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Abstract 
 

An efficient and effective unsupervised single moving object detection framework is 

presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine 

strategy to detect and segment the foreground from the background. The superpixel level 

coarse segmentation reduces the complexity of subsequent processing, and the pixel level 

refinement improves the segmentation accuracy. A distance measurement is devised in the 

coarse segmentation stage to measure the similarities between generated superpixels, which 

can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement 

in the fine segmentation stage. According to the experiments, our algorithm is effective and 

efficient, and favorable results can be achieved compared with state-of-the-art methods. 
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1. Introduction 

Moving object detection aims to detect and segment moving objects from the scene. It has 

found a great number of real world applications, including navigation, surveillance, 

recognition, 3D reconstruction and many more. However, it is still full of great challenges due 

to the changing appearance of the objects and the probable highly dynamic and cluttered 

background. 

Existing literatures for moving object detection/segmentation can be broadly classified into 

two categories, i.e., background subtraction methods and motion cue based approaches. The 

former kind of methods take advantages of pixel-level features (Gaussian Mixture Model [1], 

Codebook [2], etc.) or texture features (Local Binary Patterns [3], Scale Invariant Local 

Ternary Patterns [4], etc.) to construct an appearance model for the background. Then the 

constructed background model is subtracted in the new frame to make a comparison. And 

pixels in the new frame with differences larger than a certain threshold are taken as the 

detected objects. However, these methods cannot achieve desirable results in scenarios with 

fast moving camera and highly dynamic background. Besides, Sabhara et al. [5] investigated 

the use of Hu Moments and Zernike Moments in object detection. And thorough surveys on 

background subtraction methods can be found in [6, 7]. 

In contrast, the latter kind of algorithms detect moving objects by using different types of 

motion cues. A kind of widely used motion cues is optical flow computed between adjacent 

frames. Papazoglou et al. [8] first initialized the boundary of the moving object by using 

optical flow. Pixels within the boundary are labelled as foreground, while pixels out of the 

boundary are taken as background. They then separate the foreground from the background by 

iteratively refining the foreground-background labelling. However, when insufficient 

displacements, occlusions, low-texture regions, etc. occur, the calculation of optical flow may 

fail. 

Another kind of motion cues which gains popularity in recent years is labelled point 

trajectories. To generate point trajectories, feature points are extracted in the image and then 

tracked across successive frames. Considering that point trajectories from different objects 

undergo different motions, they can be classified into different clusters and labelled by using 

motion segmentation algorithms, including factorization [9], RANSAC [10, 11], spectral 

clustering [12-14], etc. Trajectory points with the same label come from the same object and 

this cue can be used in detection/segmentation. 

In [10] and [11], the authors construct appearance models for the foreground and the 

background respectively, taking advantage of the sparsely labelled point trajectories. Then the 

transfer from sparse labelling to per-pixel labelling is achieved by maximizing a posteriori. 

However, manipulating tens of thousands of pixels directly is computational heavy and takes 

lots of time. 

To circumvent the problem, superpixels can be used as a pre-processing [14-17]. Firstly 

introduced by Ren et al. [18], superpixel is composed of pixels which are similar according to 

certain criteria, color for example. Dealing with hundreds of superpixels instead of tens of 

thousands of pixels can drastically reduce the complexity of subsequent processing. One can 

refer to [19] for more details about different superpixel segmentation algorithms. 

In [14], Ochs et al. first obtain labelled point trajectories by using the semi-dense method 

proposed in [20]. A hierarchical image segmentation (HIS) [21] is also conducted to generate 

hierarchical superpixels segmentation. They then merge these superpixels hierarchically by 
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using a multi-level variational approach and extend the semi-dense labelling of tracked points 

to dense labelling of the whole image. This approach is considered to be state-of-the-art due to 

the promising results acquired. However, the computational burden is heavy and the 

calculation of HIS [21] is rather memory consuming, which confine its use to off-line 

applications. Ellis et al. [17] propose an online learning algorithm for moving objects 

segmentation. The sparse labelled point trajectories are used to provide both labelled samples 

for learning the appearance cue and labelled spatial coordinates for extracting shape-location 

cue. Then learning and classification are performed at multi-scale superpixel level by using 

Online Random Forest (ORF), taking advantage of all these cues. However, the boundary of 

superpixels may not adhere well to the object boundary even if the multi-scale strategy is 

adopted. 

In this work, a novel coarse-to-fine framework for unsupervised detection of single moving 

object from videos or image sequences is proposed. Our algorithm is composed of a superpixel 

level coarse segmentation to facilitate subsequent processing as well as to provide a sound 

initialization, and a pixel level fine segmentation to improve the segmentation accuracy. A 

distance measurement is devised to measure the similarities between generated superpixels, 

which is of great significance for clustering in the coarse segmentation stage. Moreover, a 

Quadmap is introduced to facilitate the refinement in the fine segmentation stage. 

The outline of our paper is as follows. We detail the moving object detection method step by 

step in Section 2. In Section 3 we conduct both quantitative and qualitative experiments. And 

Section 4 conclude the paper. 

2. Our Proposed Algorithm 

The framework of our algorithm is shown in Fig. 1, which includes following three stages: 

 

(1)Point trajectories generation and motion segmentation; 

(2)Superpixel level coarse segmentation; 

(3)Pixel level fine segmentation. 

 

Firstly, labelled point trajectories are obtained to be used as the motion cue. Then 

superpixels are generated and labelled as foreground/background/uncertain, taking advantage 

of the motion cue. To eliminate uncertain regions, superpixels clustering is conducted 

according to a tailored similarity measurement, which combines distances in color and texture 

feature spaces as well as the spatial proximity. After that, a coarse segmentation is performed 

at the superpixel level by adopting a simple strategy, taking both the results of superpixels 

labelling and clustering into consideration. Moreover, a Quadmap is constructed according to 

the coarse segmentation, labelling all the pixels as definitely foreground, probably foreground, 

definitely background and probably background. Finally, the fine segmentation is achieved by 

a pixel level refinement with the Quadmap as a good initialization. 
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2.1 Point Trajectories Generation and Motion Segmentation 

 

 
Fig. 1. The framework of our algorithm 

 

We assume that N  feature points either from the foreground or the background are tracked in 

the process. The trajectory of the i
th
 point is represented as 

2

1 1( , ,..., , )i i i i T F

i F FT u v u v  , 

where ( , )i i

f fu v  denotes the position of the i
th
 point in the f

th
 image frame. We then group all 

the N  trajectories to build the trajectory matrix T . 
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Considering that only one moving object occurs in the field of view, trajectories in T  are 

grouped into two clusters by using motion segmentation methods. Trajectories in the same 

cluster undergo the same motion, and this cue can be used in the subsequent processing. 

This stage can be realized by using the KLT + SSC method we proposed in [22], which 

combines a Kanade-Lucas-Tomasi (KLT) tracker [23] for point trajectories generation and 

sparse subspace clustering (SSC) [13] for motion segmentation. This method is efficient and 

performs quite well when dealing with moving rigid bodies. However, the basis of SSC lie in 

that point trajectories generated by a moving rigid body belong to a subspace whose dimension 

is at most 4 under the affine camera assumption. And this restricts its application to non-rigid 

bodies. 

Another choice is the semi-dense point trajectories method from [20], where optical flow is 

used for point tracking and spectral clustering [24-26] is used for motion segmentation. This 

method is able to deal with both rigid bodies and non-rigid bodies. However, it is time 

consuming and is more suitable for off-line applications. 

One can choose these two or other methods to generate labelled trajectories according to 

the specific application. In this paper, KLT + SSC method [22] is used when detecting moving 

rigid bodies for efficiency, the Atlantis spacecraft in Fig. 2a for example; while the semi-dense 

method[20] is adopted when detecting moving non-rigid bodies, the moving person in Fig. 2b 

for example. 

 

 
(a)                                                            (b) 

Fig. 2. Labelled points on the F
th

 frame by using different motion segmentation methods, where red 

points indicate background and yellow points indicate foreground: (a) The result of KLT + SSC method 

[22]; (b) The result of semi-dense method [20] 

 

As shown in Fig. 2, points with the same color come from the same cluster, i.e. foreground 

or background. Considering the assumption that only one moving object occurs in the field of 

view, occupying a certain part in the image and surrounded by the background, points more 

scattered in the image are labelled as background (red points), while points more concentrated 

are labelled as foreground (yellow points). Here more scattered means that these points are 
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widely spread and take a larger part of the whole image. While concentrated means that these 

points are local and take a less part of the whole image.This can be discriminated by firstly 

finding the smallest rectangle that include the points from one cluster within it and then 

comparing the area of the two rectangles. And the larger one corresponds to background. 

2.2 Superpixel Level Coarse Segmentation 

2.2.1 Superpixels Segmentation 

Superpixel segmentation is conducted on the frame where the moving object is to be detected 

with Preemptive SLIC [27], which is a variant of the famous superpixel segmentation method 

SLIC [28]. 

SLIC perform superpixels segmentation by searching locally for similar pixels around the 

seeded centers initialized. The searching range is confined in a 2S × 2S region to speed up. The 

similarities are measured according to the pairwise distance ( , )i jD p p  between pixels 
ip  

and 
jp  defined as [28] 

 

2 2 2

2 2

2 2 2

( ) ( ) ( )

( ) ( )

( , ) ( / )

ij i j i j i j

LAB l l a a b b

ij i j i j

spatial x x y y

i j

LAB spatial

d p p p p p p

d p p p p

D p p d d S m

     

   

 

  (2) 

where 
ij

LABd  measures the distance between pixels in the CIELAB color space 
T[ , , ]l a bp p p  and 

ij

spatiald  measures the spatial proximity by calculating the Euclidean distance of the pixels’ coordinates 

in the image expressed by 
T[ , ]x yp p . m is the compactness factor used to weight 

ij

LABd  and 
ij

spatiald , 

and the search range S is determined by 

 
Number of pixels

Number of  superpixels desired
  (3) 

Compared with SLIC, a local termination criterion is adopted in Preemptive SLIC. Due to 

the criterion, searching and updating of clusters which undergo little change are terminated in 

advance. And thus speed the whole process a lot. Fig. 3a shows the superpixels segmentation 

results along with labelled points in each superpixel. 

 

 
(a)                                                            (b) 

Fig. 3. (a) Superpixels segmentation results on the F
th

 frame by using Preemptive SLIC [27], with 

labelled points in each superpixel; (b) The initial labelling result of superpixels. 
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2.2.2 Initial Labelling of Each Superpixel 

Each superpixel is labelled automatically according to the labelled points within it: 

(1)If it only contains red points, then it is labelled as background, shown in red in Fig. 3b; 

(2)If it only contains yellow points, then it is labelled as foreground, shown in yellow in Fig. 

3b; 

(3)If it contains both red and yellow points, or if it contains no labelled points, then it is 

labelled as uncertain, shown in black in Fig. 3b. 

The extracted feature points would be better to be evenly distributed in the first frame and 

then tracked. It is reasonable to adopt this strategy to make sure that more superpixels would 

contain labelled points to be used for initial labelling. However, superpixels labelled as 

uncertain do exist due to tracking failure of feature points, especially when large regions with 

low texture occur, the sweater area in the bottom of Fig. 3a for example. To deal with this 

problem, we proceed to label the uncertain regions by using superpixels clustering. 

 

2.2.3 Feature Extracting and Superpixels Clustering 

We extract color feature and texture feature that complement with each other [29] from each 

superpixel. One thing need to be mentioned is that the process is applied over the image which 

contains the superpixels, not over the initially labelled image.  

For the color feature, we first transform the representation of pixels from RGB to HSV, 

which is more robust to changing illumination. Then a color histogram Hc is computed within 

each superpixel as the color feature, discretizing the hue, saturation, and value channels of 

HSV color space into 9, 8, and 6 bins. And the Weber’s law descriptor (WLD) [30] for image 

pixels are calculated and normalized into the range [0, 255]. Then a texture histogram Ht of 

each superpixel is computed as the texture feature. 

After feature extraction, superpixels are clustered into k regions by conducting spectral 

clustering [24-26] on an undirected weighted graph ( , )G V W , where V denotes the vertex 

set with each vertex representing a superpixel, and W denotes the weighted matrix with the 

entry wij reflecting the similarity between superpixels S
i
 and S

j
. In order to construct the matrix 

W, we devise a distance ( , )i jD S S  as follows to measure the proximity between superpixels 

S
i 
and S

j
 [22]: 

(1) ( , )i j

colord S S  indicates the distance between S
i
 and S

j
 in color space by correlating 

color histogram Hc extracted. dim(Hc) equals to 432, where dim( )h  denotes the 

dimensionality of histogram h . And the values of ( , )i j

colord S S range from 0 to 1. 

 

 ( , ) (1 ( , )) / 2i j i j

color c cd S S correlation H H    (4) 

 

where the correlation between two histograms 
ih  and 

jh  is defined as [31] 
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where 

dim( )

1

( ) / dim( )
h

i il

l

h h h


  . 

(2) ( , )i j

textured S S  is the distance between S
i
 and S

j
 in texture space, and the computation is 

the same as ( , )i j

colord S S . dim(Ht) equals to 256 and the values of ( , )i j

textured S S  also range 

from 0 to 1. 

 ( , ) (1 ( , )) / 2i j i j

texture t td S S correlation H H    (6) 

 

(3) ( , )i j

spatiald S S refers to the city block distance between S
i
 and S

j 

 

 ( , ) || || || ||i j i j i j

spatial x x y yd S S S S S S      (7) 

 

where ( , )i i

x yS S  denotes the coordinate of the center of 
iS  in the image. ( , )spatial i jd S S  is 

divided by the maximum value of all the ( , )spatial i jd S S  to be normalized to the range [0, 1]. 

Then, adaptive weights are used to construct ( , )i jD S S  as follows 

 

 

( , ) ( , ) ( , ) ( , )

/ ( )

/ ( )

/ (

i j i j i j i j

color color texture texture spatial spatial

color color color texture spatial

texture texture color texture spatial

spatial spatial color texture spat

D S S d S S d S S d S S

d d d d

d d d d

d d d d

  







  

  

  

   )ial

  (8) 

 

where colord , textured  and 
spatiald  is the mean value of all ( , )i j

colord S S , ( , )i j

textured S S , and 

( , )i j

spatiald S S  respectively. 

 

And W can be constructed according to ( , )i jD S S  with each of its element computed as 

 

  2 2exp ( , ) / 2i j

ijw D S S     (9) 

 

where 1 1max min ( , ),n n i j

i j D S S i j    . 

Fig. 4a shows the clustering result with different colors, and superpixels with the same 

color belong to the same cluster. 
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Fig. 4. (a) Clustered regions after superpixels clustering; (b) Coarse segmentation result; (c) The 

original F
th

 frame 

 

 

2.2.4 Coarse Segmentation 

For each clustered region, the labelled superpixels within vote for the assignment of the 

uncertain superpixels. We adopt a winner-takes-all strategy:  

(1)If the number of superpixels labelled as foreground within the clustered region is more 

than the number of superpixels labelled as background, then all the uncertain superpixels 

within the clustered region are labelled as foreground, and vice versa. 

(2)If by any chance a draw occurs, i.e. the number of superpixels labelled as foreground 

equals to the number of superpixels labelled as background, then all the uncertain superpixels 

within the clustered region are labelled as background. 

The result of coarse segmentation is shown in Fig. 4b, we can see that the status of 

uncertain superpixels labelled in 2.2.2 (superpixels in black in Fig. 3b) have been updated to 

foreground (yellow in Fig. 4b) or background (red in Fig. 4b). Also we can notice that the 

result is not satisfactory by comparing Fig. 4b with Fig. 4c. This is caused by the 

misalignment of superpixels’ contour with the true contour of the moving object. To deal with 

this problem, we proceed to perform pixel level refinement. 
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2.3 Pixel Level Fine Segmentation 

2.3.1 Quadmap Construction 

The Trimap is usually used in image matting, segmenting the input image into three 

regions: definitely foreground Tf, definitely background Tb and unknown Tu [32]. This 

three-level pixel map is often generated by user interface, for example manually specifying 

foreground and background scribbles. 

Inspired by the Trimap, we construct the Quadmap automatically by analyzing the 

8-connectivity adjacency of labelled superpixels. This is based on the observation that 

unknown regions only occur in regions where foreground and background are adjoining.  

Similar to the Trimap, the Quadmap segments the input image into four regions: definitely 

foreground Df, definitely background Db, probably foreground Pf and probably background Pb. 

 

 

 
(a)                                                            (b) 

Fig. 5. (a) Coarse segmentation of superpixels; (b) The constructed Quadmap 

 

 

(1)For each superpixel labelled as foreground in coarse segmentation (yellow in Fig. 5a), if 

all its adjacent superpixels are foreground, then it is taken as Df (yellow in Fig. 5b); otherwise 

it is taken as Pf (green in Fig. 5b). 

(2)For each superpixel labelled as background in coarse segmentation (red in Fig. 5a), if all 

its adjacent superpixels are background, then it is taken as Db (red in Fig. 5b); otherwise it is 

taken as Pb (magenta in Fig. 5b). 

 

2.3.2 Fine Segmentation 

We perform pixel level fine segmentation by using Grabcut [33]. Given the Trimap, Grabcut 

segments N pixels 1 n N(z ...z ...z )z   in the image into foreground and background. We 

compare several color spaces including RGB, HSV, CMY, and YUV, and found RGB to be 

the best color space representation in our case. 

The segmentation result is expressed as 1 n N( ... ... )    , where {0,1}i   with 0 for 

background and 1 for foreground. Grabcut finds the optimum segmentation by minimizing the 

energy function defined as 

 ( , , z) ( , , z) ( , z)E U V        (10) 
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where ( , , z)U    is the data term evaluating the fitness of   to the data z , and ( , z)V   is 

the regularization term encouraging coherence in regions of similar RGB-level. The variables 

θ = (θ0, θ1) describe background and foreground appearance models, where θ0 and θ1 are 

calculated according to pixels labelled as foreground and background by using Gaussian 

Mixture Models (GMM) respectively. 

The minimization can be achieved by alternating optimize over segmentation results   

and appearance models θ. Tf and Tb remain unchanged during the process, while T  update in 

each iteration to classify pixels within it to foreground or background. 

In our case, the automatically constructed Quadmap is used instead of the interactively 

labelled Trimap to realize unsupervised segmentation. Moreover, the Quadmap can also 

provide a better initialization. Df and Db remain unchanged, while Pf and Pb update in each 

iteration. Due to the sound initialization of the Quadmap, good results can be achieved after 

only 2-3 iterations, as shown in Fig. 6. 

 

 

 
(a)                                                            (b) 

 

Fig. 6. (a) Updated probably foreground and probably background; (b) The detected moving object 

 

3. Experiments and Results 

In this section, we first compare our method quantitatively and qualitatively with 

state-of-the-art methods proposed by Papazoglou et al. [8] and Ochs et al. [14] by using the 

Freiburg-Berkeley Motion Segmentation Dataset [14]. Then, our method is applied on image 

sequences intercepted from a video, in which the Atlantis Space Shuttle is approaching the 

International Space Station for rendezvous & docking. Our proposed method is implemented 

in Visual C++ 2012. For Papazoglou et al.’s approach [8] and Ochs et al.’s method [14], the 

codes are provided by the authors on their homepage. 
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Fig. 7. The qualitative comparisons of our algorithm with Papazoglou et al.’s [8] and Ochs et al.’s 

approach [14] on Marple 1 sequence. 

3.1 Experiments using the Freiburg-Berkeley Motion Segmentation Dataset [14] 

In these experiments, we test our algorithm by using the sequences from the 

Freiburg-Berkeley Motion Segmentation Dataset [14]. As mentioned above, our aim is to 

detect the single moving object from videos or image sequences. So we conduct experiments 

on sequences containing a single moving object in the field of view, which include 28 

sequences with 332 annotated ground truth images. These sequences cover typical challenges 

such as camera motion, occlusion, changing scale and changing illumination, etc. 

The ground truth of the moving object is annotated every 10 frames in the Marple 

sequences and every 20 frames in the others. For each sequence, we generate the labelled point 

trajectories in all the frames by using semi-dense point trajectories method [20], and then 

detect the moving object in each frame by using our proposed method. 

During the experiments, the desired number of superpixels is set to be 200 for the Marple 

sequences, and the number doubles for the others because the size of these sequences are 
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approximately 2 times compared with the Marple sequences. And the value of k in superpixels 

clustering is fixed to be 18 empirically. These parameters can be tuned in other cases 

according to the size of the input images: the larger the images, the greater the desired number 

of superpixels and k can be set. 

 

 
Fig. 8. The qualitative comparisons of our algorithm with Papazoglou et al.’s [8] and Ochs et al.’s 

approach [14] on horses 01 sequence. 

 

3.1.1 Qualitative results 

The qualitative comparisons on Marple1 sequence and horses01 sequence are shown in Fig. 7 

and Fig. 8 respectively: (a) indicates the frames in which the moving object is to be detected; 

(b) indicates the detection results by using  Papazoglou et al.’s approach [8], and (c) indicates 

the detection results by using Ochs et al.’s approach [14], where the detected moving objects 

are shown in yellow; (d) and (e) show the detection results by using our algorithm, where the 

detected moving objects are also shown in yellow in (d) to compare with results in (b)(c), and 

(e) shows pixels belonging to the foreground; and (f) indicates the ground truth. Some 

additional results from other sequences are shown in Fig. 9 and Fig. 10. 

We can see that our proposed method can detect the moving objects from the sequences, 

overcoming challenges such as camera motion, cluttered background, occlusion, changing 

scale and changing illumination, etc. The large area segmentation errors in Marple 1 # 40 and 

Marple 4 # 30 by Ochs et al.’s method [14] caused by the partial mislabelled point trajectories 

are avoided due to the coarse-to-fine strategy we adopted.  

To better explain the advantage of the proposed coarse-to-fine strategy, we take Marple 4 # 

30 as an example for illustration. The mislabelled points occur in the neighbouring region of 
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the hat and the background in the top left of the image. If only coarse segmentation is 

performed, large area segmentation errors similar with Ochs et al.’s method [14] would occur. 

The reason lies in that the region is relatively textureless and even few mislabelled points 

would affect the belonging of the whole region. However, due to the following fine 

segmentation, the potential misclassification would be corrected by firstly marking the 

belonging of the region as probable to be changed in the Quadmap, and then performing pixel 

level refinement taking the neighbouring regions whose belonging are definitely assured into 

consideration. 

The poor performance of Papazoglou et al.’s method [8] in the Marple sequences and the 

horses 01 sequence are mainly caused by the heavy dependence on optical flow to find an 

initial foreground boundary. When the calculation of optical flow is influenced, say by the 

low-texture sweater regions in the Marple 1 sequence, it cannot achieve good results. 
 

 
 

Fig. 9. The qualitative comparisons of our algorithm with Papazoglou et al.’s [8] and Ochs et al.’s 

approach [14] on other sequences. 
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Fig. 10. The qualitative comparisons of our algorithm with Papazoglou et al.’s [8] and Ochs et al.’s 

approach [14] on other animal sequence. 

 

3.1.2 Quantitative results 

We evaluate our proposed method quantitatively by using three criteria: precision, recall, and 

F-measure [34]. Precision is defined in Equation (11) and used to measure the percentage of 

the pixels correctly labelled as foreground among all the pixels labelled as foreground 

 
TP

precision
TP FP




  (11) 

where TP is the number of pixels labelled as foreground correctly, and FP is the number of 

pixels wrongly labelled as foreground. 

Recall is defined in Equation (12) and used to evaluate the percentage of the pixels correctly 

labelled as foreground among all the pixels belonging to the foreground according to the 

ground truth. 

 
TP

recall
TP FN




  (12) 

where false negative (FN) indicates the number of pixels belonging to the foreground but 

wrongly labelled as background.  

F-measure takes above mentioned precision and recall into consideration, and is used for 

measuring accuracy. 

 
2 precision recall

F measure
precision recall

 
 


  (13) 
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Table 1 shows the quantitative evaluation of different methods, including the average 

precision, average recall, average F-measure, the percentage of frames with the F-measure > 

0.6, and the percentage of frames with the F-measure > 0.75. The larger the F-measure is, the 

higher the performance will be. And the F-measures achieved by using different methods on 

these sequences are shown in Fig. 11. Where red indicates the results of our method, and green 

and yellow indicate the result of Ochs et al. [14] and Papazoglou et al. [8] respectively. As can 

be seen, our method can achieve favorable results compared with state-of-the-art methods.  

However, both our method and Ochs et al.’s method [14] use the labelled trajectory points 

as the motion cue. When the trajectory points labelling failed, for example in rabbits04 

sequence the rabbit is too small to contain enough tracked feature points, these methods do not 

performs well. Thus point trajectories based methods are more suitable to be used in detecting 

objects that occupy a certain part of the image, but not for detecting tiny objects. 

Table 1. Quantitative comparison of different methods  

 precision recall F-measure F-measure>0.6 F-measure>0.75 

Our method 0.745 0.698 0.693 76.2% 69.9% 

Papazoglou et al.  0.602 0.742 0.614 57.2% 43.4% 

Ochs et al.  0.767 0.684 0.689 76.8% 66.3% 

 

 
Fig. 11. The F-measure of different methods 

 

3.1.3 Running time 

In order to test the efficiency, a notebook PC with 2.3GHz CPU and 12GB RAM is used as the 

experimental platform. Both our method and Ochs et al.’s method [14] need the labelled point 

trajectories as the input.  

As to the Marple sequences, some of them are 350×288 in resolution and the others are 

450×350 in resolution. It takes 4.2s on average for generating semi-dense point trajectories 

across 10 successive frames by using the semi-dense point trajectories method [20]. The 

coarse-to-fine segmentation of our method takes 0.85s per frame on average, and the detailed 

time cost for superpixels segmentation, feature extracting and superpixels clustering, fine 

segmentation by using Grabcut, and other procedures are 40ms, 230ms, 460ms, and 120ms, 

respectively. However, Ochs et al.’s method costs 59s on average, and Papazoglou et al.’s 

method [8] consumes 13.4s per frame on average. 

And the resolutions of the other sequences include 960×540, 640×400, 640×480, etc. It 

takes 220s on average for generating semi-dense point trajectories across 20 successive frames 
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by using the semi-dense point trajectories method [20]. The coarse-to-fine segmentation of our 

method takes 1.5s per frame on average, and the detailed time cost for superpixels 

segmentation, feature extracting and superpixels clustering, fine segmentation by using 

Grabcut, and other procedures are 100ms, 400ms, 850ms, and 150ms, respectively. However, 

Ochs et al.’s method [14] costs 150s on average, and Papazoglou et al.’s method [8] consumes 

100s per frame on average. 

As can been seen from above, the time consumption reduce significantly by using our 

method due to the coarse-to-fine strategy adopted. 

3.2 Experiments using real world video 

In these experiments, we test our algorithm by using image sequences intercepted from a video 

downloaded from the Internet. In the video, the Atlantis Space Shuttle is approaching the 

International Space Station for rendezvous & docking. As shown in Fig. 12, the Atlantis is the 

moving object to be detected, and the clouds constitute the dynamic background. 

Papazoglou et al.’s method [8] and semi-dense point trajectories method [20] failed due to 

the insufficient displacements between adjacent frames to calculate optical flow, which is the 

prerequisite for both methods. During the experiments, we only perform qualitative 

comparison between our proposed algorithm and Ochs et al.’s [14] due to lack of ground truth. 

For each sequence, the labelled point trajectories are generated by tracking extracted feature 

points across 20 frames using the KLT + SSC method we proposed in [22]. 

The detected Atlantis in each sequence is shown in Fig. 12: (a) show the 20
th
 frames of each 

sequence, in which the flying Atlantis is to be detected; (b) show the detection results by using 

Ochs et al.’s approach [14], where the detected Atlantis is shown in yellow; (c) and (d) show 

the detection results by using our algorithm, where the detected Atlantis is also shown in 

yellow in (c) to compare with results in (b), and (d) show pixels belonging to the Atlantis. By 

comparing results in (b) and (c) we can see that, both Ochs et al.’s method [14] and our 

algorithm are able to detect the maneuvering Atlantis from the dynamic background. However, 

the empennages in the 2
nd

 and 3
rd

 columns of (b) are wiped out. This is caused by the 

variational method they used, which tends to smooth out fine details to minimize the global 

energy function. Our approach outperforms and preserves fine details. 
 

 
 

Fig. 12. The qualitative comparison of our algorithm with Ochs et al.’s approach [14] on Atlantis 

sequences. 
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4. Conclusion and Future Work 

A new coarse-to-fine framework for unsupervised segmentation of single moving object from 

videos or image sequences is proposed in this work, which can be widely used in navigation, 

surveillance, recognition, 3D reconstruction and many more. For example, after detecting the 

moving object in the video, object recognition can be performed to infer the category it 

belongs to.  

Our algorithm is composed of a superpixel level coarse segmentation to facilitate 

subsequent processing as well as to provide a good initialization, and a pixel level fine 

segmentation to improve the segmentation accuracy. A distance measurement is devised to 

measure the similarities between generated superpixels, which is of great significance for 

clustering in the coarse segmentation stage. Moreover, a Quadmap is introduced to facilitate 

the refinement in the fine segmentation stage. According to the experiments, our algorithm is 

effective and efficient, and favorable results can be achieved compared with state-of-the-art 

methods. 

And in the future we intend to annotate the ground truth of more images manually to 

increase the field and the number of testing images, and then perform more experiments to 

evaluate our method thoroughly. We also plan to extend our work from single moving object 

detection to multiple moving object detection. 
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