Coarse-Grained Matching

The goal of this module is to capture the image-target rele-
vance, and alleviate the noise from unrelated images.

To achieve this goal, we apply the Cross-Modal Trans-
former layer [Tsai et al., 2019] to model the interaction be-
tween the target and the image, which regards image repre-
sentations Hv, as queries, and contextualized target represen-

tations Hr as keys and values as follows:
v = CM-Transformer(Hy, Ht, Hr), (1)

where Hy, € R4*100 ig the generated target-based image rep-
resentation. Next, we apply a max-pooling operator over HY,
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(b) Alignment Distribution.

to obtain the most salient features for relevance classification:
v = max-pooling(HY;). Based on hy,, we use a Sigmoid
function to perform image-target relevance classification:

P(r) = Sigmoid(W,hy, + b,.). 2)
We use the cross-entropy loss to optimize the image-target
relevance task, denoted by Relevance (RE) Supervision:

M
rE _ _ L k
LY = % E log P(r"),
k=1

where M is the number of samples in our annotated dataset.

Since the probability in Eqn. (2) is a scalar in the range
of [0,1] indicating the relevant score between the target and
the image, we use it to construct a visual filter matrix G €
R4*190 "where each entry in G equals to P(r). With the vi-
sual filter matrix, we can obtain the filtered image represen-
tations as follows:

3)

H) =G & HY. @)
where © is the element-wise multiplication. For example, if
G equals to 0, all the visual features are filtered.

4.3 Fine-Grained Matching

Based on coarse-grained image-target matching, this Fine-
Grained Matching module further aims to identify the fine-
grained visual objects aligned with the input target in those
target-related images.

To achieve the object-target alignment, we apply another
Cross-Modal Transformer layer to obtain the target-aware at-
tention distribution over 100 object proposals from Faster R-
CNN. Specifically, we use the representation of the first token
in the target input (i.e., H}.) as queries, and the filtered image
representations HY; as keys and values:

't = CM-Transformer(HS., HY,, HY,),

®)
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where H, € R?*! is the generated image-based target rep-
resentations. Let us use D; to denote the attention weights
in the i-th head attention of the Cross-Modal Transformer.
We take the average of all the m-head attentions as the fi-
nal distribution over 100 object proposals, denoted by D =
% >, D;, where D € R1%.

To guide the attention distribution to achieve object-target
alignment, we propose to obtain an alignment distribution
from ground-truth (GT) boxes as supervision. As shown
in Fig 3.b, given an image, we first calculate the Intersec-
tion over Union (IoU) scores of its object proposals with
respect to the GT bounding box, which denote the over-
lap between the proposal and GT bounding box. Follow-
ing previous studies for visual grounding [Yu er al., 2018;
Lei et al., 2020], for the i-th proposal, if its IoU score is
larger than 0.5, we keep the IoU score and 0 otherwise. We
can then get the IoU score distribution over all object propos-
als, denoted by [ay, ...,a100] € R%°. Based on this, we re-
normalize the IoU score distribution to obtain the GT align-
ment distribution A € R1%,

We adopt the Kullback-Leibler Divergence (KLD) loss to
make the attention distribution D and the ground-truth align-
ment distribution A as close as possible, denoted by Attention
(ATT) Supervision:

i

ATT 1 < i A
£ = > A log(5;)- (6)
i=1

where C' is the number of target-image related samples in our
Image-Target Matching dataset.

4.4 Multimodal Fusion

With the image-based target representations HY. generated
from the Fine-Grained Matching module, we concatenate it
with the contextualized target representations as: Hpy; =
H’. ® Hr, and feed them to a Transformer layer for mul-
timodal fusion:

H = MM-Transformer(Hng, Hy, Hy), (N

Finally, the representation of the first token is fed to a soft-
max layer for sentiment classification:

P(y) = Softmax(WTH + b). (8)

The standard cross-entropy loss is to optimize the TMSC
task, denoted by Sentiment Supervision:

N
1 .
LTMSC _ -5 E log P(y’) ©)
j=1

where NN is the number of samples for the TMSC task.

We employ the alternating optimization strategy to itera-
tively optimize the two auxiliary tasks with our Image-Target
Matching dataset and optimize the main task with the dataset
for TMSC. The combined objective function is:

J = )\1£RE +)\2£ATT +£T]WSC (10)

where A\; and A9 are hyper-parameters.
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TWITTER-15 TWITTER-17
Label Train Dev Test Train Dev Test
Positive 928 303 317 1508 515 493
Neutral 1883 670 607 1638 517 573
Negative 368 149 113 416 144 168
Total 3179 1122 1037 3562 1176 1234

Table 2: Statistics of two benchmark datasets for TMSC.

S Experiment
5.1 Experiment Setting

We adopt three datasets to systematically evaluate the effec-
tiveness of our coarse-to-fine grained Image-Target Matching
network (ITM). One is our Image-Target Matching dataset
for the two auxiliary tasks, i.e., Image-Target Relevance and
Object-Target Alignment, as introduced in Section 3. The
other two are the benchmark Twitter datasets for the TMSC
task, i.e., TWITTER-15 and TWITTER-17. The statistics of
the two TMSC datasets are shown in Table 2.

For our ITM model, we adopt RoBERTay,s. [Liu et al.,
2019] as the contextualized target encoder and Faster R-
CNN [Ren et al., 2015] with ResNet-101 backbone released
by [Anderson et al., 2018] as the object detector. During the
alternating optimization process, we use the AdamW opti-
mizer, and fix the hyper-parameters after tuning them on the
development set. Specifically, we set the batch size to 32, the
training epoch to 10, and A\; and A, to 1 and 0.5. The learning
rates for the TMSC task and the two auxiliary tasks are set to
le-5 and le-6 respectively.

5.2 Main Results

In this subsection, we compare our ITM model with several
representative methods for TMSC, and report the accuracy
(Acc) and the Macro-F1 score (F1) of each method in Table 3.

We first consider the following methods that focus on text
only for comparison: 1) MGAN [Fan et al., 2018], a multi-
grained attention network capturing multi-level target-text in-
teractions. 2) BERT [Devlin et al., 2019], a pre-trained model
regarding target and text as a pair for sentiment classifica-
tion. 3) RoBERTa [Liu et al., 2019], an enhanced pre-trained
model based on BERT. Moreover, we consider the follow-
ing multimodal approaches for comparison: 1) MIMN [Xu
et al., 2019b], a multi-interactive memory network model-
ing the interaction between the target, text and image. 2)
ESAFN [Yu et al., 2020], a target-sensitive attention and fu-
sion network based on LSTM. 3) VILBERT [Lu et al., 20191,
a pre-trained Vision-Language model, in which the target-
text pair is used as the textual input. 4) CapBERT [Khan et
al., 2021], which translates the image to textual captions and
combines the captions and the original target-text pair with
a pre-trained BERT model. 5) TomBERT [Yu et al., 2019],
a BERT-based TMSC approach with target-sensitive cross-
modal attention. 6) CapRoBERTa, which replaces BERT
with RoBERTa in CapBERT. 7) TomRoBERTa, which re-
places BERT and ResNet with RoBERTa and Faster R-CNN
in TomBERT. 8) TomRoBERTu+Aux-Tasks, a TomRoBERTa-
based multi-task learning baseline proposed by us, which
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TWITTER-15 TWITTER-17 Methods Acc Precision Recall F1
Methods Ace F1 Ace F1 TomRoBERTa+Aux-Tasks  71.09 68.70 68.04  68.36
ITM (ours) 71.94 71.75 71.76 71.76
Text Only
MGAN [Fan et al., 2018] 71.17 64.21 64.75 61.46 .
BERT [Devlin et o, 2019] 7415 68.86 68.15 6523 Table 4: Performance on the Image-Target Relevance task.
RoBERTa [Liu et al., 2019] 76.28 71.36 69.77 68.00
Text and Image Methods KL Divergence R@1 R@3 R@5
MIMN [Xu et al., 2019b] 71.84 65.69 65.88 62.99
, TomRoBERTa+Aux-Task 7.18 2259 4148 5074
ESAEN [Yu et al., 2020] 73.38 67.37 67.83 64.22 ™ (:)’urs) arAux-Tasks 208 s8> 6589 7593
VIiLBERT [Lu et al., 2019] 73.76 69.85 67.42 64.87 . : : :

CapBERT [Khan er al., 2021] 78.01+£0.34 73.25+0.36 69.77+0.16 68.42+0.48
TomBERT [Yu et al., 2019]  76.60+£0.40 71.57+0.16 69.424+0.73 67.701+0.50

CapRoBERTa 77.82+£0.43 73.384+0.48 71.07+0.49 68.57+0.55
TomRoBERTa 77.64+0.23 73.244+0.37 71.3440.40 70.14+0.41
TomRoBERTa+Aux-Tasks 77.37£0.36 73.00+0.35 71.18+0.37 69.86+0.32
ITM (ours) 78.27+0.28 74.19+0.40 72.61+0.21 71.97+0.27

Table 3: Comparison between previous methods and our ITM model
on two benchmark TMSC datasets. For the last 5 rows, we report the
average results across three runs. =+ refers to standard deviations.

adds our attention supervision in Eqn. (6) on their target at-
tention layer and adds a softmax layer with relevance super-
vision over their final multimodal representation.

In Table 3, we can observe that RoBERTa achieves the
best performance among text-only methods. It is reasonable
since RoBERTa adopted better training strategies and larger
corpus than BERT. For multimodal methods, it is easy to
see that MIMN and ESAFN obtain the lowest performance,
due to the lack of model pre-training. The pre-trained VL
model (i.e., VILBERT) performs worse than TomBERT, prob-
ably because the pre-trained dataset for VILBERT is much
smaller than BERT. Moreover, CapBERT performs better
than all the other baseline systems, since it resorts to a pre-
trained image captioning model. It is intuitive that 7om-
RoBERTa and CapRoBERTa generally performs better than
TomBERT and CapBERT. In addition, it is surprising that
TomRoBERTa+Aux-Tasks performs even worse than Tom-
RoBERTa. We conjecture the reason is: 1) its target attention
layer only uses the target without its context as the target in-
put; 2) due to the structure of TomBERT, the object-target
alignment is performed before the image-target relevance,
which may bring much visual noise to object-target align-
ment. Finally, we can clearly see that ITM achieves the best
results on both accuracy and F1 score among all the compared
systems across the two datasets. These observations demon-
strate the effectiveness of our ITM model and the importance
of incorporating image-target matching for the TMSC task.

5.3 Results of Image-Target Matching

Table 4 shows the results of Image-Target Relevance Classi-
fication on our Image-Target Matching dataset in Section 3.
It can be seen that our I'TM model significantly outperforms
TomRoBERTa+Aux-Tasks on all the metrics, showing the ad-
vantage of ITM for Image-Target Relevance.

Table 5 shows the results of Object-Target Alignment on
our Image-Target Matching dataset. The evaluation metrics
are Kullback-Leibler Divergence (KLD) between the atten-
tion distribution D and the ground-truth alignment distribu-
tion A in Section 4.3 and the recall of the top-ranked bound-

4486

Table 5: Performance on the Object-Target Alignment task.

TWITTER-15 TWITTER-17
Methods Acc F1 Ace F1
I™ 78.27 74.19 72.61 71.97
w/o Relevance (RE) Supervision 77.72 72.07 71.47 70.29
w/o Attention (ATT) Supervision 77.82 72.54 71.56 70.31
w/o RE & ATT Supervision 76.66  71.62  71.07 68.96
w/o Coarse-Grained Matching 7695 7170 7139  70.16
w/o Fine-Grained Matching 77.14  71.65 71.34 7035

w/o Coarse and Fine-Grained Matching ~ 76.57  71.03  70.66  69.56

Table 6: Ablation study of our proposed model ITM.

ing box in A from top-k bounding boxes in D, denoted by
R@kE. In Table 5, it is clear that ITM significantly outper-
forms TomRoBERTa+Aux-Tasks in terms of all the metrics,
showing the advantage of ITM for Object-Target Alignment.

5.4 In-depth Analysis

Ablation Study. We explore the impact of different compo-
nents in our model and report the results in Table 6. Specif-
ically, removing either the relevance supervision in Eqn. (3)
or the attention supervision in Eqn. (6) leads to a moderate
performance drop on both accuracy and F1 score. Moreover,
discarding the two supervisions will lead to a significant per-
formance drop of around 1.6 percentage points on accuracy
and 3 percentage points on F1 score. These observations indi-
cate the indispensable effects of filtering the visual noise and
achieving object-target alignment. Lastly, from the last three
rows of Table 6, we find that removing either coarse or fine-
grained matching module or both modules in Section 4.2 and
Section 4.3 consistently decreases the performance, which
indicates the necessity of incorporating Cross-Modal Trans-
former layers to achieve cross-modal alignments.

Case Study. In the left two columns of Table 7, we show
two representative test samples to demonstrate the importance
of filtering the unrelated images. For case (a), given the tar-
get Pacific Rim, RoBERTa accurately predicted its sentiment
as Positive, while TomRoBERTa gave the wrong prediction
after combining the unrelated image. In contrast, ITM gave
the correct sentiment prediction and a low image-target rele-
vance score as well as an evenly distributed alignment distri-
bution (i.e. no object is obviously aligned with Pacific Rim
in the image). Similarly, for case (b), given Stagecoach as
the target, TomRoBERTa wrongly predicted its sentiment as
Positive due to the unrelated image, while ITM correctly pre-
dicted the Neutral sentiment after filtering the visual noise.
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Effects of Image-Target Relevance

Effects of Object-Target Alignment

I-T relevance score: 0.2617

I-T relevance score: 0.7524

I-T relevance score: 0.7357
=

RV q >

Image
Attention D
Weights

(a). Morning coffee before I go (b). # SamHunt Performs at (c). # [SamHunt]p,iv. Per- (d). RT @ DisneySports: [Joe
Text watch [Pacific Rim]psiive ... # [Stagecoach]ncyira1 # MusicFesti- forms at Stagecoach # MusicFes- Flacco]pysitive and Mickey Mouse

excited ... val 2016 tival 2016 at Magic Kingdomparade ......
RoBERTa Positive v Neutral v Neutral x Neutral x
TomRoBERTa Neutral x Positive X Positive v Neutral X
ITM (ours) Positive v Neutral v Positive v Positive v

Table 7: Prediction comparison between different methods on four test samples. In the first row, we show the Image-Target related probability
predicted by our ITM model. For the two Image-Target related samples in the right, the ground-truth (green), the top-ranked predicted object
proposal (red) are visualized respectively. The second row visualizes the attention weights in the Fine-Grained Matching module of ITM.

In the right two columns of Table 7, we use another two test
samples to show the effect of achieving object-target align-
ment. For case (c), we can see that it is in the same tweet
in case (b), but the given target is changed to SamHunt. In
this case, RoOBERTa and TomRoBERTa still made the same
predictions as before, while ITM generated the appropriate
relevance score and assigned higher attention weights to the
objects around SamHunt, and thus gave the correct sentiment.
For case (d), given the target Joe Flacco, RoBERTa wrongly
predicted its sentiment as Neutral due to the absence of sen-
timent words. TomRoBERTa also gave the wrong prediction,
because it failed to identify the small object about Joe Flacco.
By contrast, our ITM model correctly predicted the sentiment
as Positive with more attention on his smiling face.

6 Related Work

Targeted sentiment classification (TSC, a.k.a aspect-based
sentiment classification) has been well studied in recent years.
Various traditional feature-based models [Jiang ef al., 2011;
Pontiki et al., 2016] and deep learning-based models [Tang
et al., 2016; Wang et al., 2018; Xu et al., 2020] have been
proposed to address the TSC task. More recently, many
Transformer-based methods [Xu et al., 2019a; Dai et al.,
2021] and graph neural network-based methods [Wang er al.,
2020; Tang et al., 2020] are designed to better leverage se-
quential and syntactic information for the task. Despite ob-
taining remarkable results, these approaches failed to con-
sider the information from other modalities, e.g., images.
With the explosive growth of multimodal data, multi-
modal sentiment analysis (MSA) has attracted wide atten-
tion recently. For coarse-grained MSA, many approaches
have explored the capability of adopting neural networks to
build the interactions between modalities for MSA in con-
versations or tweets [Poria et al., 2017; Xu et al., 2018;
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Zhang et al., 2020; Yang er al., 2021]. For fine-grained
MSA, various LSTM-based and Transformer-based methods
were proposed to capture the fine-grained interaction across
different modalities for the TMSC task [Xu et al., 2019b;
Yu et al., 2020]. In this work, we follow the later line of work,
aiming to improve TMSC with Image-Target Matching.

Since our Object-Target Alignment task is closely related
to Visual Grounding (VG), we review some representative
studies for VG, which aim to predict the location of an image
region referred by the language expression. Earlier works to
VG primarily focus on selecting visual objects based on pars-
ing linguistic descriptions [Kazemzadeh et al., 2014; Yu et
al., 2016]. Recently, a myriad of visual-language pre-training
models have been proposed for VG to capture the alignment
between image and language modalities [Su er al., 2019;
Yu et al., 2021].

7 Conclusion

In this paper, we proposed a multi-task learning model
named coarse-to-fine grained Image-Target Matching net-
work (ITM), which leverages two auxiliary tasks, i.e., Image-
Target Relevance and Object-Target Alignment, to capture
the image-target matching relations for the TMSC task. Ex-
periment results on two TMSC datasets and our Image-Target
Matching dataset demonstrate that our ITM model consis-
tently outperforms a number of state-of-the-art methods.
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