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Abstract: Efficient image stitching plays a vital role in the Non-Destructive Evaluation (NDE) of
infrastructures. An essential challenge in the NDE of infrastructures is precisely visualizing defects
within large structures. The existing literature predominantly relies on high-resolution close-distance
images to detect surface or subsurface defects. While the automatic detection of all defect types repre-
sents a significant advancement, understanding the location and continuity of defects is imperative.
It is worth noting that some defects may be too small to capture from a considerable distance. Con-
sequently, multiple image sequences are captured and processed using image stitching techniques.
Additionally, visible and infrared data fusion strategies prove essential for acquiring comprehensive
information to detect defects across vast structures. Hence, there is a need for an effective image
stitching method appropriate for infrared and visible images of structures and industrial assets,
facilitating enhanced visualization and automated inspection for structural maintenance. This paper
proposes an advanced image stitching method appropriate for dual-sensor inspections. The proposed
image stitching technique employs self-supervised feature detection to enhance the quality and
quantity of feature detection. Subsequently, a graph neural network is employed for robust feature
matching. Ultimately, the proposed method results in image stitching that effectively eliminates
perspective distortion in both infrared and visible images, a prerequisite for subsequent multi-modal
fusion strategies. Our results substantially enhance the visualization capabilities for infrastructure
inspection. Comparative analysis with popular state-of-the-art methods confirms the effectiveness of
the proposed approach.

Keywords: image stitching; feature matching; feature detection and description; self-supervised
learning; auto-encoders; convolutional neural networks; infrared thermography; multi-modal imaging

1. Introduction

Integrating infrared (IR) and visible (VIS) imaging in industrial infrastructure inspec-
tion has proven to be a powerful approach for efficient and comprehensive assessment [1].
Both infrared and visible images offer unique insights into the condition of structures [2],
enabling the detection of various defects and anomalies. However, achieving a fully au-
tomated defect detection system that identifies defects and precisely locates and assesses
their continuity remains a significant challenge.

Image stitching combines multiple images with overlapping areas to create a larger
panoramic image [3]. Image stitching plays an important role in enhancing the effectiveness
of infrastructure inspection. Infrastructures span vast areas, and conventional imaging tech-
niques may not capture the complete picture, especially for defects requiring more visual
coverage [4]. Image stitching techniques offer a solution by seamlessly combining image se-
quences captured from different perspectives into a single, comprehensive representation.

Employing multi-modal images proves indispensable in achieving a comprehensive
inspection and bringing together the advantages of each modality to provide a more
thorough assessment of the infrastructure [5,6].
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Image stitching for dual-sensor inspection takes infrastructure inspection to a higher
level of accuracy and insight [7]. In different modalities, such as IR and VIS bands, the
stitched images enable a more comprehensive understanding of the entire structure [4].

Automated defect detection is a crucial objective in infrastructure inspection, signifi-
cantly reducing human effort and improving efficiency. The proposed approach strives to
achieve automated detection across various defect types by employing multi-modal image
stitching. This progress not only enhances the reliability of the inspection process but also
expedites repair efforts for large structures.

This paper proposes an effective and robust method to obtain a high-precision stitched
image of infrastructures to enhance defect detection. We concentrate on both improving
alignment accuracy and reducing distortions. The main contributions in this work are
as follows:

1. We propose a self-supervised auto-encoder feature detection technique for enhancing
the quality and quantity of feature points in infrared and visible images;

2. We also employ a powerful feature matching algorithm based on graph neural net-
works to identify and remove the mismatched features robustly;

3. Lastly, we develop perspective-distortion-free image stitching software for dual-sensor
inspection especially for low-texture conditions.

This paper is organized as follows: Section 2 presents the related works. Section 3
proposes the image stitching methodology. Then, Section 4 outlines the comparative
experiments conducted on the algorithms of each part, and the final infrared and visible
image stitching result is presented. Lastly, we summarize the main outcomes in Section 5.

2. Literature Review
2.1. Feature Detection and Descriptor

Learning-based feature detection methods are divided into supervised [8], self-
supervised [9,10], and unsupervised [11–15]. These methods are often reformulated as re-
gression problems, enabling trainable models that remain robust to various transformations
and imaging conditions. However, the effectiveness of supervised methods heavily relies
on the construction of anchors, which often poses limitations and prevents the accurate
proposal of keypoints [15].

Many methods integrate feature detection into the matching pipeline, enhancing
overall performance and optimizing the procedure end to end. TILDE [16] trains re-
gression models for repeatable keypoints under diverse imaging conditions. DetNet [11]
formulates learning local covariant features as a regression problem with covariance
constraints. Quad-net [12] achieves keypoint detection under transformation-invariant
quantile ranking.

2.2. Feature Matching

An overview of image matching methods, categorizing them into area-based and
feature-based methods, is presented in [17,18]. Area-based methods operate without feature
detection, while feature-based methods involve extracting feature points and descriptors,
with direct and indirect matching approaches.

Direct feature matching establishes correspondences using spatial geometrical re-
lations, including graph matching and point set registration. Indirect feature matching
involves a two-stage process, starting with preliminary correspondences and applying
geometrical constraints to remove false matches. Dense matching requires post-processing
for transform model estimation and image resampling.

Learning-based methods, introduced separately, use images and point data for im-
proved performance. Correlation-like methods maximize similarities of sliding windows,
while domain-transformed methods align images by converting them into another domain.
Mutual information (MI) methods measure statistical dependency between images, suit-
able for multi-modalities. MI, despite its utility, faces challenges in determining the global
maximum. Different optimization methods and transformation models are discussed.
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The area-based methods are suitable for specific applications like medical or remote
sensing image registration, where feature-based methods may struggle. However, area-
based methods face challenges with geometrical transformations and local deformations.
Research works presented in [17,19–21] hint at the integration of deep learning into area-
based matching for improved efficacy, a topic to be reviewed in the learning-based matching
section. Graph matching (GM) involves associating feature points to nodes, forming
a graph for investigating the image data structure. GM addresses the establishment of
node-to-node correspondences between graphs, classified as exact and inexact matching.
While exact matching is too strict, researchers often opt for inexact matching with weighted
attributes on nodes and edges. The focus of this survey is on inexact matching methods. GM
formulates the feature matching problem, encoding geometrical cues into node and edge
affinities. The recent GM form is a Quadratic Assignment Problem (QAP), with Lawler’s
QAP being a primary focus. Koopmans–Beckmann’s QAP is another formulation, related
to Lawler’s. GM aims to find optimal one-to-one correspondences, facing NP-hardness.
Researchers in [22–24] used various relaxation strategies, and GM solvers are introduced in
the literature.

Image Stitching

Image stitching or image mosaicking involves obtaining a wider field of view of
a scene from a sequence of partial views [25]. Image stitching deals with low overlapping
images and requires accurate alignment at the pixel level to avoid visual discontinuities.
Feature-based stitching methods are popular because of their invariance properties and
efficiency. For example, in order to identify geometrically consistent feature matches
and achieve accurate homography estimation, Brown and Low [26] proposed using the
SIFT [27] feature matching and the RANSAC [28] algorithm. Lin et al. [29] also used SIFT
to precompute matches and then jointly estimate the matching and the smoothly varying
affine fields for better stitching performance.

3. Materials and Methods

This section introduces the proposed image stitching methodology. Figure 1 indicates
the general scheme of the method. This method includes three phases. Each phase will be
explained in the following subsections. Also, Algorithm 1 shows the implementation of the
proposed method.

Figure 1. Advanced image stitching method for dual-sensor inspection. (General scheme of the
proposed method [4]).
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Algorithm 1: Advance Image Stitching Algorithm for Dual-Sensor Inspection
Input: Data: I ∈ Rm×n

// Image I could be IR data or VIS data
// Feature Detection and Description Phase:

1 foreach input image I do
2 Apply self-training auto-encoder for feature detection and description;
3 Use Homographic Adaptation to improve feature detection;
4 Generate pseudo-ground truth interest point locations;
5 Train the auto-encoder using conventional supervised learning;
6 end
// Feature Matching Phase:

7 Apply SuperGlue algorithm for feature matching;
8 Use graph neural networks to predict matching scores;
9 Estimate geometric transformations between key points;
// Multi-Image Stitching Phase:

10 foreach pair of images (Ii, Ij) do
11 Estimate homography matrix H between Ii and Ij using RANSAC;
12 Apply H to correct for perspective distortions and align features;
13 Choose appropriate geometric transformations based on stitching requirements;
14 end

// Create Panorama:
Output: Stitched panorama image is generated as the output: I ∈ Rm×n

3.1. Feature Detection and Description Phase

This subsection presents a feature detection and description methodology specifically
designed for addressing complexities arising in poor or low-texture conditions, which
are particularly prevalent in infrared as well as visible images related to certain materials
such as concrete. The challenges associated with such conditions include both the scarcity
and suboptimal quality of feature points [30,31]. Consequently, we propose a method
aimed at enhancing both the quantity and quality of feature points. The primary objective
is to address issues such as the lack of repetition of feature points in overlapping areas,
homogeneity, and the sparse distribution of feature points.

Self-Training Auto-Encoder for Unified Dual-Sensor Feature Detection and Description

To this end, we employ an auto-encoder for feature detection and description through
a self-supervised approach. Auto-encoders prove to be powerful feature learning algo-
rithms capable of automatically discovering and representing complex patterns and hierar-
chical features in the data [32].

Figure 2 illustrates the proposed feature detection and description method, inspired
by [10], which employs an auto-encoder to enhance the efficiency of feature point detection
and description. Auto-encoders consist of two primary components: the encoder and de-
coder [32,33]. A VGG-like [34] convolutional neural network is designed and implemented
as the shared encoder. Figure 3 shows the fully convolutional neural network with all the
details as the shared encoder. We mitigate inaccurate feature detection by exploiting the
inherent dimensionality reduction advantage of encoders.

The proposed network is designed to perform effectively across diverse image modali-
ties. As Figure 2 illustrates, the network maps the input image I ∈ RH×W to an intermediate
tensor B ∈ RHc×Wc×F. This computation involves two headers, a 2D interest point detector
head, and a descriptor head. The 2D detector head computes X ∈ RHc×Wc×65. Following
channel-wise softmax [35] and non-maximal suppression (NMS) [36], the detector organizes
the detected feature points based on provided confidence levels and selects k feature points
with the highest confidence as the output. To reduce computation and memory usage,
the descriptor learns semi-dense descriptors D ∈ RHc×Wc×D. Subsequently, the bicubic
interpolation algorithm is applied to obtain complete descriptors of size RHc×Wc×D, and,
finally, L2 normalization is employed to obtain unit length descriptions.
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Figure 2. The proposed auto-encoder for feature detection and description.

Figure 3. The proposed fully convolutional neural network as the shared encoder (refer to Figure 2).

Within the auto-encoder, a self-supervised framework plays an important role. The
self-supervised network’s architecture is meticulous. Homography adaptation is employed
for applying various homographies to a single image, representing distinct views of the
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same data [10,37]. Feature detection and description are initially applied to each view,
culminating in a feature fusion step. This approach enhances the detection of a maximal
quantity of feature points. The proposed method initiates its functionality using a founda-
tional interest point detector and an extensive collection of unlabeled images from the target
domain, such as MS-COCO [38]. Employing a self-supervised paradigm, also recognized
as self-training, we initially generate a set of pseudo-ground truth interest point locations
for each image in the target domain. Subsequently, we utilize conventional supervised
learning techniques.

Central to the proposed approach is a procedure that involves applying random homo-
graphies to warped duplicates of the input image and merging the outcomes—a technique
we refer to as Homographic Adaptation. Homographies provide precise or nearly precise
transformations between images, particularly suited for camera motion characterized by
rotation around the camera center. Additionally, given that a significant portion of the
world exhibits reasonably planar characteristics, a homography is an effective model for
representing the changes observed when the same 3D point is viewed from different per-
spectives. An advantage is that homographies do not necessitate 3D information, allowing
for random sampling and straightforward application to any 2D image with minimal
computational overhead, typically involving bilinear interpolation. Due to these advan-
tages, homographies constitute the foundational element of the proposed self-supervised
approach. Let fθ(·) denote the initial interest point function we aim to adapt, I the input
image, x the resulting interest points, and H a random homography such that

x = fθ(I) (1)

An ideal interest point operator should be covariant with respect to homographies.
A function fθ(·) is covariant with H if the output transforms with the input. In other words,
a covariant detector will satisfy, for all H ∈ R3,

Hx = fθ(H(I)) (2)

Moving homography-related terms to the right, we obtain

x = H−1 fθ(H(I)) (3)

In practice, a detector will not be perfectly covariant—different homographies in
Equation (3) will result in different interest points x. The basic idea behind Homographic
Adaptation is to perform an empirical sum over a sufficiently large sample of random H
values. The resulting aggregation over samples thus gives rise to a new and improved
super-point detector, F̂(·):

F̂(I; fθ) =
1

Nh

Nh

∑
i=1

H−1
i fθ(Hi(I)) (4)

3.2. Feature Matching Phase

SuperGlue [39] is a graph neural-network-based algorithm designed for feature match-
ing in computer vision tasks, particularly for establishing correspondences between key
image points. Developed for tasks such as image matching, stereo matching, and visual lo-
calization, SuperGlue raises deep neural networks to predict matching scores and estimate
the geometric transformation between keypoints.

Geometric transformations can be applied during image stitching to correct for per-
spective distortions and improve the alignment of images in a mosaic or panorama. The
SuperGlue algorithm potentially has this opportunity. The goal is to create a visually
seamless and undistorted composite image by compensating for variations in viewpoint,
rotation, and scale across the individual images. In the context of image stitching, common
geometric transformations include the following:
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• Translation: Shifting the position of one image relative to another;
• Rotation: Rotating an image to align features;
• Scaling: Adjusting the size of an image to match the scale of the reference image;
• Homography: A more general transformation that includes translation, rotation,

scaling, and skewing. It is particularly useful for correcting perspective distortions.

By applying these transformations to each image before stitching, the software aims to
minimize perspective distortions and achieve a smooth transition between adjacent images.
This process is crucial, especially when images are captured from different viewpoints
or with variations in camera parameters. In the following, it is explained how geometric
transformations contribute to distortion correction:

• Perspective Distortion Correction: Geometric transformations, such as homography,
can correct for perspective distortions when objects in the scene are viewed from
different angles. It is particularly relevant when capturing images with wide-angle
lenses or from non-ideal shooting positions;

• Seamless Alignment: Applying appropriate transformations ensures that key features
in the overlapping regions of adjacent images align correctly. This alignment is critical
for creating a visually coherent and distortion-free stitched image;

• Global Adjustment: Geometric transformations allow for global adjustments, ensuring
that the entire set of images contributes cohesively to the stitched result. This is
essential for avoiding artifacts and maintaining a natural appearance.

3.3. Multi-Image Stitching Phase

The primary goal of this section is to create a panorama or mosaic that seamlessly
integrates the input images. One crucial step in this process is estimating the homography
between pairs of images, and the Random Sample Consensus (RANSAC) [28] algorithm is
often used for robust homography estimation.

The homography matrix (H) is a 3 × 3 transformation matrix that relates points in one
image to their corresponding points in another image:x′

y′

1

 = H

x
y
1


where (x, y) are the coordinates in one image, and (x′, y′) are the coordinates in the other image.

The RANSAC algorithm is beneficial when dealing with scenarios with outliers,
noise, or incorrect correspondences in the matching process. Hence, the probably false
correspondences will also be eliminated in this section. It provides a robust way to estimate
transformations like homographies in the presence of such challenges.

4. Results and Discussion

In this section, we investigate a comprehensive analysis of the results obtained in
this study, shedding light on the essential findings and their implications. This research
focused on image stitching using dual-sensor infrared and visible spectra to enhance Non-
Destructive Evaluation inspection. Throughout the experiments, we examined various
factors and variables. This section provides a structured overview of these results, begin-
ning with the detailed feature detection and description phase, then the in-depth discussion
of feature point matching, and concluding with insights into image stitching. By systemati-
cally dissecting our findings, we aim to uncover patterns, draw meaningful conclusions,
and offer insights into the broader implications of this research, contributing to a deeper
understanding of image stitching using multi-sensors for infrastructure visualization.

4.1. Dataset and Implementation Details

This study uses two datasets containing coupled thermal and visible images of in-
dustrial assets to evaluate the proposed approach. The first dataset is related to a wall of
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concrete. A Zenmuse H20T camera (Da-Jiang Innovations Science and Technology Co., Ltd.,
Shenzhen, China) collected coupled thermal and visible images with 640 × 512 resolution.
This dataset contains 86 coupled IR and thermal images. The other dataset is related to
the roof of a building. This dataset includes 73 coupled thermal and visible images. A DJI
M300 drone (Da-Jiang Innovations Science and Technology Co., Ltd., Shenzhen, China)
equipped with a Zenmuse H20T camera was employed for acquiring thermal and visible
images. The images of both datasets have almost 75% overlap. Both dataset are captured
at an altitude of 15 m. All the experiments in this paper were implemented in Python
programming language on a computer with a 2080Ti GPU.

4.2. Results of Feature Detection and Description Phase

In this subsection, we compare several popular feature detection and description
algorithms to verify the applicability of the proposed feature detection and description
method in complex conditions such as those with poor or low texture conditions, repetitive
patterns, and homogeneity, which mostly take place in IR thermography images as well as
visible images of some materials like concrete.

The comparison methods include ORB [40], AKAZE [41], and SIFT, which are highly
trusted methods which have been used for decades by researchers for feature detection
and description. We applied these methods to visible and infrared images, then compared
them with proposed method. We tested 160 IR images and 160 visible images of the
industrial structures we mentioned earlier. There is a significant difference in the feature
point’s quantity and quality between the proposed methods and other methods. Also,
the repeatability of the detected feature in the sequence images is dramatically visible,
especially with low or poor textures and repetitive patterns, as shown in the results of the
test images in Figures 4–7.

Poor Texture: Structures like concrete often have large, monotonous, and texture-less
surfaces. Traditional feature detectors like ORB, SIFT, and AKAZE rely on identifying
distinctive texture patterns. As shown in Figures 4–7, as the texture becomes less and less
defined, they struggle to find suitable feature points, resulting in a lack of feature matches.
The proposed method finds the critical points more precisely.

Reflectance Variations: Complex structures can exhibit varying degrees of reflectance
under different lighting conditions. Feature detectors are sensitive to illumination changes
and might produce inconsistent results when lighting conditions fluctuate. This can lead to
unreliable feature points.

Parallax: Parallax occurs when the viewpoint changes, causing objects to appear at
different positions in images taken from different angles. Traditional feature detectors,
designed for planar scenes, may not handle parallax well. They might generate feature
points that do not align correctly between images with significant viewpoint variations.

Homogeneity: IR and VIS structures often have large, uniform regions where pixel values
do not vary significantly. Traditional detectors like ORB, SIFT, and KAZE struggle to identify
feature points in such homogeneous areas, leading to sparse feature point distributions.

Repetition pattern: Repetitive patterns, common in concrete structures, can confuse
feature detectors like ORB. These detectors may produce numerous feature points on
repeated patterns, making it challenging to match them accurately.
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(a)

(b)

(c)

(d)

Figure 4. Feature detector performance results on visible images dataset 1 for two consecutive images.
(a) ORB features are dense in boundaries and edges. (b) SIFT (c) AKAZE (d) The proposed method
Challenges and complexities: Repetitive patterns on the surface, Homogeneity, and poor texture in
some parts on the surface.

Figure 4. Feature detector performance results on visible image dataset 1 for two consecutive images.
(a) ORB features are dense in boundaries and edges. (b) SIFT, (c) AKAZE, (d) the proposed method.
Challenges and complexities: repetitive patterns on the surface, homogeneity, and poor texture in
some parts on the surface.

In Figure 4, we present a visual representation of two successive images in each
row exhibiting a 0.75 overlap. In the case illustrated in Figure 4a, we focus on visible
images characterized by repetitive patterns and homogeneity. The ORB feature detector is
employed in this scenario, with its primary strength lying in the identification of points
along edges. However, it is noteworthy that the number of points identified by ORB is
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somewhat constrained. Moreover, we anticipate the need for more repetition of feature
points in areas where the two sequence images overlap.

This observation leads us to Figure 4b,c, where we explore using SIFT and AKAZE
feature detectors. These detectors prove more adept at identifying feature points compared
to ORB. However, challenges persist regarding repeating these detected points in the
overlapped areas.

In the pursuit of addressing these challenges, Figure 4d shows the proposed method,
which enhances detecting feature points. Notably, the proposed method demonstrates
a substantial increase in the number of detected feature points, including those repetitively
identified in the overlapped regions. For a more rigorous assessment of the proposed
method’s efficacy, shown in Figure 5, we examine a scenario posing increased difficulty.
Here, the concrete surface presents a formidable challenge for SIFT and ORB, which
struggle to detect feature points effectively. In contrast, the proposed method significantly
outperforms these traditional detectors, showcasing a superior ability to detect a more
substantial number of feature points, particularly in regions where image overlap occurs.
It emphasizes the robustness and effectiveness of the proposed method, especially in
challenging environmental conditions.

Figure 5. Feature detector performance results on visible image dataset 2 for two consecutive images.
(a) ORB features, (b) SIFT features, (c) AKAZE features, (d) the proposed method. Challenges and
complexities: repetitive patterns on the surface, homogeneity, lack of texture.
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(a)

(b)

(c)

(d)

Figure 6. Feature detector performance results on infrared images dataset 1 for two consecutive
images. (a) ORB features ((b) SIFT (c) AKAZE (d) The proposed method feature points Challenges
and complexities: Repetitive patterns on the surface, Homogeneity, and Texture-less.

Figure 6. Feature detector performance results on infrared image dataset 1 for two consecutive
images. (a) ORB features, (b) SIFT, (c) AKAZE, (d) the proposed method feature points. Challenges
and complexities: repetitive patterns on the surface, homogeneity, and lack of texture.
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(a)

(b)

(c)

(d)

Figure 7. Feature detector performance results on infrared images dataset 2 for two consecutive
images. (a) ORB features (b) SIFT features (c) AKAZE features (d) The proposed method feature points
Challenges and complexities: Repetitive patterns on the surface, Homogeneity, and Texture-less.

4.3. Results of Feature Matching Phase

As Figures 8 and 9 indicate, ORB, SIFT, and AKAZE methods usually perform well for
scenarios with richer textures, consistent lighting, and minimal parallax. These methods
yield suboptimal results when applied to structures with poor texture, reflectance variations,
parallax effects, homogeneity, and repetition. This can lead to:

• Inaccurate matches: Keypoints may not align correctly between images due to parallax
or poor texture, leading to incorrect feature matches such as Figures 8a–c and 9a.

• Difficulty in Handling Repetitive Patterns: Traditional methods may struggle to
distinguish between repeated patterns, leading to ambiguous matches.

Figure 7. Feature detector performance results on infrared image dataset 2 for two consecutive images.
(a) ORB features, (b) SIFT features, (c) AKAZE features, (d) the proposed method feature points.
Challenges and complexities: repetitive patterns on the surface, homogeneity, and lack of texture.
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4.3. Results of Feature Matching Phase

As Figures 8 and 9 indicate, ORB, SIFT, and AKAZE methods usually perform well for
scenarios with richer textures, consistent lighting, and minimal parallax. These methods
yield suboptimal results when applied to structures with poor texture, reflectance variations,
parallax effects, homogeneity, and repetition. This can lead to the following:

• Inaccurate matches: Keypoints may not align correctly between images due to parallax or
poor texture, leading to incorrect feature matches such as those shown Figures 8a–c and 9a;

• Difficulty in handling repetitive patterns: Traditional methods may struggle to distin-
guish between repeated patterns, leading to ambiguous matches;

• Repeatability: Changes in lighting conditions and surface reflectance can result in
inconsistent feature points and matches;

• The proposed method specializes in feature detection and description methods appro-
priate for complex structures which can adapt to these unique conditions and provide
more reliable infrastructure inspection and assessment results.

Figure 8. Feature matching performance for two consecutive visible images and their counterpart
infrared images in dataset 2. (a) ORB + BFMatcher, (b) SIFT + BFMatcher, (c) AKAZE + BFMatcher,
(d) proposed method. Explanation: feature matching performance through proposed method is
dramatically promising.
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(a)

(b)

(c)

(d)

Figure 9. Feature matching Performance on two consecutive visible images and their counterpart
infrared images.(a) ORB+BFMatcher (b) SIFT+BFMatcher (c) AKAZE+BFMatcher (d) Proposed
method. Explanations: Feature matching performance through proposed method is dramatically
promising. There are some false feature matching in ((a) ORB+BFMatcher for infrared images.

4.4. Results of Image Stitching Phase

This subsection provides the final results of this research, which navigates through
diverse scenarios extracted from two distinct datasets.

In the intricate process of multi-image stitching, the proposed method enhances the
homography estimation between each image sequence through improving the quality

Figure 9. Feature matching performance for two consecutive visible images and their counterpart
infrared images. (a) ORB + BFMatcher, (b) SIFT + BFMatcher, (c) AKAZE + BFMatcher, (d) proposed
method. Explanations: Feature matching performance through proposed method is dramatically
promising. There is some false feature matching in (a) ORB + BFMatcher for infrared images.

In our comprehensive comparison of feature point matching methods for visible and
infrared images, an in-depth analysis reveals nuanced differences in performance across
various scenarios. While ORB, SIFT, and AKAZE methods demonstrate proficiency in
environments characterized by richer textures, consistent lighting, and minimal parallax,
their efficacy diminishes when confronted with challenges such as poor texture, reflectance
variations, parallax effects, homogeneity, and repetition within structures.
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Remarkably, the feature matching results of ORB, especially when applied to in-
frared images, exhibit a notable degree of error, contributing to suboptimal outcomes.
Furthermore, the total number of feature matches achieved by ORB, SIFT, and AKAZE is
consistently eclipsed by the proposed method, underscoring its superiority in addressing
the challenges posed by complex structural environments.

This discrepancy in performance can be attributed to several factors:

1. Sparse Keypoint Distributions: The analysis of ORB and SIFT feature points reveals
a sparse distribution, limiting the possibilities for feature matching. This scarcity can
hinder the overall effectiveness of these methods;

2. Inaccurate Matches: The inherent limitations of ORB, SIFT, and AKAZE become
apparent in scenarios involving parallax or poor texture, where keypoints may fail to
align accurately between images. This discrepancy results in incorrect feature matches,
adversely affecting the reliability of the matching process;

3. Difficulty in Handling Repetitive Patterns: Traditional methods, including ORB and
SIFT, face challenges in distinguishing between repeated patterns. This difficulty leads
to ambiguous matches, introducing uncertainty into the feature matching outcomes;

4. Repeatability Challenges: Changes in lighting conditions and surface reflectance
pose challenges to the repeatability of feature points and matches in ORB, SIFT, and
AKAZE. This inconsistency in performance can compromise the reliability of these
methods in real-world applications.

In response to these limitations, the proposed method is designed to specialize in
feature detection and description appropriate to the complex conditions of infrastructures.
This adaptability enhances the reliability of infrastructure inspection and assessment re-
sults, making it a more robust choice for scenarios where traditional methods fall short.
The proposed method stands out as an innovative approach, offering improved feature
matching outcomes and demonstrating a capacity to handle the intricacies of diverse and
challenging structural environments.

4.4. Results of Image Stitching Phase

This subsection provides the final results of this research, which navigates through
diverse scenarios extracted from two distinct datasets.

In the intricate process of multi-image stitching, the proposed method enhances the
homography estimation between each image sequence through improving the quality
and quantity of feature points. This computation draws upon mathematical formulations
shaped by the feature points identified in Phase 1 and subsequently validated in Phase 2,
the image matching phase. This study illuminates the important role played by both the
quality and quantity of feature points in influencing the efficacy of the stitching process.

Moreover, as part of our strategy to enhance mosaic creation, we integrate the Super-
Glue algorithm. This algorithm efficiently identifies and eliminates mismatched points and
outliers, generating a significantly more accurate transformation between feature points in
consecutive images at each stitching step. The outcome is the creation of image mosaics char-
acterized by heightened quality, minimized distortion, and a more promising perspective.

This innovative approach bears potential for not only industrial infrastructure inspec-
tion but also for a spectrum of applications, especially those requiring distortion-free and
high-quality image mosaicking, such as remote sensing, and visual documentation for
heritage preservation. The integration of mathematical precision and algorithmic sophis-
tication propels the proposed methodology to the forefront of advancements in image
stitching technology.

In the following pages, the final results of the proposed image stitching method
using the dual-sensor infrared images and visible images of two different datasets with
different scenarios are illustrated. In the next pages, eighteen different scenarios are tested.
In particular, the image stitching method is tested with nine scenarios of visible image
stitching, and nine scenarios of infrared image stitching are tested. Therefore, the proposed
method is tested using different numbers of data from seven to seventeen in each test.



Sensors 2024, 24, 3778 16 of 36

Figures 10–13 illustrate four scenarios of the visible images of dataset 2 and the final
results of the proposed image stitching method. As the figures indicate, the proposed
method brings a panorama perspective-distortion-free image in comparison to the other
methods. Figures 14–16 indicate three scenarios of the counterpart infrared images and the
final results of the proposed image stitching method. As the figures indicate, the proposed
method brings out a panorama-perspective distortion-free image in comparison to the
other methods.

Figures 17–20 show four scenarios of the visible images of dataset 1 and the final
results of the proposed image stitching method. As the figures indicate, the proposed
method brings a panorama perspective-distortion-free image in comparison to the other
methods. Figures 21–27 indicate seven scenarios of the counterpart infrared images and the
final results of the proposed image stitching method. As the figures indicate, the proposed
method brings out a panorama perspective-distortion-free image in comparison to the
other methods.

Figure 10. Image stitching for fifteen visible images of dataset 2. (a) AKAZE + BFMatcher: the stitched
image has a high perspective distortion; (b) ORB + BFMatcher: the stitched image has less perspective
distortion and shape deformation; (c) SIFT + BFMatcher: the stitched image has a high perspective
distortion; (d) proposed method: the stitch image is regular and perspective distortion free.
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(a)

(b)

(c)

(d)

Figure 11. Image stitching for eight visible images of dataset 2. (a) AKAZE + BFMatcher: the stitched
image has a high perspective distortion; (b) ORB + BFMatcher: the stitched image has less perspective
distortion and shape deformation; (c) SIFT + BFMatcher: the stitched image has a high perspective
distortion; (d) proposed method: the stitch image is regular and perspective distortion free.
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Figure 12. Image stitching for fourteen visible images of dataset 2. (a) AKAZE + BFMatcher: the
stitched image has a high perspective distortion; (b) ORB + BFMatcher: the stitched image has a high
perspective distortion; (c) SIFT + BFMatcher: the stitched image has a high perspective distortion;
(d) proposed method: the stitch image is regular and perspective distortion free.
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Figure 13. Image stitching for fourteen visible images of dataset 2. (a) AKAZE + BFMatcher: the
stitched image has a high perspective distortion; (b) ORB + BFMatcher: the stitched image has a high
perspective distortion; (c) SIFT + BFMatcher: the stitched image has a high perspective distortion;
(d) proposed method: the stitch image is regular and perspective distortion free.



Sensors 2024, 24, 3778 20 of 36

(a)

(b)

(c)

(d)

Figure 14. Image stitching for fifteen images of dataset 2. (a) AKAZE + BFMatcher: the stitched image
has a shape deformation and high perspective distortion; (b) ORB + BFMatcher: the stitched image
has a perspective distortion; (c) SIFT + BFMatcher: the stitched image has a perspective distortion;
(d) proposed method: the stitch image is regular and perspective distortion free.
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Figure 15. Image stitching for seven images of dataset 2. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distor-
tion; (c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 16. Image stitching for fourteen images of dataset 2. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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(a)

(b)

(c)

(d)

Figure 17. Image stitching for seventeen images of dataset one. (a) AKAZE+BFMatcher: the stitched
image has perspective distortion. (b) ORB+BFMatcher: the stitched image has perspective distortion.
(c) SIFT+BFMatcher: the stitched image has perspective distortion (d) Proposed method: the stitched
image is regular and perspective distortion-free.

Figure 17. Image stitching for seventeen images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 18. Image stitching for seventeen images of dataset one. (a) AKAZE+BFMatcher: the stitched
image has perspective distortion. (b) ORB+BFMatcher: the stitched image has perspective distortion.
(c) SIFT+BFMatcher: the stitched image has perspective distortion (d) Proposed method: the stitched
image is regular and perspective distortion-free.

Figure 18. Image stitching for seventeen images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 19. Image stitching for ten images of dataset one. (a) AKAZE+BFMatcher: the stitched image
has perspective distortion. (b) ORB+BFMatcher: the stitched image has perspective distortion. (c)
SIFT+BFMatcher: the stitched image has perspective distortion (d) Proposed method: the stitched
image is regular and perspective distortion-free.

Figure 19. Image stitching for ten images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distor-
tion; (c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 20. Image stitching for seventeen images of dataset one. (a) AKAZE+BFMatcher: the stitched
image has perspective distortion. (b) ORB+BFMatcher: the stitched image has perspective distortion.
(c) SIFT+BFMatcher: the stitched image has perspective distortion (d) Proposed method: the stitched
image is regular and perspective distortion-free.

Figure 20. Image stitching for seventeen images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 21. Image stitching for ten images of dataset one. (a) AKAZE+BFMatcher: the stitched image
has perspective distortion. (b) ORB+BFMatcher: the stitched image has perspective distortion. (c)
SIFT+BFMatcher: the stitched image has perspective distortion (d) Proposed method: the stitched
image is regular and perspective distortion-free.

Figure 21. Image stitching for ten images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distor-
tion; (c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 22. Image stitching for eleven images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 23. Image stitching for eight images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distor-
tion; (c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 24. Image stitching for eleven images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 25. Image stitching for eleven images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 26. Image stitching for eleven images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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Figure 27. Image stitching for seven images of dataset 1. (a) AKAZE + BFMatcher: the stitched
image has perspective distortion; (b) ORB + BFMatcher: the stitched image has perspective distortion;
(c) SIFT + BFMatcher: the stitched image has perspective distortion; (d) proposed method: the
stitched image is regular and perspective distortion free.
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5. Conclusions

Efficient image stitching emerges as an essential component in advancing the Non-
Destructive Evaluation (NDE) of infrastructures, addressing the imperative need for precise
defect visualization within large structures. The conventional reliance on high-resolution
close-distance images for defect detection encounters challenges in comprehensively under-
standing the location and continuity of defects, particularly those minor defects which may
not be captured from a significant distance. To address this, the proposed image stitching
method for dual-sensor inspections not only offers enhanced defect visualization but also
accommodates automated inspection for structural maintenance.

The significance of this work lies in recognizing the limitations of existing method-
ologies and addressing the pronounced demand for an effective image stitching technique
appropriate to infrared and visible images within complex structures and industrial assets.
In response to this need, we proposed a unified self-supervised auto-encoder feature de-
tection to augment the quality and quantity of feature detection. Then, utilizing a graph
neural network for robust feature matching, our technique surpassed existing approaches
in eliminating perspective distortion in both infrared and visible images. This distortion
correction is a critical prerequisite for subsequent multi-modal fusion strategies for NDE
of infrastructures.

The results of the proposed method substantially improve the visualization capa-
bilities for infrastructure inspection. Through comparative analyses with state-of-the-art
methods, the proposed approach consistently demonstrated superiority, underscoring its
efficacy in addressing the unique challenges posed by dual-sensor inspections. Rigorous
comparative evaluations against established techniques further validated the effectiveness
of the proposed approach, emphasizing its potential to redefine the landscape of image
stitching in the realm of infrastructure inspection.

In conclusion, our advanced image stitching method stands poised as a transformative
contribution to the field, offering a powerful tool for defect detection and visualization
across extensive structures. The demonstrated efficacy of the approach paves the way for
enhanced inspection methodologies, underscoring the potential for broader applications in
the realm of Non-Destructive Evaluation and structural maintenance.

For future work, our work lays the groundwork for continued advancements in image
stitching technologies, promising a future where the seamless fusion of infrared and visible
imaging will become a cornerstone in infrastructure assessment and maintenance practices
and assist profoundly in improving the non-destructive testing industry.
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Abbreviations
The following abbreviations are used in this manuscript:

IRT Infrared thermography
NDE Non-Destructive Evaluation
NDT Non-destructive testing
CNN Convolutional neural network
AKAZE Accelerated Keypoint and Zernike Moment Descriptor
ORB Oriented FAST and Rotated BRIEF
SIFT Scale-Invariant Feature Transform
RANSAC Random Sample Consensus
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