Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = Jason-3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9091 KiB  
Article
An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022
by Lingling Wu, Jiajia Yuan, Zhendong Wu, Liyu Hu, Jiaojiao Zhang and Jianpin Sun
J. Mar. Sci. Eng. 2024, 12(10), 1889; https://doi.org/10.3390/jmse12101889 - 21 Oct 2024
Abstract
This study analyzes sea level changes (SLCs) in China seas and their adjacent ocean (CSO) using data from the TOPEX/Poseidon and Jason-1/2/3 satellite altimetry missions from 1993 to 2022. A 30-year time series of sea level anomalies (SLAs) is established, with trends, spatial [...] Read more.
This study analyzes sea level changes (SLCs) in China seas and their adjacent ocean (CSO) using data from the TOPEX/Poseidon and Jason-1/2/3 satellite altimetry missions from 1993 to 2022. A 30-year time series of sea level anomalies (SLAs) is established, with trends, spatial distribution, and periodicities analyzed through least squares linear fitting, Kriging interpolation, and wavelet analysis. The average yearly sea level rise in the CSO is 3.87 mm, with specific rates of 4.15 mm/yr in the Bohai Sea, 3.96 mm/yr in the Yellow Sea, 3.54 mm/yr in the East China Sea, and 4.09 mm/yr in the South China Sea. This study examines the spatiotemporal variations in SLAs and identifies an annual primary cycle, along with a new periodicity of 11 years. Utilizing 30 years of satellite observation data, particularly the newer Jason-3 satellite data, this reanalysis reveals new findings related to cycles. Overall, the research updates previous studies and provides valuable insights for further investigations into China’s marine environment. Full article
Show Figures

Figure 1

20 pages, 16568 KiB  
Article
Response of Upper Ocean to Parameterized Schemes of Wave Breaking under Typhoon Condition
by Xuhui Cao, Jie Chen, Jian Shi, Jingmin Xia, Wenjing Zhang, Zhenhui Yi, Hanshi Wang, Shaoze Zhang, Jialei Lv, Zeqi Zhao and Qianhui Wang
Remote Sens. 2024, 16(18), 3524; https://doi.org/10.3390/rs16183524 - 23 Sep 2024
Viewed by 364
Abstract
The study of upper ocean mixing processes, including their dynamics and thermodynamics, has been a primary focus for oceanographers and meteorologists. Wave breaking in deep water is believed to play a significant role in these processes, affecting air–sea interactions and contributing to the [...] Read more.
The study of upper ocean mixing processes, including their dynamics and thermodynamics, has been a primary focus for oceanographers and meteorologists. Wave breaking in deep water is believed to play a significant role in these processes, affecting air–sea interactions and contributing to the energy dissipation of surface waves. This, in turn, enhances the transfer of gas, heat, and mass at the ocean surface. In this paper, we use the FVCOM-SWAVE coupled wave and current model, which is based on the MY-2.5 turbulent closure model, to examine the response of upper ocean turbulent kinetic energy (TKE) and temperature to various wave breaking parametric schemes. We propose a new parametric scheme for wave breaking energy at the sea surface, which is based on the correlation between breaking wave parameter RB and whitecap coverage. The impact of this new wave breaking parametric scheme on the upper ocean under typhoon conditions is analyzed by comparing it with the original parametric scheme that is primarily influenced by wave age. The wave field simulated by SWAVE was verified using Jason-3 satellite altimeter data, confirming the effectiveness of the simulation. The simulation results for upper ocean temperature were also validated using OISST data and Argo float observational data. Our findings indicate that, under the influence of Typhoon Nanmadol, both parametric schemes can transfer the energy of sea surface wave breaking into the seawater. The new wave breaking parameter RB scheme effectively enhances turbulent mixing at the ocean surface, leading to a decrease in sea surface temperature (SST) and an increase in mixed layer depth (MLD). This further improves upon the issue of uneven mixing of seawater at the air–sea interface in the MY-2.5 turbulent closure model. However, it is important to note that wave breaking under typhoon conditions is only one aspect of wave impact on ocean disturbances. Therefore, further research is needed to fully understand the impact of waves on upper ocean mixing, including the consideration of other wave mechanisms. Full article
Show Figures

Figure 1

17 pages, 11732 KiB  
Article
Two-Dimensional Legendre Polynomial Method for Internal Tide Signal Extraction
by Yunfei Zhang, Cheng Luo, Haibo Chen, Wei Cui and Xianqing Lv
Remote Sens. 2024, 16(18), 3447; https://doi.org/10.3390/rs16183447 - 17 Sep 2024
Viewed by 420
Abstract
This study employs the two-dimensional Legendre polynomial fitting (2-D LPF) method to fit M2 tidal harmonic constants from satellite altimetry data within the region of 53°E–131°E, 34°S–6°N, extracting internal tide signals acting on the sea surface. The M2 tidal harmonic constants are derived [...] Read more.
This study employs the two-dimensional Legendre polynomial fitting (2-D LPF) method to fit M2 tidal harmonic constants from satellite altimetry data within the region of 53°E–131°E, 34°S–6°N, extracting internal tide signals acting on the sea surface. The M2 tidal harmonic constants are derived from the sea surface height (SSH) data of the TOPEX/Poseidon (T/P), Jason-1, Jason-2, and Jason-3 satellites via t-tide analysis. We validate the 2-D LPF method against the 300 km moving average (300 km smooth) method and the one-dimensional Legendre polynomial fitting (1-D LPF) method. Through cross-validation across 42 orbits, the optimal polynomial orders are determined to be seven for 1-D LPF, and eight and seven for the longitudinal and latitudinal directions in 2-D LPF, respectively. The 2-D LPF method demonstrated superior spatial continuity and smoothness of internal tide signals. Further single-orbit correlation analysis confirmed generally higher correlation with topographic and density perturbations (correlation coefficients: 0.502, 0.620, 0.245; 0.420, 0.273, −0.101), underscoring its accuracy. Overall, the 2-D LPF method can use all regional data points, overcoming the limitations of single-orbit approaches and proving its effectiveness in extracting internal tide signals acting on the sea surface. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

13 pages, 217 KiB  
Article
Transhumanism within the Natural Law: Transforming Creation with Nature as Guide
by Daniel T. Crouch
Religions 2024, 15(8), 949; https://doi.org/10.3390/rel15080949 - 6 Aug 2024
Viewed by 696
Abstract
Transhumanism is an unsettling prospect for proponents of a natural law ethic. The goal of transhumanism is to fundamentally alter our human nature, while the natural law tradition relies on this nature for producing normative claims. The tension seems clear. But beyond the [...] Read more.
Transhumanism is an unsettling prospect for proponents of a natural law ethic. The goal of transhumanism is to fundamentally alter our human nature, while the natural law tradition relies on this nature for producing normative claims. The tension seems clear. But beyond the need to explore this underdeveloped relationship, it may be that natural law provides precisely the sort of ethical framework—a framework centered on human nature—for best evaluating transhumanism and bioenhancement technologies. Building on the work of Jason T. Eberl and Brian Patrick Green, I articulate how a Thomistic theory of natural law can guide us in a brave new world. Along the way, I note ways in which both Eberl and Green are too limiting in their interpretations of natural law, but in offering these critiques, I hope to bring out how natural law proves an invaluable guide for navigating life in creation—even a creation that has been tampered with. Full article
(This article belongs to the Special Issue Religion and/of the Future)
13 pages, 5615 KiB  
Article
Inflammatory Profile of Different Absorbable Membranes Used for Bone Regeneration: An In Vivo Study
by Vin�cius Ferreira Bizelli, Arthur Henrique Al�cio Viotto, Izabela Fornazari Delamura, Ana Maira Pereira Baggio, Edith Umasi Ramos, Leonardo Perez Faverani and Ana Paula Farnezi Bassi
Biomimetics 2024, 9(7), 431; https://doi.org/10.3390/biomimetics9070431 - 16 Jul 2024
Viewed by 755
Abstract
Background: Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric [...] Read more.
Background: Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric analysis of the inflammatory profile during the initial phase of bone repair. Materials and methods: A total of 72 Albinus Wistar rats were used for the study, divided into six groups, with 12 animals per group, and two experimental periods, 7 and 15 days. The groups were as follows: the CG (clot), BG (Bio-Gide®), JS (Jason®), CS (Collprotect®), GD (GemDerm®), and GDF (GemDerm Flex®). Results: Data showed that the BG group demonstrated an inflammatory profile with an ideal number of inflammatory cells and blood vessels, indicating a statistically significant difference between the JS and CS groups and the BG group in terms of the number of inflammatory cells and a statistically significant difference between the JS and CS groups and the GD group in terms of angiogenesis (p < 0.05). Conclusions: We conclude that different origins and ways of obtaining them, as well as the thickness of the membrane, can interfere with the biological response of the material. Full article
Show Figures

Figure 1

24 pages, 22139 KiB  
Article
Improving the Estimation of Lake Ice Thickness with High-Resolution Radar Altimetry Data
by Anna Mangilli, Claude R. Duguay, Justin Murfitt, Thomas Moreau, Samira Amraoui, Jaya Sree Mugunthan, Pierre Thibaut and Craig Donlon
Remote Sens. 2024, 16(14), 2510; https://doi.org/10.3390/rs16142510 - 9 Jul 2024
Viewed by 838
Abstract
Lake ice thickness (LIT) is a sensitive indicator of climate change, identified as a thematic variable of Lakes as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS). Here, we present a novel and efficient analytically based retracking approach for [...] Read more.
Lake ice thickness (LIT) is a sensitive indicator of climate change, identified as a thematic variable of Lakes as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS). Here, we present a novel and efficient analytically based retracking approach for estimating LIT from high-resolution Ku-band (13.6 GHz) synthetic-aperture radar (SAR) altimetry data. The retracker method is based on the analytical modeling of the SAR radar echoes over ice-covered lakes that show a characteristic double-peak feature attributed to the reflection of the Ku-band radar waves at the snow–ice and ice–water interfaces. The method is applied to Sentinel-6 Unfocused SAR (UFSAR) and Fully Focused SAR (FFSAR) data, with their corresponding tailored waveform model, referred to as the SAR_LIT and FFSAR_LIT retracker, respectively. We found that LIT retrievals from Sentinel-6 high-resolution SAR data at different posting rates are fully consistent with the LIT estimations obtained from thermodynamic lake ice model simulations and from low-resolution mode (LRM) Sentinel-6 and Jason-3 data over two ice seasons during the tandem phase of the two satellites, demonstrating the continuity between LRM and SAR LIT retrievals. By comparing the Sentinel-6 SAR LIT estimates to optical/radar images, we found that the Sentinel-6 LIT measurements are fully consistent with the evolution of the lake surface conditions, accurately capturing the seasonal transitions of ice formation and melt. The uncertainty in the LIT estimates obtained with Sentinel-6 UFSAR data at 20 Hz is in the order of 5 cm, meeting the GCOS requirements for LIT measurements. This uncertainty is significantly smaller, by a factor of 2 to 3 times, than the uncertainty obtained with LRM data. The FFSAR processing at 140 Hz provides even better LIT estimates, with 20% smaller uncertainties. The LIT retracker analysis performed on data at the higher posting rate (140 Hz) shows increased performance in comparison to the 20 Hz data, especially during the melt transition period, due to the increased statistics. The LIT analysis has been performed over two representative lakes, Great Slave Lake and Baker Lake (Canada), demonstrating that the results are robust and hold for lake targets that differ in terms of size, bathymetry, snow/ice properties, and seasonal evolution of LIT. The SAR LIT retrackers presented are promising tools for monitoring the inter-annual variability and trends in LIT from current and future SAR altimetry missions. Full article
(This article belongs to the Special Issue Remote Sensing of the Cryosphere II)
Show Figures

Figure 1

18 pages, 2116 KiB  
Article
Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo
by Jean-Paul Kapuya Bulaba Nyembwe, Joel Kwaleso Munanga, Nuno Simões and Manuel Gameiro da Silva
Buildings 2024, 14(7), 1996; https://doi.org/10.3390/buildings14071996 - 1 Jul 2024
Viewed by 1134
Abstract
This study critically examines the impact of indoor air quality (IAQ) on occupant health in two critical care units (ICUs) at Jason Sendwe Hospital (JSH) and General Carrier de Mine Hospital (GCMH) within the Southern DRC metropolitan area, focusing on their impact on [...] Read more.
This study critically examines the impact of indoor air quality (IAQ) on occupant health in two critical care units (ICUs) at Jason Sendwe Hospital (JSH) and General Carrier de Mine Hospital (GCMH) within the Southern DRC metropolitan area, focusing on their impact on occupant health and well-being. Utilizing a mixed methods approach that includes health questionnaires, continuous environmental monitoring (monitoring CO2, VOCs, PM2.5, PM10, temperature, and relative humidity), and computational fluid dynamics (CFD) analysis, this research aims to identify correlations between environmental factors and the health of hospital staff and patients. The investigation was conducted across both the rainy and dry seasons, revealing significant seasonal variations in IEQ parameters and exploring the incidence of symptoms commonly associated with sick building syndrome among hospital staff. Higher CO2, VOCs, and particulate matter levels during the dry season indicated the inadequacy of current ventilation strategies to maintain optimal air quality. This study proposes the implementation of air filtration and purification systems and the refurbishment of natural ventilation systems as effective measures to improve IAQ. Additionally, alternative ventilation strategies, including occupancy reduction and the integration of supply and exhaust ventilation, were explored to address the challenges of inadequate ventilation. The findings reveal the urgent need for hospitals to adopt ventilation strategies that ensure the health and well-being of occupants, highlighting the importance of continuous IAQ monitoring, community engagement, and the integration of advanced ventilation technologies in healthcare settings. This comprehensive exploration offers valuable insights for improving ventilation in ICUs, contributing to creating healthier indoor environments in hospital settings, especially in regions facing unique environmental challenges. Full article
(This article belongs to the Special Issue Ventilation and Air Quality in Buildings)
Show Figures

Figure 1

22 pages, 16131 KiB  
Article
Uncertainty in Sea State Observations from Satellite Altimeters and Buoys during the Jason-3/Sentinel-6 MF Tandem Experiment
by Ben W. Timmermans, Christine P. Gommenginger and Craig J. Donlon
Remote Sens. 2024, 16(13), 2395; https://doi.org/10.3390/rs16132395 - 29 Jun 2024
Viewed by 613
Abstract
The Copernicus Sentinel-6 Michael Freilich (S6-MF) and Jason-3 (J3) Tandem Experiment (S6-JTEX) provided over 12 months of closely collocated altimeter sea state measurements, acquired in “low-resolution” (LR) and synthetic aperture radar “high-resolution” (HR) modes onboard S6-MF. The consistency and uncertainties associated with these [...] Read more.
The Copernicus Sentinel-6 Michael Freilich (S6-MF) and Jason-3 (J3) Tandem Experiment (S6-JTEX) provided over 12 months of closely collocated altimeter sea state measurements, acquired in “low-resolution” (LR) and synthetic aperture radar “high-resolution” (HR) modes onboard S6-MF. The consistency and uncertainties associated with these measurements of sea state are examined in a region of the eastern North Pacific. Discrepancies in mean significant wave height (Hs, 0.01 m) and root-mean-square deviation (0.06 m) between J3 and S6-MF LR are found to be small compared to differences with buoy data (0.04, 0.29 m). S6-MF HR data are found to be highly correlated with LR data (0.999) but affected by a nonlinear sea state-dependent bias. However, the bias can be explained robustly through regression modelling based on Hs. Subsequent triple collocation analysis (TCA) shows very little difference in measurement error (0.18 ± 0.03 m) for the three altimetry datasets, when analysed with buoy data (0.22 ± 0.02 m) and ERA5 reanalysis (0.27 ± 0.02 m), although statistical precision, limited by total collocations (N = 535), both obscures interpretation and motivates the use of a larger dataset. However, we identify uncertainties in the collocation methodology, with important consequences for methods such as TCA. Firstly, data from some commonly used buoys are found to be statistically questionable, possibly linked to erroneous buoy operation. Secondly, we develop a methodology based on altimetry data to show how statistically outlying data also arise due to sampling over local sea state gradients. This methodology paves the way for accurate collocation closer to the coast, bringing larger collocation sample sizes and greater statistical robustness. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 3261 KiB  
Article
Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters
by Jingwei Xu, Huanping Wu, Xiefei Zhi, Nikolay V. Koldunov, Xiuzhi Zhang, Ying Xu, Yangyang Zhang, Maohua Guo, Lisha Kong and Klaus Fraedrich
Remote Sens. 2024, 16(12), 2162; https://doi.org/10.3390/rs16122162 - 14 Jun 2024
Viewed by 643
Abstract
Climate data derived from long-term, multisource altimeter significant wave height (SWH) measurements are more valuable than those obtained from a single altimeter source. Such data facilitate exploration of long-term air–sea momentum transfer and more comprehensive investigation of weather system dynamics processes over the [...] Read more.
Climate data derived from long-term, multisource altimeter significant wave height (SWH) measurements are more valuable than those obtained from a single altimeter source. Such data facilitate exploration of long-term air–sea momentum transfer and more comprehensive investigation of weather system dynamics processes over the ocean. Despite the deployment of the first satellite in the Chinese Haiyang-2 (HY-2) series more than 12 years ago, validation and integration of SWH data from China’s offshore waters, derived using Chinese altimeters, have been limited. This study constructed a high-resolution, long-term, multisource gridded SWH climate dataset using along-track data from the HY-2 series, CFOSAT, Jason-2, Jason-3, and Cryosat-2 altimeters. Validation against observations from 31 buoys covering China’s offshore waters indicated that the SWH variances from HY-2A, HY-2B, HY-2C, CFOSAT, and Jason-3 altimeters correlated well with observations, with a temporal correlation coefficient of approximately 0.95 (except HY-2A, correlation: 0.89). These SWH measurements generally showed a robust linear relationship with the buoy data. Additionally, cross-calibration between Jason-3 and the HY-2A, HY-2B, HY-2C, and CFOSAT altimeters also demonstrated a typically linear relationship for SWH > 6.0 m. Using this relationship, the SWH data were linearly corrected and integrated into a 10 d mean, long-term, multisource altimeter gridded SWH dataset. Compared with in situ observations, the merged 10 d mean SWHs are more accurate and closely match the observations, with temporal correlation coefficients improving from 0.87 to 0.90 and bias decreasing from 0.28 to 0.03 m. The merged gridded SWHs effectively represent the local spatial distribution of SWH. This study revealed the importance of observational data in the process of merging and recalibrating long-term multisource altimeter SWH datasets, particularly before their application in specific ocean regions. Full article
Show Figures

Figure 1

17 pages, 10217 KiB  
Article
Analysis of Ionospheric VTEC Retrieved from Multi-Instrument Observations
by Gurkan Oztan, Huseyin Duman, Salih Alcay, Sermet Ogutcu and Behlul Numan Ozdemir
Atmosphere 2024, 15(6), 697; https://doi.org/10.3390/atmos15060697 - 9 Jun 2024
Viewed by 862
Abstract
This study examines the Vertical Total Electron Content (VTEC) estimation performance of multi-instruments on a global scale during different ionospheric conditions. For this purpose, GNSS-based VTEC data from Global Ionosphere Maps (GIMs), COSMIC (F7/C2)—Feng–Yun 3C (FY3C) radio occultation (RO) VTEC, SWARM–VTEC, and JASON–VTEC [...] Read more.
This study examines the Vertical Total Electron Content (VTEC) estimation performance of multi-instruments on a global scale during different ionospheric conditions. For this purpose, GNSS-based VTEC data from Global Ionosphere Maps (GIMs), COSMIC (F7/C2)—Feng–Yun 3C (FY3C) radio occultation (RO) VTEC, SWARM–VTEC, and JASON–VTEC were utilized. VTEC assessments were conducted on three distinct days: geomagnetic active (17 March 2015), solar active (22 December 2021), and quiet (11 December 2021). The VTEC values of COSMIC/FY3C RO, SWARM, and JASON were compared with data retrieved from GIMs. According to the results, COSMIC RO–VTEC is more consistent with GIM–VTEC on a quiet day (the mean of the differences is 4.38 TECU), while the mean of FY3C RO–GIM differences is 7.33 TECU on a geomagnetic active day. The range of VTEC differences between JASON and GIM is relatively smaller on a quiet day, and the mean of differences on active/quiet days is less than 6 TECU. Besides the daily comparison, long-term results (1 January–31 December 2015) were also analyzed by considering active and quiet periods. Results show that Root Mean Square Error (RMSE) values of COSMIC RO, FY3C RO, SWARM, and JASON are 5.02 TECU, 6.81 TECU, 16.25 TECU, and 5.53 TECU for the quiet period, and 5.21 TECU, 7.07 TECU, 17.48 TECU, and 5.90 TECU for the active period, respectively. The accuracy of each data source was affected by solar/geomagnetic activities. The deviation of SWARM–VTEC is relatively greater. The main reason for the significant differences in SWARM–GIM results is the atmospheric measurement range of SWARM satellites (460 km–20,200 km (SWARM A, C) and 520 km–20,200 km (SWARM B), which do not contain a significant part of the ionosphere in terms of VTEC estimation. Full article
Show Figures

Figure 1

14 pages, 887 KiB  
Technical Note
Utilizing the Sentinel-6 Michael Freilich Equivalent Number of Looks for Sea State Applications
by Lisa Recchia, Pietro Guccione, Thomas Moreau and Craig Donlon
Remote Sens. 2024, 16(11), 1866; https://doi.org/10.3390/rs16111866 - 23 May 2024
Viewed by 542
Abstract
Sentinel-6 Michael Freilich (S6-MF) is the first altimeter operating in a continuous high-rate pulse mode, i.e., interleaved mode. This ensures the generation of low-resolution (LR) mode measurements with a pulse repetition frequency (PRF) of ∼9 kHz (variable along the orbit) for the Ku-band [...] Read more.
Sentinel-6 Michael Freilich (S6-MF) is the first altimeter operating in a continuous high-rate pulse mode, i.e., interleaved mode. This ensures the generation of low-resolution (LR) mode measurements with a pulse repetition frequency (PRF) of ∼9 kHz (variable along the orbit) for the Ku-band as well as the processing of high-resolution (HR) echoes on ground. This operating mode provides an elevated number of highly correlated single looks with respect to the fewer number, weakly correlated echoes of Jason-3 altimeter. A theoretical model is exploited to envisage the correlation properties of S6-MF pulse limited waveform echoes for different sea-state conditions; after that, the model is validated by comparison with the equivalent number of looks (ENL) empirically estimated from real data. The existence of a significant dependence of the statistical properties on the range is verified, and its impact on the precision and on the accuracy in the estimation of the geophysical parameters is assessed in case of the 9 kHz PRF of S6-MF. By applying pulse decimation before the multilook processing, an investigation on new processing techniques is performed, aimed at exploiting the higher ENL in S6-MF low-resolution mode waveforms. It is shown that a bias of less than 0.4 cm is found for SSH and about 1.5 cm for SWH at SWH = 2 m when the decimated waveforms processing is compared with full high-PRF processing. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

22 pages, 7667 KiB  
Article
Altimeter Calibrations in the Preliminary Four Years’ Operation of Wanshan Calibration Site
by Wanlin Zhai, Jianhua Zhu, Hailong Peng, Chuntao Chen, Longhao Yan, He Wang, Xiaoqi Huang, Wu Zhou, Hai Guo and Yufei Zhang
Remote Sens. 2024, 16(6), 1087; https://doi.org/10.3390/rs16061087 - 20 Mar 2024
Viewed by 1003
Abstract
In order to accomplish the calibration and validation (Cal/Val) of altimeters, the Wanshan calibration site (WSCS) has been used as a calibration site for satellite altimeters since its completion in August 2019. In this paper, we introduced the WSCS and the dedicated equipment [...] Read more.
In order to accomplish the calibration and validation (Cal/Val) of altimeters, the Wanshan calibration site (WSCS) has been used as a calibration site for satellite altimeters since its completion in August 2019. In this paper, we introduced the WSCS and the dedicated equipment including permanent GNSS reference stations (PGSs), acoustic tide gauges (ATGs), and dedicated GNSS buoys (DGB), etc. placed on Zhi’wan, Wai’ling’ding, Dan’gan, and Miao’Wan islands of the WSCS. The PGSs data of Zhi’wan and Wai’ling’ding islands were processed and analyzed using the GAMIT/GLOBK (Version 10.7) and Hector (Version 1.9) software to define the datum for Cal/Val of altimeters in WSCS. The DGB was used to transfer the datum from the PGSs to the ATGs of Zhi’wan, Wai’ling’ding, and Dan’gan islands. Separately, the tidal and mean sea surface (MSS) corrections are needed in the Cal/Val of altimeters. We evaluated the global/regional tide models of FES2014, HAMTIDE12, DTU16, NAO99jb, GOT4.10, and EOT20 using the three in situ tide gauge data of WSCS and Hong Kong tide gauge data (No. B329) derived from the Global Sea Level Observing System. The HAMTIDE12 tide model was chosen to be the most accurate one to maintain the tidal difference between the locations of the ATGs and the altimeter footprints. To establish the sea surface connections between the ATGs and the altimeter footprints, a GPS towing body and a highly accurate ship-based SSH measurement system (HASMS) were used to measure the sea surface of this area in 2018 and 2022, respectively. The global/regional mean sea surface (MSS) models of DTU 2021, EGM 2008 (mean dynamic topography minus by CLS_MDT_2018), and CLS2015 were accurately evaluated using the in situ measured data and HY-2A altimeter, and the CLS2015 MSS model was used for Cal/Val of altimeters in WSCS. The data collected by the equipment of WSCS, related auxiliary models mentioned above, and the sea level data of the hydrological station placed on Dan’gan island were used to accomplish the Cal/Val of HY-2B, HY-2C, Jason-3, and Sentinel-3A (S3A) altimeters. The bias of HY-2B (Pass No. 375) was −16.7 ± 45.2 mm, with a drift of 0.5 mm/year. The HY-2C biases were −18.9 ± 48.0 mm with drifts of 0.0 mm/year and −5.6 ± 49.3 mm with −0.3 mm/year drifts for Pass No. 170 and 185, respectively. The Jason-3 bias was −4.1 ± 78.7 mm for Pass No. 153 and −25.8 ± 85.5 mm for Pass No. 012 after it has changed its orbits since April 2022, respectively. The biases of S3A were determined to be −16.5 ± 46.3 mm with a drift of −0.6 mm/year and −9.8 ± 30.1 mm with a drift of 0.5 mm/year for Pass No. 260 and 309, respectively. The calibration results show that the WSCS can commercialize the satellite altimeter calibration. We also discussed the calibration potential for a wide swath satellite altimeter of WSCS. Full article
Show Figures

Figure 1

4419 KiB  
Proceeding Paper
Impact of Global Warming on Water Height Using XGBOOST and MLP Algorithms
by Nilufar Makky, Khalil Valizadeh Kamran and Sadra Karimzadeh
Environ. Sci. Proc. 2024, 29(1), 83; https://doi.org/10.3390/ECRS2023-16864 - 8 Feb 2024
Viewed by 437
Abstract
Over the past few years, the effects of global warming have become more pronounced, particularly with the melting of the polar ice caps. This has led to an increase in sea levels, which poses a threat of flooding to coastal cities and islands. [...] Read more.
Over the past few years, the effects of global warming have become more pronounced, particularly with the melting of the polar ice caps. This has led to an increase in sea levels, which poses a threat of flooding to coastal cities and islands. Furthermore, monitoring and analyzing changes in water levels has proven effective for predicting natural disasters caused by the rising sea levels. One vital factor in understanding the impact of global warming is the sea surface height (SSH). Measuring the SSH can provide valuable information about changes in ocean levels. This study used data from the Jason 2 altimetry radar satellite, which provided 36 cycle periods per year, to investigate the water heights around the Hawaiian Islands in 2019. To accurately evaluate the water height variations, a specific area near the Pacific Ocean close to the Hawaiian Islands was selected. By analyzing the collected satellite data, a chart of water heights was generated, which showed an overall increase in the height over one year. This analysis provided evidence of changing ocean levels in the region, highlighting the urgency of addressing the potential threats faced by coastal communities. This study also explored several factors that contribute to water height variations, such as the sea surface temperature, precipitation, and sea surface pressure in the Google Earth Engine cloud-based platform. Algorithms, including MLP and XGBOOST, were used to model the water height within the specified range. The results showed that the XGBOOST algorithm was superior in accurately predicting the water height, with an impressive R-squared value of 0.95. In comparison, the MLP algorithm achieved an R-squared value of 0.92. This study shows that advanced machine learning techniques are effective in understanding and modeling the complex changes in the water height due to climate change. This information can help policymakers and local authorities make informed decisions and create strategies to protect coastal cities and islands from the growing threats of rising sea levels. Taking proactive measures is crucial in reducing the risks posed by more frequent and severe natural disasters caused by global warming. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

42 pages, 18118 KiB  
Article
The ESA Permanent Facility for Altimetry Calibration in Crete: Advanced Services and the Latest Cal/Val Results
by Stelios P. Mertikas, Craig Donlon, Costas Kokolakis, Dimitrios Piretzidis, Robert Cullen, Pierre F�m�nias, Marco Fornari, Xenophon Frantzis, Achilles Tripolitsiotis, J�r�me Bouffard, Alessandro Di Bella, Fran�ois Boy and Jerome Saunier
Remote Sens. 2024, 16(2), 223; https://doi.org/10.3390/rs16020223 - 5 Jan 2024
Cited by 2 | Viewed by 1684
Abstract
Two microwave transponders have been operating in west Crete and Gavdos to calibrate international satellite radar altimeters at the Ku-band. One has been continuously operating for about 8 years at the CDN1 Cal/Val site in the mountains of Crete, and the other at [...] Read more.
Two microwave transponders have been operating in west Crete and Gavdos to calibrate international satellite radar altimeters at the Ku-band. One has been continuously operating for about 8 years at the CDN1 Cal/Val site in the mountains of Crete, and the other at the GVD1 Cal/Val site on Gavdos since 11 October 2021. This ground infrastructure is also supported at present by four sea-surface Cal/Val sites operating, some of them for over 20 years, while two additional such Cal/Val sites are under construction. This ground infrastructure is part of the European Space Agency Permanent Facility for Altimetry Calibration (PFAC), and as of 2015, it has been producing continuously a time series of range biases for Sentinel-3A, Sentinel-3B, Sentinel-6 MF, Jason-2, Jason-3, and CryoSat-2. This work presents a thorough examination of the transponder Cal/Val responses to understand and determine absolute biases for all satellite altimeters overflying this ground infrastructure. The latest calibration results for the Jason-3, Copernicus Sentinel-3A and -3B, Sentinel-6 MF, and CryoSat-2 radar altimeters are described based on four sea-surface and two transponder Cal/Val sites of the PFAC in west Crete, Greece. Absolute biases for Jason-3, Sentinel-6 MF, Sentinel-3A, Sentinel-3B, and CryoSat-2 are close to a few mm, determined using various techniques, infrastructure, and settings. Full article
(This article belongs to the Special Issue Advances in Satellite Altimetry II)
Show Figures

Figure 1

22 pages, 8223 KiB  
Article
The Influence of Typhoon-Induced Wave on the Mesoscale Eddy
by Zeqi Zhao, Jian Shi, Weizeng Shao, Ru Yao and Huan Li
Atmosphere 2023, 14(12), 1804; https://doi.org/10.3390/atmos14121804 - 9 Dec 2023
Cited by 2 | Viewed by 1298
Abstract
The strong wind-induced current and sea level have influences on the wave distribution in a tropical cyclone (TC). In particular, the wave–current interaction is significant in the period in which the TC passed the mesoscale eddy. In this study, the wave fields of [...] Read more.
The strong wind-induced current and sea level have influences on the wave distribution in a tropical cyclone (TC). In particular, the wave–current interaction is significant in the period in which the TC passed the mesoscale eddy. In this study, the wave fields of Typhoon Chan-hom (2015) are hindcastly simulated using a coupled oceanic model that utilizes a nested triangle grid, i.e., the finite-volume community ocean model-simulating waves nearshore (FVCOM-SWAVE) model. The forcing wind field is composited from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the simulation using a parametric Holland model, denoted as H-E. The open boundary fields include tide data from TPOX.5 and the hybrid coordinate ocean model (HYCOM) global datasets, including sea surface temperature (SST), sea surface salinity, sea surface current, and sea level data. The simulated oceanic parameters (e.g., the significant wave height, SWH) are validated against the measurements from the Jason-2 altimeter, yielding a root mean square error (RMSE) of 0.58 m for the SWH, a correlation (COR) coefficient of 0.94, and a scatter index (SI) of 0.23. Similarly, the simulated SSTs are compared with the remote sensing products of the remote sensing system (REMSS) and the measurements from Argos, yielding an RMSE of <0.8 °C, a COR of >0.95, and an SI of <0.04. The significant zonal asymmetry of the wave distribution along the typhoon track is observed. The Stokes drift is calculated from the FVCOM-SWAVE simulation results, and then the contribution of the Stokes transport is estimated using the Ekman–Stokes numbers. It is found that the ratio of the Stokes transport to the total net transport can reach >80% near the typhoon center, and the ratio is reduced to approximately <20% away from the typhoon center, indicating that Stokes transport is an essential aspect in the water mixing during a TC. The mesoscale eddies are detected by the sea level anomalies (SLA) fusion data from AVISO. It is found that the significant wave heights, Stokes drift, and Stokes transport inside the eddy area were higher than those outside the eddy area. These parameters inside the cold mesoscale eddies were higher than t inside the warm mesoscale eddies. Otherwise, the SST mainly increased within the cold mesoscale eddies area, while decreased within the warm mesoscale eddies area. The influence of mesoscale eddies on the SST was in proportion to the eddy radius and eddy EKE. Full article
(This article belongs to the Special Issue Coastal Hazards and Climate Change)
Show Figures

Figure 1

Back to TopTop