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Abstract: This study presents a novel Fe-CNs-P/S carbon composite material, synthesized by doping
elements P and S into NH2-MIL-101 (Fe) using the carbonization method. The material’s application
in sustainable water treatment was evaluated, focusing on its effectiveness in activating persulfate
for pollutant degradation. The research thoroughly investigates the synthesis process, structural
characteristics, and performance in degrading pollutants. The results indicate that Fe-CNs-P/S-5
with 50% P and S co-doping is higher than that of other samples, where the degradation rate of TC in
30 min is as high as 98.11% under the optimum conditions, that is temperature at 25 ◦C, 0.05 g/L
of catalyst concentration, and 0.2 g/L of PMS concentration. The composite material demonstrates
robust versatility and stability, maintaining high degradation efficiency across multiple organic
pollutants, with no significant reduction in catalytic performance after four cycles. Furthermore, the
free radical quenching experiments display that the singlet oxygen 1O2 is the main active species. It
is demonstrated that the doping of P and S play a role in the enhancement of PMS activation over the
Fe-CNs-P/S catalyst. This material demonstrates remarkable efficacy in treating a range of organic
contaminants and exhibits excellent reusability, presenting a promising approach for enhancing
sustainability in water treatment applications.

Keywords: sustainable water treatment; NH2-MIL-101 (Fe); carbon materials; doping; tetracycline
(TC); persulfate activation

1. Introduction

With the progress of the economy and the development of science and technology,
more and more organic pollutants produced by printing and dyeing, chemical industry,
medicine, and other industries are discharged into water, and the problem of organic
pollution in the water environment is becoming more and more serious [1–3]. TC is
a tetracycline antibiotic with the molecular formula C22H24N2O8·HCl which is widely
used in livestock and poultry breeding and the aquaculture industry. Its persistence in
wastewater and soil contributes to the development of antibiotic resistance in aquatic
environments and soils, posing significant risks to aquatic organisms and human health,
and disrupting ecosystem balance [4,5]. Additionally, the non-degradability of antibiotics
complicates their complete removal through conventional treatment methods, thereby
exacerbating environmental pollution. This issue not only degrades water and soil quality
directly but also impedes progress toward the global Sustainable Development Goals
related to clean water, healthy ecosystems, and human health. Consequently, identifying
effective and eco-friendly strategies for the degradation of such organic pollutants is crucial
for advancing sustainable development [6].
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Advanced oxidation technology (AOP) has the advantages of strong oxidation ability,
high free radical activity, and mild reaction [7], which can make up for the poor ability of
traditional biochemical methods to treat some wastewater, so it has great advantages in the
treatment of highly toxic and refractory wastewater such as printing and dyeing, pesticides,
pharmaceutical wastewater, and landfill leachate. The types of AOPs mainly include ozona-
tion technology, photocatalysis technology, Fenton/Fenton-like technology, and so on [8,9].
Among them, the persulfate activation method has attracted much attention because of its
wide range of adaptation, strong anti-interference ability, and strong oxidation ability.

Persulfate generally includes persulfate and peroxysulphate, among which persulfate
(PDS, S2O8

2−) and persulfate (PMS, HSO5
−) are the main sources of sulfate radical pro-

duction [10,11]. Compared to PDS, PMS has a shorter bond length (1.46 Å) and therefore
a higher O–O bond energy. The bond energy of PMS is approximately 140 kJ/mol (bond
energy of PDS) and 213.3 kJ/mol (bond energy of H2O2) [12–14]. In addition, PMS is more
easily activated due to its asymmetric molecular structure and low dissociation energy [15].
Persulfate has stable properties and a weak ability to degrade organic pollutants at room
temperature. It can be activated by photoactivation, zero-valent iron activation, thermal
activation, microwave activation, electrochemical reduction, and other methods to produce
sulfate radicals with stronger oxidation (SO4

·−), which can effectively degrade organic
matter [16,17]. Due to the characteristics of large surface area, high porosity, and good
conductivity, carbon materials can be used as both the adsorbent and catalyst, and are
widely used in activating persulfate to degrade organic matter. Studies have shown that be-
cause the surface of carbon material is inert, its electron transport efficiency and adsorption
capacity for pollutants will be affected. Therefore, the modification of carbon materials has
become a current research hotspot. The commonly used modification methods are nitrogen
doping, sulfur doping, and metal oxide doping. After modification, the oxygen-containing
functional group on the surface may be the catalytic activity center [12].

Metal–organic framework materials (MOFs) are a new type of porous material with a
periodic network structure, which is obtained by self-assembly of metal ions and organic
ligands. They have received extensive attention because of their permanent crystal struc-
ture, high specific surface area, high porosity, and rich active sites [18,19]. The uniform
distribution of permanent pores in MOF materials is adjustable in terms of size and function,
hydrophilicity, and hydrophobicity, which helps to optimize the photoelectric performance
and spectral absorption range of the material, so MOF materials are also commonly used in
the field of photocatalytic degradation of organic pollutants. Zhu et al. [20–22] synthesized
pure TiO2 and Ag@AgCl-modified TiO2 by the one-step hydrothermal method, showing
a three-phase anatase/rutile/brookite (A/R/B) structure. The modification of Ag@AgCl
is beneficial to the separation of photogenic charge and the absorption of the visible light
region, and the MB degradation rate is significantly improved.

According to the composition, MOFs can be divided into MOF materials, MOF com-
posites, and MOF-derived materials, in which MOF-derived materials are defined as
micro/nanomaterials prepared by calcination, vulcanization, phosphating, and other meth-
ods using MOF materials as precursors [23–25]. Taking advantage of the advantages of
MOFs, the porous carbon nanomaterials derived from MOFs can be prepared based on
them, which can greatly enhance the water stability of the materials [26]. At the same time,
the introduction of metal elements can increase the active sites of MOF carbon materials and
improve the physical and chemical properties of the materials [27,28]. The metal carbon
materials derived from MOFs have many applications in advanced oxidation. According
to the previous research, doping P, S, N, and other heteroatoms in carbon materials can
improve the catalytic activity of PMS/PDS for the removal of organic pollutants, because
these heteroatoms can introduce more active sites and they enhance electron transfer [29,30].
Moreover, significant synergies may occur between the components of these heteroatomic
carbon materials to enhance activation [31,32].

Compared to single-atom-doped carbon, poly-atom-doped carbon exhibits signifi-
cantly enhanced catalytic performance, attributed to either the amplification of single-atom
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doping effects or synergistic interactions resulting from co-doping [33]. P doping, in par-
ticular, has been shown to introduce a higher degree of heteroatomic doping defects and
form localized π-regions. Notably, co-doping phosphorus (P) with other atoms can create
more positively charged sites, which enhances the adsorption and subsequent catalytic
activity of negatively charged PMS [34]. While most of the current research focuses on
nitrogen (N)-doped carbon materials [35–38], studies have demonstrated that co-doping
with nitrogen (N) and sulfur (S) can further increase the spin and charge density of car-
bon catalysts, promoting PMS activation [39,40]. Similarly, co-doping nitrogen (N) and
phosphorus (P) yields properties comparable to nitrogen doping [31,33,34,41]. However,
there is limited research on the activation of PMS using phosphorus and sulfur co-doped
carbon catalysts. Furthermore, the optimal bonding configurations for heteroatom-doped
carbon catalysts are often achieved under harsh conditions, yet few studies have explored
the reaction conditions required for P and S co-doping or the effect of doping ratios on
defect formation. Therefore, systematically investigating the degradation efficiency and
catalytic performance of P and S co-doped carbon catalysts is of critical importance.

In this paper, a novel and highly efficient heterogeneous persulfate system is designed
by developing carbon materials derived from NH2-MIL-101 (Fe). This approach offers a
sustainable technological solution for addressing organic pollutant contamination in water.
NH2-MIL-101 (Fe), a metal–organic framework (MOF) material, was used as the base, into
which a polymer was introduced. A one-step carbonization method was employed to
prepare the P, S-doped Fe-CNs-P/S composite material. After modification, this material
effectively catalyzes the activation of persulfate, leading to the degradation of organic
pollutants. The doped materials provided stable P and S sources for the catalyst [41]. The
synthesized materials were characterized, and then their properties were evaluated by
organic pollutant degradation experiments. Additionally, the influence of different factors
on the degradation of TC by Fe-CNs-P/S-activated PMS was explored, the stability of the
catalyst was verified, and the possible degradation mechanism was explored through a
free radical capture experiment and degraded XPS. The innovation of this research is the
development of a highly catalytic and renewable material that degrades pollutants while
reducing the secondary pollution problems caused by traditional treatment methods.

2. Materials and Methods
2.1. Materials

Ferric chloride hexahydrate (FeCl3 6H2O), N-dimethylformamide (DMF), hexachloro-
cyclotriphosphazene, 4-sulfonyldiphenol, triethylamine, acetone, furfuryl alcohol, anhy-
drous ethanol, and anhydrous methanol were obtained from Sinopharm Group Chemical
reagent Co., Ltd., Shanghai, China. Additionally, 2-aminoterephthalic acid (NH2-H2BDC),
tert-butanol, trichloromethane, and potassium peroxomonosulfate were procured from
Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China. Tetracycline hy-
drochloride was procured from Beijing Biosharp Biotechnology Co., Ltd., Beijing, China.
The purity standards of all the chemical reagents were analytical grade, and the water used
in the experiment was deionized water.

2.2. Preparation of NH2-MIL-101 (Fe)

Add 15 mL DMF to the bladder, dissolve 224.6 mg NH2-H2BDC and 675 mg FeCl3·6H2O
in DMF, and completely dissolve the above solids by ultrasound. Then, the solution was
transferred to an autoclave, the temperature was raised to 110 ◦C, and maintained for
24 h. After cooling to room temperature, the solution was placed into a centrifuge. After
centrifugation at 8000 rpm for 10 min, the brown-black powder was obtained. The brown-
black powder was soaked in DMF for 14 h, filtered, and then soaked in ethanol for 24 h,
and finally dried in a vacuum oven to obtain NH2-MIL-101 (Fe).
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2.3. Preparation of NH2-MIL-101 (Fe) @ PZS

A certain quality of NH2-MIL-101 (Fe) dissolved in 80 mL methanol was defined
as the X solution, while a certain quality of hexachlorocyclotriphosphazene and 4-4-
sulfonyldiphenol dissolved in 20 mL methanol was defined as the Y solution. X and
Y were mixed, named PZS, for 5 min, then 1 mL triethylamine was added, stirred for 18 h,
washed three times with methanol, and dried in an oven at 60 ◦C. Finally, NH2-MIL-101
(Fe) @ PZS was obtained after washing and drying with water and alcohol.

The specific preparation process of NH2-MIL-101 (Fe) @ PZS is shown in Figure 1.
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2.4. Preparation of Fe-CNs-P/S

In previous studies, we found that the Fe-CNs prepared under the condition of direct
carbonization at high temperature without P/S doping of NH2-MIL-101 (Fe) also con-
tributed to TC degradation, especially the samples under the condition of 700 ◦C carboniza-
tion for 3 h (Fe-CNs-7) had the most significant TC degradation effect. Therefore, 700 ◦C
and 3 h were used as the reaction temperature and time in the follow-up experiment, and
Fe-CNs-7 was used as the comparison sample to participate in the follow-up experiment.

NH2-MIL-101 (Fe) @ PZS was placed into a tube furnace, heated to 700 ◦C at a rate
of 5 ◦C/min under the protection of Ar atmosphere, maintained for 3 h, then cooled to
normal temperature. After washing with water and alcohol three times, the final product
Fe-CNs-P/S was obtained by drying moisture in a vacuum drying oven.

Under the same other preparation conditions, the degradation rates of Fe-CNs-P/S
prepared with different ratios of P to S, NH2-MIL-101 (Fe), hexachlorocyclotriphosphazene,
and 4maginyl-4-sulfonyldiphenol were studied, respectively. All the experimental dosages
and definition names are shown in Table 1. The final product was added to the TC
solution of 20 mg/L to degrade for 30 min, and the best degrader was selected accord-
ing to the degradation rate, which was used in the experiment of influencing factors of
TC degradation.

Table 1. List of chemical regents used in the experiments.

P/S Doping Amount NH2-MIL-101 (Fe) Hexachlorocyclotriphosphazene 4,4-Sulfonyl Diphenol Final Product Name

30% 0.6825 g 0.09 g 0.2025 g Fe-CNs-P/S-3
40% 0.585 g 0.12 g 0.27 g Fe-CNs-P/S-4
50% 0.4875 g 0.15 g 0.3375 g Fe-CNs-P/S-5
60% 0.39 g 0.18 g 0.405 g Fe-CNs-P/S-6
70% 0.2925 g 0.21 g 0.4725 g Fe-CNs-P/S-7
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2.5. Material Characterization

A Fourier transform infrared spectrometer (FTIR, Nicolet 6700, Thermo Fischel,
Waltham, MA, USA) was used to characterize the functional groups of the samples in
the wavelength range of 400–4000 cm−1.

A scanning electron microscope (SEM, TalOs F200X, Thermo Fischel, Waltham, MA,
USA) was used to observe the surface micromorphology of the samples, which were
sprayed with gold at an acceleration voltage of 20 kV.

An X-ray diffractometer (XRD, D/MAX-RB, Tokyo, Japan) was used to analyze the
aggregated structure of the samples in the 2θ scanning range of 10◦–80◦ with a scanning
speed of 0.02◦. The test was operated with Cu-Kα radiation at a voltage of 40 kV and a
current of 50 mA.

An X-ray photoelectron spectroscopy (XPS, ESCALABII, Thermo Fischel, Waltham,
MA, USA) was used to analyze chemical compositions and metal valence states, with the
binding energy of C1s (284.8 eV) as the control standard and Al Ka as the X-ray source.

A specific surface area porosity analyzer (BET, ASAP2020 HD88, Mack Instruments,
Arlington, VT, USA) was used to measure the specific surface area and aperture. The
material was heat-treated at 120 ◦C under a nitrogen atmosphere for 2 h, and then the
sample was subjected to nitrogen adsorption and desorption under a liquid nitrogen
environment to measure the specific surface area and aperture.

A Raman spectrometer (Raman, Renishaw 2000, Shanghai, China) was used to analyze
the surface molecular structure, with a spectral scanning range of 800–3000 cm−1.

2.6. Degradation of TC

The 5 mg catalyst was dissolved in the TC solution of 100 mL 20 mg/L, stirred by
magnetic force for 30 min, and then 3 mL was removed from it for centrifugation. The
supernatant was placed in the ultraviolet spectrophotometer at 356 nm to determine
the absorbance.

Then, 20 mg PMS was added to the TC solution, sampled at the same time interval, and
its absorbance was measured after centrifugation. The degradation rate was determined
as follows:

η = (C0 − Ct)/C0 × 100%, (1)

where η is the degradation rate; C0 is the initial concentration; Ct is the concentration at
t time.

In the experiment of studying the effect of initial pH on degradation, 1 mol/L NaOH
and 1 mol/L HNO3 were used to adjust the pH value. In the catalyst cycle experiment, the
catalyst was centrifuged, washed with water, washed with alcohol, and dried.

3. Results
3.1. Characterization of Materials
3.1.1. XRD Analysis

Firstly, the crystal structures of all samples were characterized by XRD. Figure 2 shows
the XRD patterns of Fe-CNs-P/S-3, Fe-CNs-P/S-4, Fe-CNs-P/S-5, Fe-CNs-P/S-6, and Fe-
CNs-P/S-7. In the Fe-CNs-P/S-5, in Figure 2a, the broad peak detected at 22.6 is caused by
the amorphous polymer PZS. The diffraction peaks of Fe-CNs-P/S-5 are 2θ = 28.8◦, 30.1◦,
35.5◦, 39.9◦, 41.0◦, 44.5◦, 50.7◦, 52.1◦, 53.1◦, corresponding to the crystal planes of FeP4,
respectively. The peak diffraction spectrum of Fe-CNs-P/S-5 is 35.2◦, 39.8◦, 43.7◦, 44.6◦, and
64.9◦, corresponding to the crystal planes of Fe3C, respectively, indicating that FeP4 and
Fe3C may exist in Fe-CNs-P/S-5 [41]. According to Figure 2b, the peaks of Fe-CNs-P/S-3,
Fe-CNs-P/S-4, Fe-CNs-P/S-5, and Fe-CNs-P/S-6 are basically the same, while the different
sample Fe-CNs-P/S-7 lacks the peak patterns. This phenomenon may be due to the high
content of PZS in Fe-CNs-P/S-7, the low content of NH2-MIL-101 (Fe), and the coating of
PZS on the surface of MOFs, such that the material is not fully carbonized.
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3.1.2. SEM Analysis

The morphology of Fe-CNs-P/S-5 was characterized by SEM. Figure 3 shows the SEM
pattern. According to the graph shown in Figure 3a, it is not difficult to see that there
is a smooth small bulk and irregular solid structure on the surface of the Fe-CNs-P/S-5
sample. In Figure 3b,c, irregular solids can be observed near the smooth small bulk, so
the small bulk may be an incomplete MOF structure protected by PZS, while the irregular
solid may be a carbon material formed by PZS calcination. Figure 3b also shows that the
irregular solid surface is an uneven spongy structure loaded with pellets. The surface
elements of Fe-CNs-P/S-5 were characterized by EDS. Figure 3d shows the distribution
of elements C, O, N, P, S, and Fe in Fe-CNs-P/S-5. All the above elements exist and are
distributed uniformly, so it can be inferred that P and S have been successfully doped into
carbon materials.
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3.1.3. TEM Analysis

The morphology and structure of Fe-CNs-P/S-5 were further analyzed by TEM char-
acterization. In Figure 4a,b, it is shown that small black particles attributed to the metallic
iron can be observed in the dark gray carbon layer. From Figure 4c,d, enlarged to 200 nm, it
can be seen that the dark gray carbon layer is fragmented and accumulated, which may
be formed by PZS carbonization. According to Figure 4e,f, we can see that the dark gray
carbon layer has an irregular structure, which is basically consistent with the previous
SEM image.

Sustainability 2024, 16, 9051 7 of 20 
 

3.1.3. TEM Analysis 
The morphology and structure of Fe-CNs-P/S-5 were further analyzed by TEM char-

acterization. In Figure 4a,b, it is shown that small black particles attributed to the metallic 
iron can be observed in the dark gray carbon layer. From Figure 4c,d, enlarged to 200 nm, 
it can be seen that the dark gray carbon layer is fragmented and accumulated, which may 
be formed by PZS carbonization. According to Figure 4e,f, we can see that the dark gray 
carbon layer has an irregular structure, which is basically consistent with the previous 
SEM image. 

 
Figure 4. (a–f) TEM images of Fe-CNs-P/S-5 with different magnifications. 

3.1.4. XPS Analysis 
The type, valence, and bonding of elements in the Fe-CNs-P/S-5 sample were further 

analyzed by XPS. Figure 5 shows the XPS map. According to Figure 5a, Fe-CNs-P/S-5 con-
tains C, O, N, P, S, and Fe elements. The order of content is C > O > Fe > N > S > P, S, C 
content is the highest, P, S content is lower. As shown in Figure 5b, the C 1s energy spec-
trum is corrected by 284.8 eV, the peak of the C–C bond is at 284.8 eV, and the peak of the 
C–N bond is located at 285.6 eV. The characteristic peaks of Fe2+ (710.5 and 723.8 eV) and 
Fe3+ (712.8 and 725.8 eV) are shown in the Fe 2p energy spectrum (Figure 5c). The two 
peaks centered on 132.9 and 133.7 eV in the P 2p energy spectrum (Figure 5d) correspond 
to the P–C bond and P–O bond, respectively. The S 2p energy spectrum (Figure 5e) shows 
that the three peaks at 163.5, 164.6, and 168.5 eV correspond to S 2p1/2, S 2p3/2, and oxidized 
S [42], respectively. Figure 5d,e illustrates the deconvolution results of P 2p and S 2p, 
which prove that P and S elements are doped successfully. 
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3.1.4. XPS Analysis

The type, valence, and bonding of elements in the Fe-CNs-P/S-5 sample were further
analyzed by XPS. Figure 5 shows the XPS map. According to Figure 5a, Fe-CNs-P/S-5
contains C, O, N, P, S, and Fe elements. The order of content is C > O > Fe > N > S > P,
S, C content is the highest, P, S content is lower. As shown in Figure 5b, the C 1s energy
spectrum is corrected by 284.8 eV, the peak of the C–C bond is at 284.8 eV, and the peak of
the C–N bond is located at 285.6 eV. The characteristic peaks of Fe2+ (710.5 and 723.8 eV)
and Fe3+ (712.8 and 725.8 eV) are shown in the Fe 2p energy spectrum (Figure 5c). The two
peaks centered on 132.9 and 133.7 eV in the P 2p energy spectrum (Figure 5d) correspond to
the P–C bond and P–O bond, respectively. The S 2p energy spectrum (Figure 5e) shows that
the three peaks at 163.5, 164.6, and 168.5 eV correspond to S 2p1/2, S 2p3/2, and oxidized
S [42], respectively. Figure 5d,e illustrates the deconvolution results of P 2p and S 2p, which
prove that P and S elements are doped successfully.

3.1.5. FTIR Analysis

Figure 6 shows the infrared spectra of NH2-MIL-101 (Fe), Fe-CNs-7, and Fe-CNs-P/S-5,
which reveals that all the FTIR spectra have transmittance peaks at 560 cm−1, which can
be assigned to the stretching peak of Fe–O. Figure 6a, for NH2-MIL-101 (Fe), shows that
3335, 3463, 1383, and 1654 cm−1 correspond to the symmetric and antisymmetric tensile
vibrations of –NH2 and –COO−, respectively. For Fe-CNs-7, 1200 cm−1 corresponds to
the asymmetric stretching vibration of C–O, and 2900 cm−1 corresponds to the stretching
vibration peak of C–H. The absorption peaks at 1650 cm−1 and 1560 cm−1 in Figure 6a,b
correspond to the stretching vibration peaks of the benzene ring, indicating that the benzene
ring on the MOFs has not been burned. The absorption peaks at 3341 cm−1 in (a) and
3190 cm−1 in (b) in Figure 6 correspond to the stretching vibration peak of N-H. Figure 6b
is the infrared spectrum of Fe-CNs-P/S-5, which shows that 1070 cm−1 corresponds to the
strong absorption vibration peak of O=S=O. It is speculated that 1230 cm−1 may be ascribed
to the stretching vibration of P–H, indicating that P and S are doped successfully. Another
weak peak centered at 2800 cm−1 corresponds to the stretching vibration peak of C–H.
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3.1.6. BET Analysis

The textural characteristics of the catalyst were investigated by obtaining the N2
adsorption–desorption isotherm. As shown in Figure 7a, the average pore size and pore
volume of Fe-CNs-7 are 237.4 m2/g, 7.92 nm, and 0.15 cm2/g, respectively. As shown
in Figure 7b, the average pore size and pore volume of Fe-CNs-P/S-5 are 203.8 m2/g,
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6.15 nm, and 0.13 cm2/g, respectively. According to the IUPAC classification, both samples
showed typical IV isotherms and hysteresis curves, which can be classified as the H4 type.
The material shows a sharp increase in adsorption capacity under relatively low pressure
conditions, which verifies the existence of micropores. The illustration in Figure 7 shows
the lag characteristic of the parallel adsorption/desorption curve of capillary condensation,
showing the pore size and pore volume distribution. The pore sizes of Fe-CNs-P/S-5
and Fe-CNs-7 are mainly distributed at about 3 nm. The lower BET of Fe-CNs-P/S-5
indicates the PZS was formed on the surface of the biochar and may block the pores. This is
evidenced by the observed lower average pore size and pore volume in Fe-CNs-P/S-5. The
result is consistent with the XRD analysis. The attachment of PZS to the material’s surface
impacts the pore structure during carbonization, leading to a reduction in specific surface
area [39].
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3.1.7. Raman Analysis

Figure 8a shows the Raman spectra of Fe-CNs-5 and Fe-CNs-7. The ID/IG are 1.55 and
2.12. Figure 8b shows the Raman spectra of Fe-CNs-P/S-3, Fe-CNs-P/S-4, Fe-CNs-P/S-5,
Fe-CNs-P/S-6, and Fe-CNs-P/S-7. The ID/IG of the five materials are 1.98, 1.59, 2.2, 1.14,
and 1.03, respectively. The ratio of the intensity of the D and G bands (ID/IG) can be used
to compare the defective degree and extent of sp2 conjugation [31]. In Figure 8a, Fe-CNs-7
has a higher ID/IG ratio than Fe-CNs-5, suggesting that higher synthesis temperatures
induce more defect sites that can be used for PMS activation. In Figure 8b, the ID/IG
of Fe-CNs-P/S-5 is the highest among all doping ratios. The reason is that the doping
of P and S will promote the formation of defects, change the charge distribution of the
carbon network, and destroy its inertia. Thus, the defect degree of the material is high [43].
The defect degree of Fe-CNs-P/S-5 is the highest, indicating that the defect degree of the
material is affected by the amount of P and S doping. Generally speaking, the degree of
defects seriously affects the adsorption of PMS and the transfer of π-free electrons from the
sp2 hybrid carbon network to PMS [44]. The structural defects can be used as active sites
for the formation of active components to promote redox catalysis [45]. When the doping
amount of P and S increases, the ID/IG value decreases continuously, which may be due to
decreasing the active sites after the doping amount.
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3.2. Degradation of TC
3.2.1. Effect of P/S Doping Amount

Since doping other atoms can affect the degradation rate of TC via catalyst-activated
persulfate, the activation degradation performance rates of TC over the Fe-CNs-P/S by
different amounts of P and S doping in order to determine the highest degradation rate of
P and S doping have been investigated. Figure 9a depicts the effect of different amounts of
P and S doping on the degradation of TC. The degradation rates of TC over the Fe-CNs-7,
Fe-CNs-P/S-3, Fe-CNs-P/S-4, Fe-CNs-P/S-5, Fe-CNs-P/S-6, and Fe-CNs-P/S-7 are 76.51%,
87.73%, 91.3%, 98.11%, 78.67%, and 51.4%, respectively. When the ratio reaches 50%, the
degradation rate is the highest. Meanwhile, Fe-CNs-7 showed lower efficiency in TC
degradation, indicating that P/S doping had a positive effect on the activation of PMS
and the degradation of TC. This also confirms the previous analysis that P/S doping can
increase the degree of defects in the process of material preparation, especially P can lead
to a greater degree of heteroatomic defects and the formation of local π regions, which may
be due to the large atomic radius of P. However, when the amount of doping increases,
the degradation rate decreases because too much doping will lead to decreases in active
sites [44]. Figure 9b shows that the degradation rates of TC by Fe-CNs-P/S-5 and PMS in
30 min are 27.4% and 40.54%, respectively. The data show that when Fe-CNs-P/S-5 and
PMS degrade TC alone, the degradation ability is not prominent. At the same time, it was
found that the TC degradation rate of Fe-CNs-P/S-5-activated PMS was significantly higher
than that of activated PDS, and it was concluded that the Fe-CNs-P/S-5/PMS system had
the best performance of TC degradation.
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3.2.2. Effects of the Amount of Catalyst

Figure 10 shows the effects of the amount of catalyst on the degradation of TC by
Fe-CNs-P/S-5/PMS. The dosage of PMS is 0.2 g, the initial concentration of TC is 20 mg/L,
and the dosage of Fe-CNs-P/S-5 is 0.05, 0.1, and 0.2 g/L, respectively. It can be seen that
when the dosage of Fe-CNs-P/S-5 is 0.05 g/L, the degradation rate of TC is 98.11%. With
the increase in the amount of catalyst, the degradation rate of TC increases gradually, but
the increase is not obvious. Considering the economy of the experiment, 0.05 g/L is finally
selected as the best dosage for the Fe-CNs-P/S-5 experiment.

3.2.3. Effect of PMS Dosage

Figure 11 shows the effect of PMS dosage on the degradation of TC by Fe-CNs-P/S-
5/PMS. When the amount of catalyst is 0.05 g/L, the initial concentration of TC is 20 mg/L,
and the dosage of PMS is 0.1, 0.2, and 0.5 g/L, respectively. It can be seen from Figure 11
that with the increase in the amount of PMS, the degradation rate of TC by Fe-CNs-P/S-
5/PMS increases gradually, and the degradation rate of TC in 0.2 g/L and 0.5 g/L is 98.1%
and 98.5%, respectively, and the difference in degradation effect is small. It may be that
the limited active sites cannot accommodate too much PMS, and further increasing the
amount of PMS will lead to a decrease in the degradation rate, so 0.2 g/L is chosen as the
best concentration in the experiment.
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3.2.4. Effect of Initial Concentration of TC

Under the experimental conditions, when the dosage of catalyst is 0.05 g/L, the dosage
of PMS is 0.2 g/L. As shown in Figure 12, it can be seen that the degradation rate of TC
decreases gradually with the increase in initial concentration. When the initial concentration
of TC is 10 and 20 mg/L, the degradation rate of Fe-CNs-P/S-5/PMS to TC is 98.6% and
98.11%, respectively, but when the initial concentration of TC increases to 30 mg/L, the
degradation rate of TC is 98.6% and 98.11%, respectively. The degradation rate decreases to
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90.26%. Considering the degradation performance of Fe-CNs-P/S-5/PMS, the best initial
concentration of TC was determined to be 20 mg/L.
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3.2.5. Effect of Initial pH of Solution

The initial pH of the solution is also an important factor affecting the degradation of
TC. As shown in Figure 13, the experimental conditions are controlled as the amount of
catalyst is 0.05 g/L, the dosage of PMS is 0.2 g/L, the initial concentration of TC is 20 mg/L,
the initial pH is 3.06, 5.12, 7.33, 9.11, and it can be observed that the degradation rate of TC
is more than 89.8%, indicating that a high TC degradation rate can be obtained between 3
and 9 [46].
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3.2.6. Effect of Inorganic Anions

There are some inorganic anions in natural water. In order to make the simulated
wastewater closer to the actual wastewater, inorganic anions such as CO3

2−, Cl−, HPO4
2−,

HCO3
−, and SO4

2− were added to the simulated wastewater, and the influence of each
anion on the degradation of TC by Fe-CNs-PS-5/PMS was explored [47].

The experimental conditions were controlled as follows: the amount of catalyst was
0.05 g, the dosage of PMS was 0.2 g/L, and the initial concentration of TC was 20 mg/L.
As shown in Figure 14a,b, when Na2CO3 and NaCl of 10 mM were added to the above
system, it was observed that Cl− and CO3

2− had little inhibitory effect on degradation, but
when the dosage increased to 50 mM, there was still no obvious inhibitory effect, indicating
that Cl− and CO3

2− had little inhibitory effect on the degradation of TC [48,49]. It can
be seen from Figure 14c that when Na2HPO4 and Na2SO4 of 10 mM were added to the
system, the degradation rate of TC increased, and when the dosage increased to 50 mM,
the degradation rate of TC increased slightly, indicating that HPO4
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which may be the fact that HCO3
− acts as a free radical scavenger, thus reducing the

catalytic performance.
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3.2.7. Cycle Efficiency

All the experimental results show that Fe-CNs-P/S-5 has good catalytic activity, and
in practical applications, stability is also an index to measure the quality of the catalyst.
Figure 15 shows the cyclic effect of the Fe-CNs-P/S-5/PMS system on the degradation of
TC. The dosage of Fe-CNs-P/S-5 is 0.05 g/L, the initial concentration of PMS is 0.2 g/L,
and the initial concentration of TC is 20 mg/L. The data showed that the degradation
rate of TC was not significantly affected after the catalyst was recycled four times, and
the degradation rate of each cycle was more than 88.3%. At the same time, in 20 mg/L
TC solution of 100 mL, the dissolution amount of iron ion in the Fe-CNs-P/S-5/PMS
system was 0.071 mg/L, indicating that Fe-CNs-P/S-5 can activate PMS in the role of a
catalyst. Furthermore, it was confirmed that Fe-CNs-P/S-5 has good water stability and
the iron dissolution risk is low, which is conducive to the sustainable use of materials in
practical applications.
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3.2.8. Universality

Figure 16 illustrates the degradation of different pollutants by the Fe-CNs-P/S-5/PMS
system. The study investigated Acid Red G, Methyl Orange (MO), Acid Orange 7 (AO7),
and Bisphenol A (BPA) at a concentration of 20 mg/L. The experimental results demonstrate
that the Fe-CNs-P/S-5/PMS system exhibits a high removal efficiency for all four pollutants,
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achieving removal rates exceeding 90%. This indicates that the Fe-CNs-P/S-5 material
has excellent universal applicability and is well-suited for complex water environments.
Consequently, it can serve as an effective catalyst for the degradation of challenging
wastewater in practical applications.
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3.2.9. Free Radical Quenching Experiment

In order to further determine the types of active substances in the Fe-CNs-P/S-5/PMS
system, quenching experiments were carried out by adding scavengers with different free
radicals to evaluate the role of free radicals in the degradation of TC. As shown in Figure 17,
when the collectors of tert-butanol, ethanol, furfuryl alcohol, and CHCl3 are ·OH, SO4

·−,
(1O2), and (·O2

−), respectively, when 10 mM of CHCl3, tert-butanol, and ethanol are added,
the TC degradation rate is reduced by only 1%. When the radical scavengers are added
and reach 100 mM, the TC degradation rate decreases by 3–7%, indicating that Cl−, ·OH,
and SO4

·− play a small role in the system. When 10 mM furfuryl alcohol was added to the
system, the degradation rate of TC decreased by 50.1%, and when it was further added
to 100 mM, the degradation rate decreased by 86.3%, and its catalytic activity was almost
completely inhibited, so it can be proved that 1O2 plays a leading role in the system.
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3.2.10. XPS Analysis Before and After Degradation

Figure 18 shows the XPS of the catalyst before and after degradation. The C 1s
spectrum is shown in Figure 18a. The image shows that there is no obvious change before
and after the degradation of the catalyst, and there are peaks of the C–C bond and C–N
bond at 284.8 eV and 285.6 eV. The Fe 2p spectrum is shown in Figure 18b. Compared with
the previous catalyst, the characteristic peaks of Fe2+ (710.7 and 724.0 eV) and Fe3+ (712.6
and 725.8 eV) shift 0.2 eV. The cyclic XPS of P 2p is shown in Figure 18c. The positions
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of the peaks of the P–C bond and P–O bond are 133.2 and 133.9 eV, an increase of 0.2 eV.
The cyclic S 2p XPS diagram is shown in Figure 18d. It can be seen that S 2p is basically
unchanged at S 2p1/2 and S 2p3/2 at 163.6 and 164.6 eV, respectively, but the position of
the oxidized S peak is shifted to 169.0 eV, and the proportion is increased from 45% to 72%,
indicating that P and S play a role in catalysis.

Based on the above image analysis, the specific mechanism of the Fe-CNs-P/S-5/PMS
system activating PMS to degrade TC is as follows: when the PMS whose main active
component is HSO5

− is dissolved in water, a small amount of SO5
2− will be formed

(Formula (2)), and then SO5
2− reacts with HSO5

− to produce a small amount of 1O2
(Formula (3)) [50]. Fe2+ and C in Fe-CNs-P/S-5 become active sites in the catalytic process
and participate in the activation of PMS to produce a large number of SO4

·− and SO5
2−

(Formulas (4)–(6)) [51,52]. The SO5
·− radical not only reacts spontaneously to form the

S2O8
2− ion and 1O2 (Formula (7)), but also reacts with SO5

·−and HSO5
− to form 1O2

(Formula (8)) [53,54]. The resulting 1O2 reacts with TC adsorbed on the surface of the
catalyst to degrade organic pollutants. The specific reaction mechanism is as follows:

HSO5
− → SO5

2− + H+, (2)

HSO5
− + SO5

2− → 2SO4
2− + 1O2+ H+, (3)

Fe(II) + PMS (HSO−
5 ) → Fe(III) + SO·−

4 + OH−, (4)

Fe(III) + PMS (HSO−
5 ) → Fe(II) + SO·−

5 + H+, (5)

Carbon + PMS (HSO−
5 ) → carbon-oxidized + SO·−

4 + OH−, (6)

SO·−
5 + SO·−

5 → S2O2−
8 + 1O2, (7)

SO·−
5 + HSO−

5 → HSO2−
4 + 1O2, (8)
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4. Conclusions

In this paper, Fe-CNs-P/S was prepared by the solvothermal method, organic poly-
merization, and one-step carbonization. The Fe-CNs-P/S/PMS system shows a high TC
removal rate, universality, stability, and anti-interference ability. Under the optimum condi-
tions (Fe-CNs-P/S-5:0.05 g/L), Fe-CNs-P/S-5 can degrade 98.11% of 20 mg/L TC at 30 min,
which is better than other mass ratio catalysts for TC degradation under the same condi-
tions. The Fe-CNs-P/S-5/PMS system has good catalytic performance and good stability in
a wide range of pH values. Through capture experiments, it can be inferred that the main
free radical in the reaction system is 1O2, and the possible mechanism of TC degradation
by the Fe-CNs-P/S-5/PMS system is given. Through the characterization results, P and S
doping can increase the defect degree of the material and provide more active sites. The
Fe-CNs-P/S-5/PMS composite demonstrates a degradation efficiency of over 90% for four
pollutants, including Acid Red G and Methyl Orange, highlighting its broad applicability
in water treatment. Furthermore, after four consecutive cycles, the degradation efficiency
remains above 88.3%, showcasing its excellent reusability and stability. This high and
sustained performance, coupled with its recyclability, underscores the material’s potential
for sustainable water treatment, offering superior durability and efficiency compared to
conventional materials.

Overall, this study provided new insights into the development of P/S-doped biochar
as a promising catalyst for antibiotic removal in the environment. It is expected to help
reduce pollutant emissions in future large-scale industrial applications, improve resource
utilization efficiency, and promote the sustainable development of environmental gover-
nance. However, this study leaves gaps in photocatalytic degradation research. Future
work should explore the material’s performance under visible light, assess its stability in
real wastewater, and evaluate its interaction with multiple pollutants. Additionally, scaling
up the synthesis process for industrial applications warrants further investigation.
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