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Abstract: The goal of this study is to explore the effectiveness of applying multi-objective particle
swarm optimization (MOPSO) algorithms in the design of infinite impulse response (IIR) filters.
Given the widespread application of IIR filters in digital signal processing, the precision of their design
plays a significant role in the system’s performance. Traditional design methods often encounter
the problem of local optima, which limits further enhancement of the filter’s performance. This
research proposes a method based on multi-objective particle swarm optimization algorithms, aiming
not just to find the local optima but to identify the optimal global design parameters for the filters.
The design methodology section will provide a detailed introduction to the application of multi-
objective particle swarm optimization algorithms in the IIR filter design process, including particle
initialization, velocity and position updates, and the definition of objective functions. Through
multiple experiments using Butterworth and Chebyshev Type I filters as prototypes, as well as
examining the differences in the performance among these filters in low-pass, high-pass, and band-
pass configurations, this study compares their efficiencies. The minimum mean square error (MMSE)
of this study reached 1.83, the mean error (ME) reached 2.34, and the standard deviation (SD) reached
0.03, which is better than the references. In summary, this research demonstrates that multi-objective
particle swarm optimization algorithms are an effective and practical approach in the design of
IIR filters.

Keywords: infinite impulse response filters; Butterworth filters; Type I Chebyshev filters; multi-
objective particle swarm optimization

1. Introduction

Digital signal processing (DSP) plays a crucial role in contemporary technology, in-
cluding in communication systems, audio signal processing, image processing, and medical
applications [1–3]. Infinite impulse response (IIR) filters, as fundamental components in
DSP, have a direct impact on the overall system performance. Whether implemented in
hardware or software, the design of IIR filters significantly influences the results achieved.
In designing IIR filters, challenges such as selecting design parameters, ensuring filter
stability, and meeting specific frequency response requirements must be addressed. Tra-
ditional design methods like the bilinear transform method [4] or frequency sampling
method [5–9] are often limited when facing complex filter specifications. These methods
might not achieve optimal design, especially in cases requiring precise control over filter
characteristics or in handling complex requirements, potentially leading to issues like
instability, distortion, or ineffective noise reduction. These methods also require exten-
sive manual adjustment and testing, making the design process tedious and inflexible.
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To overcome these issues, particle swarm optimization (PSO) or multi-objective particle
swarm optimization (MOPSO) can be used. Although MOPSO is used to design filters [10],
this article discusses how to design hardware components such as capacitors and resis-
tors for analog filters while focusing designing digital filters, and at the same time using
Pareto efficiency combined with MOPSO rules to design parameters related to digital
filters. By setting target functions, these algorithms help achieve the best design parameters
for filters. PSO, a group intelligence-based optimization method, has proven effective in
various domains for solving complex problems, offering a new approach to overcome
the limitations of traditional IIR filter design methods. Its advantages include simplicity,
ease of implementation, and excellent global optimization capabilities, making PSO a
compelling choice for traditional IIR filter design issues. Combining PSO with IIR filter
design through automated optimization processes not only enhances design efficiency
and accuracy but also explores new filter design methods, providing precise and efficient
signal processing solutions for complex systems. The successful application of this method
also promotes further research and application of PSO and other evolutionary algorithms
in the field of signal processing. Haruna Aimi and Kenji Suyama [11] propose a novel
approach utilizing a multi-swarm PSO framework to reallocate particles dynamically, using
the global bests from multiple swarms to define a new search space. Kenzo Yamamoto
and Kenji Suyama [12] propose addressing local minimum stagnation in traditional PSO
approaches to IIR filter design by implementing a fixed penalty range and alternating
between diversification and intensification strategies. G. Dhanarasi et al. [13] aim to design
an optimal stable digital low pass IIR filter using a modified particle swarm optimization
approach, incorporating a constriction factor and inertia weight approach (PSO-CFIWA).
This method is intended to overcome the limitations of standard PSO, such as premature
convergence and stagnation, by adjusting the particle velocities more effectively during
the search process. Yuya Takase and Kenji Suyama [14] aim to enhance the PSO method
to overcome the drawback of premature convergence by incorporating a diversification
strategy called Problem Space Stretch (PSS)-PSO. This approach modifies the search space
dynamically to avoid local minima stagnation, allowing for a more thorough exploration
of the solution space. This study explores the application of particle swarm optimization
in IIR filter design, evaluating the effectiveness of MOPSO in optimizing IIR filter design
parameters, including stability, frequency response, and phase response. MOPSO simplifies
the IIR filter design process, reduces complexity, improves efficiency, and explores the
possibilities of automated filter design. The adaptability of MOPSO in handling multi-
variable optimization problems, especially in designing IIR filters with specific performance
requirements like minimizing passband and stopband errors or optimizing transition band-
width, is also assessed. Furthermore, the application of MOPSO in various types of IIR
filter designs, such as low-pass, high-pass, and band-pass filters or more complex designs,
is explored. This study demonstrates MOPSO’s effectiveness in finding global optimal
solutions for IIR filters, particularly in overcoming the issues of traditional methods that
often get stuck in local optima. These research objectives provide a deep understanding
of the potential and challenges of multi-objective particle swarm optimization in IIR filter
design, offering valuable insights and methodologies to advance the technology in the
digital signal processing field.

The structure of this paper is as follows: Section 2 details the methodologies and
system description, and Section 3 shows the experimental results. In Sections 4 and 5, the
experimental results are discussed, and the main findings and contributions of this study
are summarized, respectively.

2. Methodologies and System Description

This research will use the Butterworth filter and Chebyshev filter as prototypes, con-
duct particle swarm optimization and Pareto efficiency to achieve multi-objective optimized
filter design parameters, and design the filter design parameters through the obtained
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optimal design parameters. Low-pass, high-pass, and band-pass filters complying with
Butterworth and Chebyshev Type I theorems are presented below.

2.1. Low-Pass Filter

A low-pass filter is designed to only allow signals with frequencies below a specific
cutoff frequency to pass through. When designing an IIR low-pass filter, key design
parameters include cutoff frequency, filter order, and transfer function. The transfer function
and difference equation [15] are Equations (1) and (2), respectively, essential mathematical
formulas for designing IIR low-pass filters.

H(s) =
Y(s)
X(s)

=
∑M

k=0 bksk

1 + ΣN
k=1aksk

(1)

y[n] = ΣM
k=0bkx[n − k]− ΣN

k=1aky[n − k] (2)

2.2. High-Pass Filter

A high-pass filter allows frequency components above a specific cutoff frequency while
suppressing those below that. In addition to the basic mathematical formulas mentioned
earlier, the design of IIR high-pass filters also incorporates other important mathematical
concepts and formulas [15], such as the Frequency Conversion of Equation (3); a standard
method uses frequency transformation formulas to convert low-pass filters into high-
pass filters.

s =
ω0
s′

(3)

Alternatively, Equation (4) of group delay is used. Group delay measures how a
filter’s phase response changes with frequency, indicating the filter’s delay for different
frequency components.

τ(w) = −dϕ(ω)

dω
(4)

2.3. Band-Pass Filter

The core of a band-pass filter is also represented through mathematical formulas like
transfer functions and difference equations, as mentioned in Section 2.1. The frequency
response of a band-pass filter is a crucial characteristic that describes how the filter affects
the amplitude of signals at different frequencies.

However, a band-pass filter focuses explicitly on two frequency points: the lower
cutoff frequency ωl and the upper cutoff frequency ωh. The design aims to allow signals
within these frequency ranges to pass through while attenuating signals outside this range.
The filter’s bandwidth (Bh) is given by Equation (5), and the center frequency (ωc) is given
by Equation (6) [15].

Bh = ωh − ωl (5)

ωc =
ωh + ωl

2
(6)

2.4. Butterworth Filter

The Butterworth filter, known for its unique design and performance characteristics,
has a maximally flat frequency response in the passband, meaning there are no ripples. Its
crucial feature is achieving a smooth response across the entire passband by eliminating
ripples, ensuring signal stability and predictability. The characteristics of this filter can be
primarily divided into the following three aspects.

1. Maximal Flatness

The frequency response of a Butterworth filter in the passband is flat, with no ripples.
This means all frequencies passing through have the same gain, ensuring stable signal
transmission.
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2. Transition Band Performance

Its transition band is smooth but less steep than Chebyshev or elliptical filters. This
ensures the Butterworth filter provides gradual and smooth control in the transition band,
preventing sudden changes to the signal.

3. Flexible Order Design

The Butterworth filter can be designed to any order. Higher orders lead to steeper
transitions between the passband and stopband but can result in increased phase distortion.

Various mathematical formulas, such as the transfer function and frequency response,
can be used to design and analyze a Butterworth filter, for example, the Transfer Function
of Equation (7) [15].

H(s) =
G√

1 +
(

s
ωc

)2N
(7)

• s is a complex frequency variable (i.e., Laplacian variable), s = jω is the angular
frequency. ωc is the cutoff frequency. N is the order of the filter. G is the gain, usually
set to 1, so that when ω = ωc, the value of |H(jω)| is 1/

√
2.

2.5. Chebyshev Filter

An equiripple response in either the passband or the stopband characterizes the
Chebyshev filter. Compared to the Butterworth filter, this filter provides a steeper transition
in the transition band at the cost of introducing ripples in the passband or stopband.
Chebyshev filters are categorized into two types based on their ripple characteristics.

1. Type I Chebyshev Filter

This filter has equal ripples in the passband and remains flat in the stopband. This
design suits applications that can tolerate passband oscillation but require high stopband
attenuation.

2. Type II Chebyshev Filter

This kind of filter is also called an inverse Chebyshev filter. It has equal ripples in
the stop band and remains flat in the pass band. It is suitable for situations where a stable
response needs to be maintained in the pass band.

Chebyshev filters can be designed using mathematical formulas such as transfer
functions, polynomials, and others [15]. The transfer functions are expressed as in
Equations (8) and (9), respectively.

H1(s) =
1√

1 + ϵ2T2
n

(
ω
ωc

) (8)

H2(s) =
1√

1 + ϵ2U2
n
(ωc

ω

) (9)

• Equations (8) and (9) are only true when s = jω, ϵ is the ripple coefficient, ωC is the
cutoff frequency, and n is the order of the filter. Tn is a Chebyshev polynomial of type
I, and Un is a Chebyshev polynomial of type II.

2.6. Particle Swarm Optimization (PSO) Algorithm

In the particle swarm optimization algorithm, “particles” refer to the abstract repre-
sentation of potential solutions. Each particle has its position and speed. These particles are
randomly placed in the multi-dimensional search space. Each particle represents the search
A point in space, which is a possible solution, and the “speed” of the particle determines
its movement direction and distance in the search space [16–20].
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Particle position update is the core concept in the particle swarm optimization al-
gorithm. Each particle swarm updates its speed and position based on its own flight
experience and the experience of other particles in the group. Specifically, the particle
speed update considers three factors: the current speed, the best position found by the
particle so far (pbest), and the best position found by all particles in the group (gbest). This
update mechanism facilitates both local search (via pbest) and global search (via gbest),
thus balancing the needs of exploration and exploitation.

To improve the efficiency of the algorithm and avoid premature convergence, subse-
quent research introduced the concept of inertia weight. Inertia weight controls the degree
of retention of particle speed and helps particles balance between global exploration and
local exploration. By adjusting the inertia weight, extensive exploration and detailed local
exploration of the solution space can be promoted at different stages of the algorithm; the
performance of the particle swarm optimization algorithm depends to a large extent on
the selection of parameters, including the size of the particle swarm, inertial weights and
learning factors that control the social behavior of particles (i.e., pbest and gbest effects).
The selection of these parameters must be adjusted according to the specific problem to
achieve the best performance.

The main calculation formulas involved in the particle swarm optimization algorithm
include particle speed update and position update. These formulas are the algorithm’s
core and are used to simulate the exploration behavior of particles in the solution space.
Formulas (10)–(12) are particle speed update, position update, and dynamic adjustment of
all tank types.

v(t+1)
i = ω · v(t)i + c1 · r1 ·

(
pbesti − x(t)i

)
+ C2 · r2 ·

(
gbest − x(t)i

)
(10)

x(t+1)
i = x(t)i + v(t+1)

i (11)

ω = ωmax −
(ωmax − ωmin)·t

T
(12)

• v(t+1)
i is the velocity of particle i at the next time step.

• ω is the inertia weight, which controls the degree of retention of particle speed.

• v(t)i is the speed of particle i at the current time step.
• C1 and C2 are learning factors, which are called personal learning factors and social

learning factors, respectively. They are used to adjust the tendency of particles to move
to pbest and gbest.

• r1 and r2 are random numbers in the range [0, 1], used to introduce randomness.
• pbesti is the best position found so far for particle i, and gbest is the best position found

by all particles in the swarm.
• x(t)i is the position of particle i at the current time step, and x(t+i)

i is the position of
particle i at the next time step.

• ωmax is the maximum value of the inertia weight, and ωmin is the minimum value of
the inertia weight.

• t is the current iteration number, and T is the maximum number of iterations.

2.7. Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm

MOPSO is widely used in engineering, economics, science, and other fields. The
difference between MOPSO and PSO is that PSO is used to find a single best solution with
a single objective function, while MOPSO uses multiple objective functions to find a set
of solutions. In this case, the objectives are usually conflicting with each other; so, it is
necessary to seek a set of equilibrium solutions to handle multi-objective optimization prob-
lems by introducing external files and domination sorting. In order to effectively handle
multi-objective optimization problems, some specific strategies need to be introduced to
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ensure that well-diversified and evenly distributed Pareto fronts are found. These strategies
include the following:

1. External Archive

The external archive is used to store the non-dominated solutions found so far. The
external archive usually has a fixed size and needs to be updated regularly to maintain
its diversity and representativeness. When the size of the external archive exceeds the
predetermined capacity, strategies such as fitness will be used. Ranking or diffusion
distance are used to select which solutions to retain, ensuring the solution set’s diversity.

2. Selection of Guide Particles

When updating the particle speed, a non-dominated solution is selected from the
external file as the particle’s reference (guide) particle. It can be selected randomly or based
on specific criteria (such as fit, distance, etc.). The purpose is to promote search diversity
and distribution uniformity.

3. Fitness Assessment and Dominance Judgment

Each particle calculates its fitness based on the values of all objective functions to
determine whether each particle is dominated by other particles (that is, it is not inferior to
another particle on all objectives and is better than another particle on at least one objective).

4. Archive Update Strategy

After each generation iteration, the new non-dominated solutions are merged with
the external archive, and then the optimal solution is retained according to the reduction
strategy. Strategies such as fitness ranking, or diffusion distance ensure that the solutions
in the archive are evenly distributed in the target space.

5. Distance Measure and Goodness of Fit Ranking

Crowding distance measures the crowding degree of solutions in the target space and
prioritizes retaining solutions with lower crowding degrees to ensure the uniformity of distribu-
tion of the Pareto front. Fitness assignment assigns a fitness value to each particle based on the
particle’s dominance relationship and distance measurement for selection and update.

2.8. Pareto Efficiency

Pareto efficiency provides a framework to help solve these multi-objective optimization
problems. Pareto efficiency focuses on finding solutions that can do better on all objectives
simultaneously when no other solution can. In the best case, the best at some goal, these solutions
form the Pareto Front, representing the best trade-offs between different design choices.

When implementing multi-objective optimization, engineers often use various algo-
rithms, such as Genetic Algorithm (GA) [21] and multi-objective particle swarm optimiza-
tion algorithm [22], to explore the possible design space and find the Paley owing to the
cutting edge. These algorithms can effectively identify balanced solutions across all objec-
tives considered. In multi-objective optimization problems in engineering and economics,
the goal is to maximize or minimize multiple objective functions simultaneously. These
problems can be expressed as follows:

min( f1(x), f2(x), . . . , f n(x)) (13)

subject to gi(x) ≤ 0, i = 1, . . . , m (14)

hj(x) = 0, j = 1, . . . , p (15)

f1(x), f2(x), . . . , f n(x) are the objective functions, gi(x) is the constraint of the inequality,
and hi(x) is the constraint of Equation, the vector of x decision variables.

2.9. Particle Swarm Algorithm Combined with Pareto Efficiency Process

Table 1 shows the multi-objective particle swarm optimization algorithm parameters
for MOPSO. Figure 1 shows a flow chart of the PSO algorithm combined with Pareto
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efficiency to form a MOPSO algorithm. It starts at random by generating a group of
particles and initializing them. Next, the fitness value of each example according to the
multi-objective function is evaluated, and the individual and global optimal solutions
are updated based on the Pareto dominance rule. The particle updates its position and
velocity based on these optimal solutions while updating the Pareto front to reflect the
best non-dominated solution found. Finally, this process is repeated until the termination
condition is met. The objective function can be changed according to the type of filter
to be designed. And the fitness function of MOPSO can be expressed in the following
mathematical form:

f (x) = ( f1(x), f2(x), f3(x), . . . , fn(x)) (16)

Table 1. MOPSO algorithm parameter settings.

Parameter Coefficient

Acceleration factor (c1, c2) 1.5
Weights 0.7
Number of particles 30
Number of iterations 100
Maximum/minimum speed 5/−5
Search maximum/minimum boundary 50/0
random number [0, 1]

Objective function

δP(dB) = 20log10(1 + δP)− 20log10(1 − δP)
δs(dB) = −20log10δS

H(z) = Y(z)
X(z) =

∑M
k=0 bkz−k

1+ΣN
k=1akz−k

H
(

ejwT
)
= ∑M

k=0 bke−jω kT

1+ΣN
k=1ake−jω kT
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Among them, f1(x) can represent the passband oscillation, f2(x) can represent the
stopband suppression, f3(x) can represent the range of the numerator or denominator coef-
ficient of the filter, and fn(x) can be increased or decreased according to the set parameters.
x is the parameter vector of the particle.

In Pareto efficiency, target constraints and correction sorting mechanisms are added.
The concept of objective constraints is to transform specific objectives into constraints and
optimize other objectives only under these constraints. For example, a threshold for a
specific goal can be set, and only when this threshold is met will the optimization of other



Signals 2024, 5 533

goals be considered, which can be expressed by a mathematical formula (17). The concept
of modifying the ranking is to introduce additional ranking criteria. For example, Pareto
ranking can be adjusted based on the distribution, uniformity, or diversity of solutions to
ensure the diversity of solutions and the uniformity of distribution.

minimize f 1(x) subject to f2(x) ≤ δ (17)

Among them, δ is the preset constraint threshold.
The following is the pseudocode architecture process of proposal method.

Define fitness_function(x):

Input: particle position (x)
Output: objective 1 (f 1), objective 2 (f 2), objective 3 (f 3), . . ., objective n (fn)

Define objective_constraints(f 1, f 2, f 3, . . ., fn):

Input: objective 1 (f 1), objective 2 (f 2), objective 3 (f 3), . . ., objective n (fn)
Output: whether constraints are satisfied (True/False)

Initialize_particles(num_particles, dim):

Input: number of particles (num_particles), dimension (dim)
Output: particle positions matrix (particles), particle velocities matrix (velocities)

Update_particles(particles, velocities, p_best, g_best, w, c1, c2):

Input: particle positions (particles), particle velocities (velocities), personal best positions
(p_best), global best position (g_best), inertia weight (w), cognitive component (c1), social
component (c2)
Output: updated particle positions (particles), updated particle velocities (velocities)

Pareto_sort(particles, fitness_values):

Input: particle positions (particles), fitness values (fitness_values)
Output: indices of Pareto front (pareto_front)

MOPSO_algorithm(num_particles, dim, num_iterations, w, c1, c2):

Input: number of particles (num_particles), dimension (dim), number of iterations
(num_iterations), inertia weight (w), cognitive component (c1), social component (c2)
Output: best particle position (g_best), best particle fitness values (g_best_fitness)

Pseudocode steps:

1. Define fitness_function(x).
2. Define objective_constraints(f 1, f 2, f 3, . . ., fn).
3. Initialize particles using Initialize_particles(num_particles, dim).
4. For each iteration from 1 to num_iterations:

• Calculate fitness values for each particle using fitness_function.
• Update personal best positions (p_best) and fitness values (p_best_fitness), If

current fitness values are better than personal best values.
• Use Pareto_sort to get Pareto front indices.
• Update global best position (g_best) to the best solution in Pareto front.

5. Output the best particle position (g_best) and the best particle fitness values
(g_best_fitness).

2.10. Experimental Procedure

Figure 2 shows a flow chart of the experimental steps used in this experiment to apply
the MOPSO algorithm to the design of IIR filters. This experimental step can be divided
into parameter setting, MOPSO optimization, and filter design.
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Figure 2. Design system process diagram of MOPSO algorithm applied to IIR Filter.

1. Parameter Setting: In the initial basic parameter settings, we first need to set the filter
type to be optimized and the filter type, such as low-pass, high-pass, band-pass, and
other filter types. The initial filter parameter settings also include filter sampling.
Frequency, passband frequency range, stopband frequency range, and frequency
response; MOPSO initial parameter settings include objective function, number of
iterations, number of particles, weights, and other related parameters; this study
uses Butterworth filter, and two types of Chebyshev Type I filters as prototypes, and
the design parameters of these two types of low-pass filters, high-pass filters, and
band-pass filters are optimized.

2. MOPSO Optimization: The MOPSO optimization algorithm is used to form a Pareto
boundary for each set of iterated solutions and find a set of relatively optimal trade-off
solutions through Pareto efficiency. All relevant constraints are defined according to the
type of filter to be designed. Each candidate solution should be a vector containing the
values of all objective functions. An external archive is used to store the Pareto optimal
solution set (Pareto front). The solution of the current particle is compared with the
solution in the Pareto Archive, and the archive is updated to keep it containing only
non-dominated solutions (Pareto optimal solutions) until the stopping condition is met
(for example, the maximum number of iterations is reached, or the solution no longer
changes significantly in the external archive). Return to the parameter-setting part if the
ideal filtering effect is not achieved and readjust parameters.

3. Design Filter: The obtained optimal design parameter solution is used to design a
filter and draw the filter amplitude, phase, pole, and zero-point diagrams; then, a
section of white noise is randomly generated and filtered through the designed filter.
Moreover, the signal-to-noise ratio (SNR) before and after filtering is calculated to
confirm whether the designed filter achieves the filtering effect.

3. Experimental Results

In this experiment, the Butterworth filter and Chebyshev Type I filter were used
as design prototypes to optimize low-pass, high-pass, and band-pass filters that meet
the characteristics, and white noise was randomly generated and filtered through the
filter. After calculating the SNR before and after filtering, it is confirmed that the design
parameters optimized through the MOPSO algorithm can effectively improve the filter
performance.
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Results

Figures 3 and 4 are three filter types designed based on Butterworth and Chebyshev
Type I characteristics. One has no passband oscillation, and the other has passband os-
cillation. However, with the filter, practical considerations will cause the passband to
os-cillate between 0 and 1 (dB) and speed up the roll-off. Figure 5 shows Chebyshev Type I
Filter Passband Ripple Enlarged View.
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Figure 5. (a) Chebyshev Type I low–pass filter passband ripple enlarged view. (b) Chebyshev Type
I high–pass filter passband ripple enlarged view. (c) Chebyshev Type I band–pass filter passband
ripple enlarged view.

The difference in the responses can be seen in Figure 6; although the low-pass filters
designed using the same design parameters look similar in the filter transition bandwidth,
the roll-off decreases the speed. The descent speed of Upper Chebyshev I is slightly faster
than Butterworth’s. To make the roll-off speed faster, one can also re-adjust the parameters
of the particle swarm to achieve a faster roll-off, but this will cause the problem of large
passband oscillation. In practical applications, most people still hope to have a smooth and



Signals 2024, 5 538

stable passband, especially when processing audio. They hope the passband will be stable
to maintain signal stability and complete noise filtering.

Figure 6. (a) Low–pass filter comparison chart. (b) Low–pass filter comparison chart passband ripple
enlarged view.

Table 2 randomly generates a section of white noise and filters it through the designed
filter. The signal-to-noise ratio is calculated before and after filtering to ensure the designed
filter can effectively filter.

Table 2. SNR comparison.

Type Before Filtering (dB) After Filtering (dB)

Butterworth
Low-Pass −12.77 −9.92
High-Pass −11.53 −6.34
Band-Pass −12.39 −8.56

Chebyshev Type I
Low-Pass −13.62 −11.19
High-Pass −12.63 −6.63
Band-Pass −10.72 −8.30

4. Discussion

This study has greatly improved the process of the multi-objective particle swarm
optimization algorithm. Compared with the particle swarm optimization method proposed
by Haruna Aimi and other scholars [11] and Kenzo Yamamoto and other scholars [11], by
calculating the MMSE, ME, and SD, this study optimized the following two parts.
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1. Optimization of frequency response

The particle swarm optimization algorithm, combined with Pareto efficiency, can find
the best balance between multiple objectives, such as between the frequency response of
the passband and stopband, which can help design a design that satisfies the frequency
within the passband requirements and can effectively suppress the stopband frequency
filter.

2. Optimization of selectivity and bandwidth

The selectivity (the ability to distinguish the passband and stopband) and bandwidth
of the filter are essential considerations in design. The particle swarm optimization algo-
rithm combined with Pareto efficiency can improve the selectivity while appropriately
controlling the bandwidth to achieve the best compromise between these two aspects.

Comparison with Related Literature

Table 3 shows the design parameters used by Haruna Aimi et al. [11] and Kenzo
Yamamoto et al. [12].

Table 3. Design parameters used in the literature.

References N M τ fP fs R P Imax

Haruna Aimi et al. [11] 8 6 5 0.175 0.25 0.92 90 5000
Yamamoto et al. [12] 6 4 4 0.25 0.33 0.90 80 10,000

N and M are the numerator and denominator of the filter transfer function. τ is the
expected group delay. fP is the passband frequency edge frequency. fs is the stopband
edge frequency. R is the maximum value of the pole radius. P is the number of particles.
Imax is the maximum number of iterations.

Using the same design parameters as in the literature (as shown in Table 3) to perform
filter design, in Tables 4 and 5, our approach demonstrates superior or comparable perfor-
mance in filter design, with lower error rates and more consistent results. This validates the
effectiveness of our PSO-based method for multi-objective optimization in IIR filter design,
outperforming the methods proposed by Haruna Aimi et al. [11] and Yamamoto et al. [12].

Table 4. Comparison of results to those of Haruna Aimi et al.

Haruna Aimi et al. [11] [This Work]

MMSE (×10−2) 2.12 1.83
ME (×10−2) 2.72 2.34
SD (×10−2) 0.83 0.03

Table 5. Comparison of results to those of Yamamoto et al.

Yamamoto et al. [12] [This Work]

MMSE (×10−2) 3.26 2.83
ME (×10−2) 3.58 3.34
SD (×10−2) 4.74 2.72

In summary, combined with Pareto efficiency, the particle swarm optimization algo-
rithm can more effectively identify the optimal balance point between multiple objectives
and provide a set of Pareto optimal solutions, which helps solve multi-objective optimiza-
tion problems. It is beneficial, and this method is suitable for continuous problems and
can effectively solve discrete problems. It does not require making assumptions about the
specific form of the problem (such as the linearity or nonlinearity of the objective function),
making it very adaptable and powerful.
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5. Conclusions

This study realizes the “multi-objective particle swarm optimization algorithm ap-
plied to the design of infinite impulse response filter” using the particle swarm algorithm
combined with Pareto efficiency. This method takes advantage of the global search capabil-
ity. The multi-objective optimization concept of the Pareto frontier effectively solves the
multi-objective conflict problems existing in traditional infinite impulse response filter de-
sign, especially the balance between passband and stopband performance filter orders and
qualitative questions. Under the same conditions as other references, this research method
can reach 1.83 and 2.83 in MMSE, 2.34 and 3.34 in ME, and 0.03 and 2.72 in SD. It has been
proven that through the optimization method proposed in this study, a better balance can
be achieved between multiple objectives, significantly minimizing passband oscillation and
maximizing stopband suppression. Thus, the cutoff frequency can be guaranteed, and the
filter order, passband, and stopband performance can meet predetermined specifications.
These are essential factors to consider in filter design.
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