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Abstract: Collaborative virtual environment (CVE)-based teamwork training offers a promising
avenue for inclusive teamwork training. The incorporation of a feedback mechanism within virtual
training environments can enhance the training experience by scaffolding learning and promoting
active collaboration. However, an effective feedback mechanism requires a robust prediction model of
collaborative behaviors. This paper presents a novel approach using hidden Markov models (HMMs)
to predict human behavior in collaborative interactions based on multimodal signals collected from
a CVE-based teamwork training simulator. The HMM was trained using k-fold cross-validation,
achieving an accuracy of 97.77%. The HMM was evaluated against expert-labeled data and compared
against a rule-based prediction model, demonstrating the superior predictive capabilities of the HMM,
with the HMM achieving 90.59% accuracy compared to 76.53% for the rule-based model. These results
highlight the potential of HMMs to predict collaborative behaviors that could be used in a feedback
mechanism to enhance teamwork training experiences despite the complexity of these behaviors. This
research contributes to advancing inclusive and supportive virtual learning environments, bridging
gaps in cross-neurotype collaborations.

Keywords: human behavior recognition; human–computer interaction; probabilistic modeling;
collaborative virtual environment; cross-neurotype collaboration

1. Introduction

Human–computer interaction (HCI) technologies have become prevalent tools for
facilitating skill learning, offering engaging interactions and replicable solutions to benefit
and enhance learning experiences [1–3]. These systems teach a range of skills, including
cognitive abilities such as visual–spatial, auditory, and verbal skills [4]; affective learning
such as emotion regulation [5]; and collaboration skills [6–8]. Real-time prompts and
feedback through visual, audio, and tactile cues are integral features of these systems that
help in enhancing user engagement and learning experiences [9,10].

In our prior work, we developed a series of virtual collaborative tasks as a teamwork
training simulator within a collaborative virtual environment (CVE), focusing on facilitat-
ing dyadic interaction [11]. While participants found the training paradigms engaging, we
identified a need for real-time feedback mechanisms to support participants during these
collaborative tasks. Recognizing human behavior in feedback mechanisms is crucial for ef-
fective training outcomes [12]. Recent studies reported that incorporating human behavior
recognition, along with task performance, in adaptive training paradigms can significantly
enhance participants’ engagement and learning outcomes [7,8,13]. Current methods for
behavior recognition rely heavily on behavioral experts to observe and evaluate human
behavior either in real-time during experimental sessions [14] or through analysis of video
recordings post-experiment [15–17]. While manual labeling of human behavior is reliable, it
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lacks real-time accessibility, is resource-intensive, and is prone to bias [18–20], highlighting
the necessity for an automated human behavior prediction model.

Various machine learning methods have been employed to predict human behavior
in computer-based interactions [21,22], aiming to address the inherent uncertainty in
recognizing human behaviors [19]. Traditional machine learning approaches have been
pivotal, with several studies achieving notable success [23–26]. For instance, Abdelrahman
et al. [27] used deep learning and neural network methods to predict engagement and
disengagement in human–robot interaction by extracting and scoring engagement-related
features from human participants, such as gaze, head pose, and body posture, to infer
engagement. The model achieved a 93% F1 score. Many of these studies used multimodal
signals for the classification of behavior to improve the classification accuracy due to the
complex nature of human behavior. According to a meta-analysis review of 30 studies that
compared affect detection accuracy between multimodal and unimodal signals, researchers
reported that accuracies based on multimodal data fusion were consistently better than
those based on unimodal signals [28]. This is further supported by the findings in a study by
Mallol-Ragolta et al. [29], where they reported the best agreement score using multimodal
signals compared to a unimodal signal in a robotic empathy recognition system. In another
study by Okada et al. [30], signals from speech and head movement were captured and both
verbal and non-verbal features were extracted from the signals to assess the collaborative
behavior in discussions.

To handle the stochastic nature of human behavior, hidden Markov models (HMMs)
have been widely used [31,32], offering robustness and flexibility in analyzing temporal
patterns which are necessary for predicting behavioral patterns (e.g., emotions, activities,
learning behaviors such as engagement, disengagement, confusion, frustration, distress,
etc.) [33–38]. Mihoub et al. [39] demonstrated the effectiveness of an incremental discrete
hidden Markov model (IDHMM) to recognize and generate multimodal joint actions in
face-to-face interactions. The results reported that the classification accuracy of IDHMM
was 92%, while a support vector machine (SVM)’s classification accuracy was 81%. Another
study compared HMM performance against traditional classification models that included
support vector machine (SVM), random forest (RF), linear regression (LR), and deep neural
network (DNN) in predicting students learning behavior in e-learning environments [37].
The study utilized early assessment data and results indicated that HMM outperformed the
other models for 5 of the 6 courses with accuracies above 90%. Similarly, Sharma et al. [34],
utilized an HMM to predict effortful behavior in adaptive learning environments using
both performance and physiological data, enabling real-time feedback based on predicted
behavioral patterns. In this work, our first contribution is the design of an HMM-based
model to recognize collaborative behaviors in dyadic interactions using multimodal signals,
aiming to provide real-time feedback and scaffold learning in computer-based interactions.
As a baseline for comparison, we implemented a rule-based behavior recognition method
designed in consultation with experienced behavior analysts. We compared the HMM
model against the rule-based method with expert labeled data as the ground truth.

While previous works have focused on behavior recognition in single-user interac-
tions, recognizing human behavior in dyadic interactions, such as teamwork, remains
underexplored. Teamwork, defined as collaborative work between individuals toward a
common goal, has garnered increased research attention in recent years, particularly within
organizational contexts [40,41]. In addition to the benefits teamwork brings to a company,
teamwork also leads to increased satisfaction in the workplace, which can fulfill personal
growth [42]. As society embraces inclusive workplaces with neurodiverse individuals,
research interest on cross-neurotype collaboration, i.e., collaboration between neurotypical
(people with “normal” neurotypes) and neurodiverse individuals, has increased [43]. Stud-
ies have shown that cross-neurotype collaboration can be less effective than collaborations
between individuals within the same neurotype [44]. This phenomenon, driven by the dou-
ble empathy problem [45], underscores that challenges in cross-neurotype communication
and social interaction are the responsibilities of both neurotypical and autistic individu-
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als [46,47]. Our second contribution is the implementation of the prediction model in our
previously designed teamwork training simulator to support cross-neurotype teamwork
training.

Additionally, we contribute to the field by creating a novel dataset containing mul-
timodal signals from dyadic interactions labeled with collaborative behaviors by expert
annotators. The outcome of this work can motivate future research to incorporate a robust
behavioral prediction model in a feedback mechanism within virtual training environments
that could enhance training experiences by scaffolding learning and promoting active
collaboration. By creating a novel prediction model and a multimodal dyadic interaction
dataset, our work seeks to advance the integration of robust behavioral prediction mecha-
nisms into computer-based teamwork training, ultimately enhancing collaborative skill
development.

2. Materials and Methods
2.1. Experimental Design

We conducted a preliminary study to gather multimodal signals from participants
interacting with each other to complete various collaborative tasks in a CVE. The signals
were then processed, analyzed, and labeled based on defined collaborative behaviors. The
labeled signals were used to (i) train an HMM prediction model, (ii) design a rule-based
prediction model, and (iii) evaluate both models.

2.1.1. Collaborative Tasks Description

The collaborative task selection was driven by employment-related studies for autistic
individuals [48]. We then designed the activities within the tasks based on input from stake-
holders, including human resource personnel from several companies, certified behavioral
analysts, career counselors, and autistic adults. They provided suggestions and feedback
to encourage teamwork in a workplace environment between an autistic individual and a
neurotypical (non-autistic) partner, which was discussed in detail in our previous work [11].
Multiple discussion sessions with the stakeholders were conducted to select tasks that are
collaborative and include interactions that were translatable to workplace environments.

The first task was a PC assembly task in which two participants were located on oppo-
site ends of a table in the virtual environment, giving them different views of the workspace.
They both were given written instructions and different hardware to collaboratively build
a single computer. They would use a keyboard and mouse to move the components into
the correct location within a set amount of time. Participants were required to take turns
and communicate with each other when assembling the PC. The next task was a furniture
assembly task in which participants were placed in a virtual living room and worked
together to assemble various furniture pieces within a set amount of time. They used a
haptic device to move and assemble the furniture parts to the target area. The final task was
a fulfillment center task in which participants would drive virtual forklifts with varying
height capacities to transport crates from a warehouse to a drop-off location. Participants
used a gamepad to drive the forklift in this task. These collaborative tasks, as illustrated in
Figure 1, were designed in Unity, a multi-platform game development software [49].

Three design strategies were embedded within the tasks to encourage communication
and collaboration between the participants: (a) PC assembly: incomplete installation
instructions were given to each participant to encourage them to exchange information to
progress in the task; (b) furniture assembly: participants were given only an image of the
assembled furniture, without written instruction, to encourage them to divide the task and
coordinate their actions; and (c) fulfillment center: the list of crates for each participant were
different and the location of the crates varied to allow participants to practice turn-taking.



Signals 2024, 5 385Signals 2024, 5, FOR PEER REVIEW  4 
 

 

 
Figure 1. Collaborative tasks to support collaborative interaction between autistic individuals and
neurotypical partners.
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2.1.2. Participants and Protocol

We recruited six autistic (ASD) and six neurotypical (NT) participants to form six cross-
neurotype (ASD-NT) participant pairs. The demographics for the participants are shown
in Table 1. Participants with ASD were recruited through an existing university-based
clinical research registry and the NT participants were recruited from the local community
through regional advertisement. All study procedures were approved by the Vanderbilt
University’s Institutional Review Board (IRB) with associated procedures for informed
assent and consent. Figure 2 illustrates the setup of the experiment.

Table 1. Participants demographic information.

Participants
ASD (N = 6) NT (N = 6)

Mean (SD) Mean (SD)

Age 20.5 (2.8) 22.8 (3.6)
Gender (% male-female) 50%-50% 50%-50%
Race (% White, % African American) 100% 83%, 0%
Ethnicity (% Hispanic) 0% 17%
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Figure 2. System setup where two participants in separate rooms perform virtual collaborative tasks
together.

2.2. Prediction Models Workflow

We describe four main processes involved in designing, training, and evaluating
behavior prediction models in collaborative interactions, as seen in Figure 3. First, we
captured multimodal data from both participants and performed signal processing to
design the prediction models. Then, the multimodal signals together with video recordings
were used by annotators to label the participants’ collaborative behavior, which we defined
as either “Engaged”, “Waiting”, or “Struggling”, to establish ground truth. These labeled
data were used to design a rule-based prediction model and train an HMM. We then
evaluated both prediction models’ performances. The following subsections explain each
step of the process in detail.
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2.2.1. Multimodal Signal Processing

The multimodal signals were captured from three devices integrated into the collabo-
rative system. We used the signals from (i) task-dependent controllers, (ii) a microphone
headset, and a (iii) Tobii EyeX eye tracker that were set up for each participant to extract
seven binary features used to recognize the behavior of the participants in collaborative
interactions. As an initial approach to analyze the signals, we chose to represent the fea-
tures as binary as it allows for simplified analysis with still dependable results [4,50]. The
diagram in Figure 4 shows that we derived one feature, Speech Presence, from the micro-
phone headset as a measure of communication between the participants. Then, from the
eye tracker, we extracted the Gaze Presence feature and Gaze on Object feature to measure
participant’s focus in the task. Finally, we extracted four features from the controllers
based on the presence of the controller, represented by the Controller Presence and Controller
Manipulation, and the distance of the virtual object from a target location as a measure of
task progression, as Object Move Closer and Object Move Away. The feature values were
either 1 or 0 representing the presence or absence of the feature. We describe the selection
of the feature values in more detail in Table 2.

Table 2. Description of binary features determination from input devices.

Device Binary Feature Feature Description

Microphone
headset Speech Presence Feature is set to “1” when participant is speaking and “0”

otherwise.

Tobii EyeX
eye tracker

Gaze Presence Feature is set to “1” when participant’s gaze detected on screen
and “0” otherwise.

Gaze On Object Feature is set to “1” when gaze is on a virtual object or within
the defined “focus area” as depicted in Figure 5.

Task-dependent controller
(keyboard, haptic, or game
controller)

Controller Presence
Feature is set to “1” when an input is detected from the
controller (keyboard button, mouse clicks, haptic presses) and
“0” otherwise.

Controller Manipulation Feature is set to “1” when controller is actively moving an
object, and “0” otherwise.

* Object Move Closer Feature is set to “1” when the distance of the object from the
target location is decreasing, and “0” otherwise.

* Object Move Away Feature is set to “1” when the distance of the object from the
target location is increasing, and “0” otherwise.

* When both Object Move Closer and Object Move Away are set to “0” at the same time, it means that the object is
stationary.
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Figure 4. Feature extraction from multimodal signals coming from three peripheral devices.

All the features were collected with a sampling rate of 1 Hz. These binary features
were concatenated to form a feature vector (e.g., [0 1 0 1 0 1 0]) for the HMM design, while
individual binary values were used as input to the rule-based model. A similar concate-
nation of the features was also used by Khamparia et al. [51] in their HMM application to
investigate psychological and environmental factors to help improve learners’ performance.
As an example, based on the description in Table 2, the combination of the features [0 1 0 1
0 1 0] would represent speech absence, gaze presence, controller manipulated, and object moving
closer to the target.
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2.2.2. Collaborative Behavior Coding Scheme

A literature review on collaborative learning showed that the most frequent and
prevalent behavior that could influence collaborative interactions were engagement [52],
struggling [53,54], and boredom [55,56]. Engagement could represent positive collabora-
tive interactions while struggling and boredom could indicate a negative collaborative
experience that would require intervention. Using this literature review and discussions
with the stakeholders and behavioral analysts, we chose the following three behaviors that
would be the most useful in recognizing the initial collaboration level in our teamwork
training simulator, which will henceforth be referred to as collaborative behaviors: Engaged,
Struggling, and Waiting. Note that boredom was replaced with waiting in our application as
it can be indicative of a negative collaborative experience. By focusing on when participants
are waiting or struggling, the focus can be shifted to prevent boredom or disengagement
in the system. These three behaviors represent essential stages of teamwork, allowing the
system to provide informed and meaningful feedback. Engaged captures the behavior of the
participant when performing the task and collaborating with their partner [57], allowing
the system to provide positive feedback, such as “Good job!” or “Keep up the good work!”.
Struggling represents the behavior of the participant when they were not progressing in
the task (e.g., the task object was moving away from the target), were not interacting with
their partner, or were disengaged with the task (e.g., looking outside the focus area for
some time) [58]. The system would then use the Struggling behavior as an indicator to
prompt the participants to collaborate—for example, “Ask your partner to help you with
the task” and to the other participant “Your partner seems to be struggling, offer them
help”. Turn-taking is part of teamwork and collaborative interaction. As such, we used
the Waiting behavior to represent the behavior when the participant was on standby while
their partner was performing a task [59]. This Waiting behavior is different from when a
participant is not progressing in the task due to being distracted or disinterested (which is
categorized under Struggling). In the Waiting behavior, the system would allocate some
time for the participants to wait without prompting the participants. Although there are
only three behaviors of collaboration discussed in this work, other behaviors could be
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added in the future based on the need and understanding of collaboration and teamwork.
A definition of the collaborative behaviors was defined in consultation with a certified
behavioral analyst, to ensure the consistency of the manual labeling, shown in Table 3.

Table 3. Definition of Participant’s Collaborative Behavior.

# Collaborative Behavior Definition Condition

1 Engaged
The participant is focused on the
task, communicating, and
progressing well.

Participant could be talking to their partner.
Participant is using the controller and
virtual object is moving closer to the target.

Engaged = Speech Presence ∪ (Controller
Manipulation ∩ Object Move Closer)

2 Struggling

The participant is not progressing
with the task due to difficulty
performing the task, not
communicating with their partner,
distracted, or disinterested with the
task.

Participant is not talking to their partner
while:
i. manipulating the controller but virtual
object moving away from the target, or
ii. not manipulating the controller and not
looking at the screen (virtual objects,
focused area).

Struggling = ¬Speech Presence ∩ ((Controller
Manipulation ∩ Object Move Away) ∪
(¬Controller Manipulation ∩ ¬Gaze))

3 Waiting
The participant is on standby for
their partner in a turn-taking task,
not moving.

Participant is not talking to their partner,
not using the controller, and not moving
virtual objects, but is looking at an object or
focus area.

Waiting = ¬Speech Presence ∩ ¬Controller
Manipulation ∩ ¬Object Move Away ∩
¬Object Move Closer ∩ Gaze

2.2.3. Hand Labelling to Establish Ground Truth

Two annotators trained by a certified behavioral analyst used the collaborative behav-
iors defined in Table 3 to label the participants’ behavior as either Engaged, Struggling, or
Waiting based on the extracted features discussed in Section 2.2.1 and from watching video
recording of the sessions. The annotators labeled 10 min of interactions from each session,
for all six experimental sessions individually, resulting in 4976 hand-labeled datapoints.
They achieved 98% agreement, and the remaining 2% disagreement was reconciled where
both annotators decided on an agreed label through discussion. From the labeled data,
the class distributions of the three behaviors were as follows: Engaged—19.9%, Struggling—
28.0%, and Waiting—52.1%. The hand-labeled data distribution shows that the behaviors
are not equally distributed, and the majority of the labeled behavior was Waiting since
the tasks mainly involved turn-taking. When designing the HMM prediction model, the
imbalance in the data distribution was taken into consideration to avoid overfitting and
bias to the prediction model. To achieve this, we used k-fold cross-validation to minimize
the data imbalanced. This is explained in more detailed in Sections 2.2.5 and 3.1.

2.2.4. Rule-Based Prediction Model Design

We gathered the inputs and feedback from the behavioral analyst when developing
the coding scheme in Section 2.2.3 into a set of rules for each collaborative behavior based
on the binary features. The rules were constructed to closely replicate the role of human
annotators. The seven binary features that were discussed in Section 2.2.1 were used to
drive the categorization of the collaborative behaviors defined in Table 3. In the rule-based
model, we begin by checking the presence of speech. Since speech data contributes between
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20–30% of the entire collaborative interaction, in this initial design, we assumed that any
utterances while performing the task as an indication of engagement. Further analysis
of the speech in future work would allow us to categorize the behavior more accurately
(i.e., positive utterances as Engaged, and negative utterances as Struggling). If speech was
detected, the rule would assign the collaborative behavior as being Engaged. If speech was
not detected, the second rule was to check for keypresses, which were based on controller
manipulation features. If controller manipulation was present, it would set the keypresses
as true, and move to the next rule to check the object distance based on the object move
closer and object move away features. If the object move away feature was true, then
it means the object was moving away from the target, and the rule would assign the
collaborative behavior as Struggling, If the object move closer feature was true, then it
means the object is moving closer to the target, the rule would assign the collaborative
behavior as Engaged, and if neither the object move closer and object move away are true,
then it means that the object was not moving, so the rule would assign the collaborative
behavior as Waiting. In the case when no speech was present and no keypresses were
present, the rule would check for eye gaze presence. If eye gaze was present, participant
collaborative behavior was assigned as Waiting. However, if eye gaze was absent, the
collaborative behavior was assigned as Struggling. We then consolidated these rules into a
rule-based model as shown by the flow chart in Figure 6.
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2.2.5. HMM Design and Training

A Hidden Markov Model (HMM) is a probabilistic graphical model used to represent
systems that evolve over time offering flexibility and scalability compared to deterministic
predictive models [60]. It comprises of five main elements [61] shown in Table 4. The first is
the set of hidden states (N), which signifies the unobservable underlying conditions or states
within the system. In our application, that is our three defined collaborative behaviors:
Engaged, Struggling, and Waiting. Second, there are observations (M) associated with each
state. In our application these observations are the seven binary features explained in
Section 2.2.1.
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Table 4. Definition of HMM elements.

Symbol Definition Values

N Number of hidden states in
the model. {Engaged, Struggling, Waiting}

M Number of distinct
observations.

We are using a 7-digit binary vector based on
the extracted features from the multi-modal

data.
{Obs1, Obs2, Obs3, . . . , ObsM}

Example values: 1101010, 0010100

A

State transition probability
distribution—Probability
matrix of transition from one
state to another.

Matrix size is N × N , in our case 3 × 3. The
values of the matrix are generated from

training the model.a11 a12 a13
a21 a22 a23
a31 a32 a33



B

Emission probability
distribution—Probability
matrix of observing a
particular observation in the
current state.

Matrix size is N × M. The values of the
matrix are generated from training the model.b11 · · · b1M

...
. . .

...
b31 · · · b3M


π

Initial state probability
distribution.

Initial state probability matrix, usually equally
distributed.[

0.3 0.3 0.3
]

The model’s dynamics are governed by state transition probabilities, represented as
a state transition matrix (A). The matrix encodes the probabilities of transitioning from
one state to another at each time step, reflecting how the system evolves over time. This
matrix is generated when training the model. In addition to the transition matrix, there is
an emission matrix (B) that defines the likelihood of generating a particular observation
given the current state. Finally, the model requires an initial probability distribution (π)
which specifies the initial likelihood of beginning the sequence in each hidden state.

Mathematically, HMMs address two fundamental problems: the evaluation problem,
solved using the Forward Algorithm [62], which quantifies the likelihood that the HMM
generated a specific sequence of observations, and the decoding problem, solved using
the Viterbi Algorithm [63] or the Baum-Welch Algorithm [64], which determines the most
probable sequence of hidden states that generated a given sequence of observations. In
our application, we train the HMM by calculating the maximum likelihood estimate of the
transition (A) and emission (B) probabilities for a sequence of distinct observations (M)
with known states (N). Using the estimated transition and emission probabilities, we use
the Baum Welch Algorithm to determine the most probable sequence of hidden states for
the remainder of our observations. An ergodic state transition model was designed for our
model as we assumed that the collaboration state can change from one state to any of the
other states. Figure 7 shows a possible diagram of the HMM.

The HMM training was done in MATLAB [65] using the Statistics and Machine Learn-
ing Toolbox [66]. The MATLAB function hmmestimate was used to generate estimated
transition and emission matrices for the model by calculating the maximum likelihood,
and the MATLAB function hmmviterbi was used to predict the collaborative behaviors. We
used the k-fold cross-validation method to enhance the training outcome of the HMM to
achieve optimal performance. As illustrated in Figure 8, we split 70% of the hand-labeled
data as the HMM training set, while the remaining 30% of the hand-labeled data was used
as the hold-out test set to evaluate the selected HMM.
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In the k-fold cross-validation, due to the imbalance in the labeled collaborative behav-
iors, we needed to split the data points to address the imbalance by including all possible
observations and states in each training instances of the k-fold cross-validation. Since
the sequence of the observation datapoints is important in generating the transition and
emission matrices, we could not use random selection of the datapoints or stratification of
the datapoints. As such, we opted to treat the data continuously by splitting the data into
certain percentages instead of fixed datapoints for each fold. We found that by splitting
the fold into 80% for training and 20% for validation, we were able to generate sets with
all observations and behaviors included in each split. The validation set was then shifted
upwards in each instance of the k-fold until every datapoint from the training set is used
for validation in the same sequence without shuffling them into random positions. This is
illustrated in the top portion of Figure 8. As part of the splitting of the data, we would label
each datapoint to either training or validation to ensure that the same data point would not
end up in both training and validation.

The function hmmestimate used the maximum likelihood estimate to generate the
state transition and emission matrices based on the binary observation sequences and
hand-labeled hidden states. The matrices were then optimized using the function hmm-
train, where a Baum-Welch Algorithm was used to improve the probabilities. With the
optimized matrices, we validated the model with the 20% remaining datapoints using the
function hmmviterbi. This function used the Viterbi Algorithm to predict the most likely
collaborative behavior based on the sequence of observations and probability matrices. The
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predicted collaborative behaviors were compared to the actual hand-labeled behavior to
find the accuracies of each fold and the average accuracies for all k values from 5 through 10.
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2.2.6. Evaluating Prediction Models Performance

The evaluation of the prediction models was conducted using the remaining 30%
of the hand-labeled data that were assigned as hold-out test set. For the rule-based pre-
diction model evaluation, the collaborative behaviors were predicted using the defined
rules from Section 2.2.4 As for the HMM prediction model evaluation, we selected the
transition and emission matrices from the HMM with the highest accuracy in the k-fold
cross-validation and used the MATLAB function hmmviterbi to generate the predicted
collaborative behaviors using the observations in the hold-out test set. We then compared
the predicted collaborative behaviors to the hand-labeled collaboration behaviors. The
results are presented in the next section.

3. Results and Discussion
3.1. HMM Training and Validation Results

We trained HMM models using 70% of the hand-labeled data using k-fold cross-
validation method to optimize the training output. As mentioned in Section 2.2.3, due to
the imbalance in the data, we use a 80%-20% split for the training and validation of the
HMM, respectively, to avoid missing observations and behaviors when training the HMM.

We present the accuracies for all folds with different k-fold values as a boxplot in
Figure 9. The boxplot shows the distribution of the accuracy for different k-fold values and
the scatter plot overlaid to represent the individual accuracy of each fold within the k-fold
that generated an HMM model. From the plot, we can see that the ranges of the accuracies
across all k-folds were between 90.35% to 97.77%, and the average accuracies across all
folds were around 93%. The highest accuracy occurred when k = 9 and Fold = 6. We chose
the optimized transition and emission matrices from this fold for evaluation against the
hold-out test set.
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3.2. Prediction Models Evaluation Results

The evaluation was performed for both the rule-based prediction model and the HMM
prediction model using the data from the hold-out test set. In the rule-based prediction
model, the collaborative behaviors were predicted by evaluating the observations using
the defined rules in Section 2.2.4.

As for the HMM prediction model, we chose the HMM that was generated with
the highest accuracy of 97.77%. The collaborative behaviors were predicted in MATLAB
using hmmviterbi by using the Viterbi Algorithm to generate the most likely collaborative
behavior based on the sequence of observations.

In both cases, the predicted collaborative behaviors were compared against the hand-
labeled collaborative behaviors. Table 5 compares the performance of rule-based prediction
model and HMM prediction model and Figure 10 illustrates the confusion matrix of both
prediction models.

Table 5. Evaluation results for rule-based and HMM prediction models.

Rule-Based (%) HMM (%)

Accuracy 76.53 90.58
Precision 71.81 89.55

Recall 68.93 87.94
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Figure 10. Confusion matrix for: (a) HMM; (b) rule-based model. For both confusion matrices, the
column on the left for the collaborative behaviors represent the real labels, while the labels at the top
represent the predicted behaviors. The boxes highlighted in yellow indicate the highest number of
predictions for each of the behaviors, the boxes highlighted in green represent a positive performance
measure of either recall, precision, or accuracy. The boxes highlighted in orange represent a negative
performance measure of recall, precision, or accuracy.

Overall, the HMM provided higher accuracy, precision, and recall of the participants’
collaborative behavior compared to a rule-based model. When we look at the behaviors
as shown in Figure 10, both models performed the best for the Engaged behavior since
the conditions for the Engaged behavior were quite simple and straightforward where
both models could provide a reliable prediction. However, for Waiting and Struggling
behaviors, the rule-based model performed quite poorly where the model predicted most
of the Struggling behavior as Waiting. The inflexibility of the rule-based model could have
caused this. Rule-based models only allow one behavior for one set of conditions, whereas
real hand-labeled data would have instances where the same condition produced different
outcomes based on the context of the task (or previous sequence of events). For such
cases, if we keep the rule-based model to predict participants’ collaborative behavior, the
feedback that the participants were to receive would not be true to their actual behavior. A
participant that is Struggling would not be prompted to seek assistance as the system would
assume they are Waiting for their partner to complete a turn. On the other hand, the HMM
prediction results for Waiting and Struggling were reliable since the temporal information
that was learned from the training was embedded within the state transition and emission
probability matrices. This is consistent with the results reported by another study that
implemented a semi-supervised model using the same dataset as this study [67]. The
study compared the performance of the developed semi-supervised automated labeling of
behaviors to supervised and unsupervised models. In this study, a fully supervised support
vector machine (SVM) achieved 86.1% accuracy, while a semi-supervised self-training
model with 2.5% of the data labelled achieved 84.5% accuracy. Based on this observation,
the deterministic nature of HMMs would fit better in a dynamic interaction as it offers more
flexibility than a rule-based model and traditional machine learning algorithms, without
requiring a large amount of labeled data for training.

4. Conclusions and Future Work

HCI technologies have become integral in skills learning, offering engaging interac-
tions and replicable solutions that enhance learning experiences. These HCI-based systems
often incorporate real-time feedback based on user performance to boost user engagement
and learning outcomes. By including human behavior in addition to user performance
into the feedback mechanism, we can further increase skills learning and engagement.
Manual labeling or annotation of data by experts is often used for offline analysis, how-
ever evaluating human behavior using this method can be resource-intensive, hindering
real-time feedback capability. Thus, the ability to accurately and autonomously recognize
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human behavior using computational classification methods is crucial for effective feedback
mechanisms.

Among various machine learning methods used to predict human behavior [68],
probabilistic models, such as Hidden Markov Models (HMM), have been commonly used
to predict or extract behavior patterns [34,36–38]. Leveraging probabilistic classification
methods, HMMs analyze temporal patterns, making them suitable for predicting human
behavior in collaborative interactions [33]. Our work contributes to this field by developing
an HMM-based model tailored to recognize collaborative behaviors in dyadic interactions
using multimodal signals. We additionally designed a rule-based method of behavior
prediction for a baseline comparison.

Building on our previous work which developed a teamwork training simulator
in a CVE [11], which showed acceptability in dyadic interactions between autistic and
neurotypical participants, we extend our work by designing prediction models that could
be used to recognize collaborative behaviors in dyadic teamwork interactions. In future
work, we want to explore the impact of utilizing the predicted collaborative behaviors as
an input for a real-time feedback mechanism and how that could improve collaborative
interactions in dyadic interactions, specifically cross-neurotype collaboration.

The results of the preliminary study indicated that our HMM prediction model was
able to recognize collaborative behaviors with 90.59% accuracy, outperforming the rule-
based model. While both models excelled in predicting Engaged behavior, the HMM
demonstrated greater flexibility, particularly in predicting the Waiting and Struggling be-
haviors, due to its ability to leverage temporal information learned during training. This
underscores the advantage of the HMM without requiring extensive labeled data for
training.

Additionally, our creation of a novel dataset, comprised of multimodal signals from
dyadic interactions labeled with collaborative behaviors by expert annotators, opens av-
enues for further research and experimentation in this domain. By integrating robust
behavioral prediction mechanisms into computer-based teamwork training, we anticipate
a significant enhancement in collaborative skills development, ultimately advancing the
efficacy of virtual training environments.

Although the results are promising, it is important to acknowledge limitations in the
HMM design and suggest key improvements for future studies. First, extracting more
complex features from the multimodal data would allow researchers to better understand
and observe a wider range of human behavior related to collaborative interactions. For
example, adding a dialogue act classification [69] for the speech feature would better inform
whether the participant said something because they needed help or sharing information
indicating different behaviors. Second, the number of human behaviors used to capture
participants’ collaborative behaviors were limited. Expanding the range of behaviors,
particularly for Waiting, into more distinguishable behaviors to allow the researchers to
better understand what is taking place in the collaboration. Third, the imbalance on the
distribution of the collaborative behavior introduced challenges in training the HMM.
Using K-fold cross-validation was a preliminary method in generating an HMM capable
of predicting collaborative behaviors. Future work would benefit from exploring other
methods that could include supervised, or semi-supervised learning methods. Despite
these limitations, results from the evaluation highlight the advantages of HMMs over
rule-based prediction models in a dyadic collaborative interaction between autistic and
neurotypical individuals, even with a small labeled dataset. Future work can continue to
bridge the gap in effective teamwork training, ensuring a more inclusive and supportive
learning experience.
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