Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,029)

Search Parameters:
Keywords = MODIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10852 KiB  
Article
Robust Trend Analysis in Environmental Remote Sensing: A Case Study of Cork Oak Forest Decline
by Oliver Guti�rrez-Hern�ndez and Luis V. Garc�a
Remote Sens. 2024, 16(20), 3886; https://doi.org/10.3390/rs16203886 (registering DOI) - 19 Oct 2024
Abstract
We introduce a novel methodological framework for robust trend analysis (RTA) using remote sensing data to enhance the accuracy and reliability of detecting significant environmental trends. Our approach sequentially integrates the Theil–Sen (TS) slope estimator, the Contextual Mann–Kendall (CMK) test, and the false [...] Read more.
We introduce a novel methodological framework for robust trend analysis (RTA) using remote sensing data to enhance the accuracy and reliability of detecting significant environmental trends. Our approach sequentially integrates the Theil–Sen (TS) slope estimator, the Contextual Mann–Kendall (CMK) test, and the false discovery rate (FDR) control. This comprehensive method addresses common challenges in trend analysis, such as handling small, noisy datasets with outliers and issues related to spatial autocorrelation, cross-correlation, and multiple testing. We applied this RTA workflow to study tree cover trends in Los Alcornocales Natural Park (Southern Spain), Europe’s largest cork oak forest, analysing interannual changes in tree cover from 2000 to 2022 using Terra MODIS MOD44B data. Our results reveal that the TS estimator provides a robust measure of trend direction and magnitude, but its effectiveness is dramatically enhanced when combined with the CMK test. This combination highlights significant trends and effectively corrects for spatial autocorrelation and cross-correlation, ensuring that genuine environmental signals are distinguished from statistical noise. Unlike previous workflows, our approach incorporates the FDR control, which successfully filtered out 29.6% of false discoveries in the case study, resulting in a more stringent assessment of true environmental trends captured by multi-temporal remotely sensed data. In the case study, we found that approximately one-third of the area exhibits significant and statistically robust declines in tree cover, with these declines being geographically clustered. Importantly, these trends correspond with relevant changes in tree cover, emphasising the ability of RTA to detect relevant environmental changes. Overall, our findings underscore the crucial importance of combining these methods, as their synergy is essential for accurately identifying and confirming robust environmental trends. The proposed RTA framework has significant implications for environmental monitoring, modelling, and management. Full article
24 pages, 5758 KiB  
Article
Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-arid
by Diego Rosyur Castro Manrique, Pabr�cio Marcos Oliveira Lopes, Cristina Rodrigues Nascimento, Eberson Pessoa Ribeiro and Anderson Santos da Silva
AgriEngineering 2024, 6(4), 3799-3822; https://doi.org/10.3390/agriengineering6040217 - 18 Oct 2024
Abstract
Monitoring sugarcane phenology is essential since the globalized market requires reliable information on the quantity of raw materials for the industrial production of sugar and alcohol. In this context, the general objective of this study was to evaluate the phenological seasonality of the [...] Read more.
Monitoring sugarcane phenology is essential since the globalized market requires reliable information on the quantity of raw materials for the industrial production of sugar and alcohol. In this context, the general objective of this study was to evaluate the phenological seasonality of the sugarcane varieties SP 79-1011 and VAP 90-212 observed from the NDVI time series over 19 years (2001–2020) from global databases. In addition, this research had the following specific objectives: (i) to estimate phenological parameters (Start of Season (SOS), End of Season (EOS), Length of Season (LOS), and Peak of Season (POS)) using TIMESAT software in version 3.3 applied to the NDVI time series over 19 years; (ii) to characterize the land use and land cover obtained from the MapBiomas project; (iii) to analyze rainfall variability; and (iv) to validate the sugarcane harvest date (SP 79-1011). This study was carried out in sugarcane growing areas in Juazeiro, Bahia, Brazil. The results showed that the NDVI time series did not follow the rainfall in the region. The sugarcane areas advanced over the savanna formation (Caatinga), reducing them to remnants along the irrigation channels. The comparison of the observed harvest dates of the SP 79-1011 variety to the values estimated with the TIMESAT software showed an excellent fit of 0.99. The mean absolute error in estimating the sugarcane harvest date was approximately ten days, with a performance index of 0.99 and a correlation coefficient of 0.99, significant at a 5% confidence level. The TIMESAT software was able to estimate the phenological parameters of sugarcane using MODIS sensor images processed on the Google Earth Engine platform during the evaluated period (2001 to 2020). Full article
Show Figures

Figure 1

27 pages, 9621 KiB  
Article
Estimating and Modeling Pinus contorta Transpiration in a Montane Meadow Using Sap-Flow Measurements
by Simon Marks, Christopher Surfleet and Bwalya Malama
Forests 2024, 15(10), 1786; https://doi.org/10.3390/f15101786 - 11 Oct 2024
Abstract
This study quantifies the transpiration of encroached lodgepole pine (Pinus contorta var. murryana (Grev. & Balf.) Engelm.) in a montane meadow using pre-restoration sap-flow measurements. Lodgepole pine transpiration and its response to environmental variables were examined in Rock Creek Meadow (RCM), Southern [...] Read more.
This study quantifies the transpiration of encroached lodgepole pine (Pinus contorta var. murryana (Grev. & Balf.) Engelm.) in a montane meadow using pre-restoration sap-flow measurements. Lodgepole pine transpiration and its response to environmental variables were examined in Rock Creek Meadow (RCM), Southern Cascade Range, CA, USA. Sap-flow data from lodgepole pines were scaled to the meadow using tree survey data and then validated with MODIS evapotranspiration estimates for the 2019 and 2020 growing seasons. A modified Jarvis–Stewart model calibrated to 2020 sap-flow data analyzed lodgepole pine transpiration’s correlation with solar radiation, air temperature, vapor pressure deficit, and soil volumetric water content. Model validation utilized 2021 growing season sap-flow data. Calibration and validation employed a Markov Chain Monte Carlo (MCMC) approach through the DREAM(ZS) algorithm with a generalized likelihood (GL) function, enabling parameter and total uncertainty assessment. The model’s scaling was compared with simple scaling estimates. Average lodgepole pine transpiration at RCM ranged between 220.6 ± 25.3 and 393.4 ± 45.7 mm for the campaign (mid-July 2019 to mid-August 2020) and 100.2 ± 11.5 to 178.8 ± 20.7 mm for the 2020 partial growing season (April to mid-August), akin to MODIS ET. The model aligned well with observed normalized sap-velocity during the 2020 growing season (RMSE = 0.087). However, sap-velocity, on average, was underpredicted by the model (PBIAS = −6.579%). Model validation mirrored calibration in performance metrics (RMSE = 0.1233; PBIAS = −2.873%). The 95% total predictive uncertainty confidence intervals generated by GL-DREAM(ZS) enveloped close to the theoretically expected 95% of total observations for the calibration (94.5%) and validation (81.8%) periods. The performance of the GL-DREAM(ZS) approach and uncertainty assessment in this study shows promise for future MJS model applications, and the model-derived 2020 transpiration estimates highlight the MJS model utility for scaling sap-flow measurements from individual trees to stands of trees. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

26 pages, 5700 KiB  
Article
Remote Sensing-Based Drought Monitoring in Iran’s Sistan and Balouchestan Province
by Kamal Omidvar, Masoume Nabavizadeh, Iman Rousta and Haraldur Olafsson
Atmosphere 2024, 15(10), 1211; https://doi.org/10.3390/atmos15101211 - 10 Oct 2024
Abstract
Drought is a natural phenomenon that has adverse effects on agriculture, the economy, and human well-being. The primary objective of this research was to comprehensively understand the drought conditions in Sistan and Balouchestan Province from 2002 to 2017 from two perspectives: vegetation cover [...] Read more.
Drought is a natural phenomenon that has adverse effects on agriculture, the economy, and human well-being. The primary objective of this research was to comprehensively understand the drought conditions in Sistan and Balouchestan Province from 2002 to 2017 from two perspectives: vegetation cover and hydrology. To achieve this goal, the study utilized MODIS satellite data in the first part to monitor vegetation cover as an indicator of agricultural drought. In the second part, GRACE satellite data were employed to analyze changes in groundwater resources as an indicator of hydrological drought. To assess vegetation drought, four indices were used: Vegetation Health Index (VHI), Vegetation Drought Index (VDI), Visible Infrared Drought Index (VSDI), and Temperature Vegetation Drought Index (TVDI). To validate vegetation drought indices, they were compared with Global Land Data Assimilation System (GLDAS) precipitation data. The vegetation indices showed a strong, statistically significant correlation with GLDAS precipitation data in most regions of the province. Among all indices, the VHI showed the highest correlation with precipitation (moderate (0.3–0.7) in 51.7% and strong (≥0.7) in 45.82% of lands). The output of vegetation indices revealed that the study province has experienced widespread drought in recent years. The results showed that the southern and central regions of the province have faced more severe drought classes. In the second part of this research, hydrological drought monitoring was conducted in fifty third-order sub-basins located within the study province using the Total Water Storage (TWS) deficit, Drought Severity, and Total Storage Deficit Index )TSDI Index). Annual average calculations of the TWS deficit over the period from April 2012 to 2016 indicated a substantial depletion of groundwater reserves in the province, amounting to a cumulative loss of 12.2 km3 Analysis results indicate that drought severity continuously increased in all study basins until the end of the study period. Studies have shown that all the studied basins are facing severe and prolonged water scarcity. Among the 50 studied basins, the Rahmatabad basin, located in the semi-arid northern regions of the province, has experienced the most severe drought. This basin has experienced five drought events, particularly one lasting 89 consecutive months and causing a reduction of more than 665.99 km3. of water in month 1, placing it in a critical condition. On the other hand, the Niskoofan Chabahar basin, located in the tropical southern part of the province near the Sea of Oman, has experienced the lowest reduction in water volume with 10 drought events and a decrease of approximately 111.214 km3. in month 1. However, even this basin has not been spared from prolonged droughts. Analysis of drought index graphs across different severity classes confirmed that all watersheds experienced drought conditions, particularly in the later years of this period. Data analysis revealed a severe water crisis in the province. Urgent and coordinated actions are needed to address this challenge. Transitioning to drought-resistant crops, enhancing irrigation efficiency, and securing water rights are essential steps towards a sustainable future. Full article
(This article belongs to the Section Meteorology)
23 pages, 32897 KiB  
Article
On the Suitability of Different Satellite Land Surface Temperature Products to Study Surface Urban Heat Islands
by Alexandra Hurduc, Sofia L. Ermida and Carlos C. DaCamara
Remote Sens. 2024, 16(20), 3765; https://doi.org/10.3390/rs16203765 - 10 Oct 2024
Abstract
Remote sensing satellite data have been a crucial tool in understanding urban climates. The variety of sensors with different spatiotemporal characteristics and retrieval methodologies gave rise to a multitude of approaches when analyzing the surface urban heat island effect (SUHI). Although there are [...] Read more.
Remote sensing satellite data have been a crucial tool in understanding urban climates. The variety of sensors with different spatiotemporal characteristics and retrieval methodologies gave rise to a multitude of approaches when analyzing the surface urban heat island effect (SUHI). Although there are considerable advantages that arise from these different characteristics (spatiotemporal resolution, time of observation, etc.), it also means that there is a need for understanding the ability of sensors in capturing spatial and temporal SUHI patterns. For this, several land surface temperature products are compared for the cities of Madrid and Paris, retrieved from five sensors: the Spinning Enhanced Visible and InfraRed Imager onboard Meteosat Second Generation, the Advanced Very-High-Resolution Radiometer onboard Metop, the Moderate-resolution Imaging Spectroradiometer onboard both Aqua and Terra, and the Thermal Infrared Sensor onboard Landsat 8 and 9. These products span a wide range of LST algorithms, including split-window, single-channel, and temperature–emissivity separation methods. Results show that the diurnal amplitude of SUHI may not be well represented when considering daytime and nighttime polar orbiting platforms. Also, significant differences arise in SUHI intensity and spatial and temporal variability due to the different methods implemented for LST retrieval. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

21 pages, 14551 KiB  
Article
Detection of the Evolution Process of Desertification in Gulang County Based on Long Series and Similar Time Images
by Panpan Liu, Bing Guo and Rui Zhang
Land 2024, 13(10), 1652; https://doi.org/10.3390/land13101652 - 10 Oct 2024
Abstract
Previous studies are mostly conducted based on sparse time series and often ignore the dramatic changes in desertification during the year. Utilizing the Landsat and MODIS data sets from 2000 to 2020, this study applied the spatio-temporal fusion algorithm to obtain the images [...] Read more.
Previous studies are mostly conducted based on sparse time series and often ignore the dramatic changes in desertification during the year. Utilizing the Landsat and MODIS data sets from 2000 to 2020, this study applied the spatio-temporal fusion algorithm to obtain the images of the study area taken at similar times in August over the past 20 years. The optimal desertification remote sensing monitoring index of Gulang County was constructed based on the feature space model, and then the spatial and temporal evolution patterns and the driving mechanism of desertification in Gulang County were revealed by using a geographic detector. The research results were as follows: (1) The ESTARFM algorithm had better applicability in constructing long time series and similar time images with the correlation coefficient R2 = 0.83 between the results of the ESTARFM fusion model and the original image; (2) the SWCI-MSAVI feature space desertification monitoring index model based on point-to-point mode had the best applicability with an overall accuracy of 95.39% and a Kappa coefficient of 0.94; (3) from 2000 to 2020, the desertification showed an increasing trend, and the degree of desertification gradually intensified from south to north in Gulang County; (4) the dominant factors in various historical periods were different, which were mainly composed of precipitation, temperature and population density. The dominant interactive factors changed from alternating dominance of natural factors and human activity factors to the co-dominance of natural factors and human activity factors. The research results could provide decision-making support for precise prevention and control of desertification in arid–semi-arid regions. Full article
Show Figures

Figure 1

21 pages, 12594 KiB  
Article
Remotely Sensed Estimation of Daily Near-Surface Air Temperature: A Comparison of Metop and MODIS
by Zhenwei Zhang, Peisong Li, Xiaodi Zheng and Hongwei Zhang
Remote Sens. 2024, 16(20), 3754; https://doi.org/10.3390/rs16203754 - 10 Oct 2024
Abstract
The estimation of spatially resolved near-surface air temperature (NSAT) has been extensively performed in previous studies using satellite-derived land surface temperature (LST) from MODIS. However, there remains a need for estimating daily NSAT based on LST data from other satellites, which has important [...] Read more.
The estimation of spatially resolved near-surface air temperature (NSAT) has been extensively performed in previous studies using satellite-derived land surface temperature (LST) from MODIS. However, there remains a need for estimating daily NSAT based on LST data from other satellites, which has important implications for integrating multi-source LST in estimating NSAT and ensuring the continuity of satellite-derived estimates of NSAT over long-term periods. In this study, we conducted a comprehensive comparison of LST derived from Metop with MODIS LST in the modeling and mapping of daily NSAT. The results show that Metop LST achieves consistent predictive performance with MODIS LST in estimating daily NSAT, and models based on Metop LST or MODIS LST have overall predictive performance of about 1.2–1.4 K, 1.5–2.0 K, and 1.8–1.9 K in RMSE for estimating Tavg, Tmax, and Tmin, respectively. Compared to models based on nighttime LST, daytime LST can improve the predictive performance of Tmax by about 0.26–0.28 K, while performance for estimating Tavg or Tmin using different schemes of LST is comparable. Models based on Metop LST also exhibit high consistency with models utilizing MODIS LST in terms of the variability in predictive performance across months, with RMSE of 1.03–1.82 K, 1.3–2.49 K, and 1.26–2.66 K for Tavg, Tmin, and Tmax, respectively. This temporal variability in performance is not due to sampling imbalance across months, which is confirmed by comparing models trained using bootstrapped samples in balance, and our results imply that sampling representativeness, complicated by retrieval gaps in LST, is an important issue when analyzing the variability in predictive performance for estimating NSAT. To fully assess the predictive capability of Metop LST in estimating daily NSAT, more studies need to be performed using different methods across areas with a range of scales and geographical environments. Full article
(This article belongs to the Special Issue Advances in Thermal Infrared Remote Sensing II)
Show Figures

Figure 1

21 pages, 9198 KiB  
Article
Estimating Vertical Distribution of Total Suspended Matter in Coastal Waters Using Remote-Sensing Approaches
by Hailong Zhang, Xin Ren, Shengqiang Wang, Xiaofan Li, Deyong Sun and Lulu Wang
Remote Sens. 2024, 16(19), 3736; https://doi.org/10.3390/rs16193736 - 8 Oct 2024
Abstract
The vertical distribution of the marine total suspended matter (TSM) concentration significantly influences marine material transport, sedimentation processes, and biogeochemical cycles. Traditional field observations are constrained by limited spatial and temporal coverage, necessitating the use of remote-sensing technology to comprehensively understand TSM variations [...] Read more.
The vertical distribution of the marine total suspended matter (TSM) concentration significantly influences marine material transport, sedimentation processes, and biogeochemical cycles. Traditional field observations are constrained by limited spatial and temporal coverage, necessitating the use of remote-sensing technology to comprehensively understand TSM variations over extensive areas and periods. This study proposes a remote-sensing approach to estimate the vertical distribution of TSM concentrations using MODIS satellite data, with the Bohai Sea and Yellow Sea (BSYS) as a case study. Extensive field measurements across various hydrological conditions and seasons enabled accurate reconstruction of in situ TSM vertical distributions from bio-optical parameters, including the attenuation coefficient, particle backscattering coefficient, particle size, and number concentration, achieving a determination coefficient of 0.90 and a mean absolute percentage error of 26.5%. In situ measurements revealed two distinct TSM vertical profile types (vertically uniform and increasing) and significant variation in TSM profiles in the BSYS. Using surface TSM concentrations, wind speed, and water depth, we developed and validated a remote-sensing approach to classify TSM vertical profile types, achieving an accuracy of 84.3%. Combining this classification with a layer-to-layer regression model, we successfully estimated TSM vertical profiles from MODIS observation. Long-term MODIS product analysis revealed significant spatiotemporal variations in TSM vertical distributions and column-integrated TSM concentrations, particularly in nearshore regions. These findings provide valuable insights for studying marine sedimentation and biological processes and offer a reference for the remote-sensing estimation of the TSM vertical distribution in other marine regions. Full article
Show Figures

Figure 1

28 pages, 13701 KiB  
Article
Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset
by Shujian Wang, Xunhe Zhang, Lili Hou, Jiejie Sun and Ming Xu
Remote Sens. 2024, 16(19), 3731; https://doi.org/10.3390/rs16193731 - 8 Oct 2024
Abstract
Remote sensing and process-coupled ecological models are widely used for the simulation of GPP, which plays a key role in estimating and monitoring terrestrial ecosystem productivity. However, most such models do not differentiate the C3 and C4 photosynthetic pathways and neglect the effect [...] Read more.
Remote sensing and process-coupled ecological models are widely used for the simulation of GPP, which plays a key role in estimating and monitoring terrestrial ecosystem productivity. However, most such models do not differentiate the C3 and C4 photosynthetic pathways and neglect the effect of nitrogen content on Vmax and Jmax, leading to considerable bias in the estimation of gross primary productivity (GPP). Here, we developed a model driven by the leaf area index, climate, and atmospheric CO2 concentration to estimate global GPP with a spatial resolution of 0.1° and a temporal interval of 1 day from 2000 to 2022. We validated our model with ground-based GPP measurements at 128 flux tower sites, which yielded an accuracy of 72.3%. We found that the global GPP ranged from 116.4 PgCyear1 to 133.94 PgCyear1 from 2000 to 2022, with an average of 125.93 PgCyear1. We also found that the global GPP showed an increasing trend of 0.548 PgCyear1 during the study period. Further analyses using the structure equation model showed that atmospheric CO2 concentration and air temperature were the main drivers of the global GPP changes, total associations of 0.853 and 0.75, respectively, while precipitation represented a minor but negative contribution to global GPP. Full article
Show Figures

Figure 1

18 pages, 1600 KiB  
Article
Active Fire Clustering and Spatiotemporal Dynamic Models for Forest Fire Management
by Hatef Dastour, Hanif Bhuian, M. Razu Ahmed and Quazi K. Hassan
Fire 2024, 7(10), 355; https://doi.org/10.3390/fire7100355 - 6 Oct 2024
Abstract
Forest fires are increasingly destructive, contributing to significant ecological damage, carbon emissions, and economic losses. Monitoring these fires promptly and accurately, particularly by delineating fire perimeters, is critical for mitigating their impact. Satellite-based remote sensing, especially using active fire products from VIIRS and [...] Read more.
Forest fires are increasingly destructive, contributing to significant ecological damage, carbon emissions, and economic losses. Monitoring these fires promptly and accurately, particularly by delineating fire perimeters, is critical for mitigating their impact. Satellite-based remote sensing, especially using active fire products from VIIRS and MODIS, has proven indispensable for real-time forest fire monitoring. Despite advancements, challenges remain in accurately clustering and delineating fire perimeters in a timely manner, as many existing methods rely on manual processing, resulting in delays. Active fire perimeter (AFP) and Timely Active Fire Progression (TAFP) models were developed which aim to be an automated approach for clustering active fire data points and delineating perimeters. The results demonstrated that the combined dataset achieved the highest matching rate of 85.13% for fire perimeters across all size classes, with a 95.95% clustering accuracy for fires ≥100 ha. However, the accuracy decreased for smaller fires. Overall, 1500 m radii with alpha values of 0.1 were found to be the most effective for fire perimeter delineation, particularly when applied at larger radii. The proposed models can play a critical role in improving operational responses by fire management agencies, helping to mitigate the destructive impact of forest fires more effectively. Full article
(This article belongs to the Topic Application of Remote Sensing in Forest Fire)
Show Figures

Figure 1

25 pages, 41563 KiB  
Article
Estimation, Spatiotemporal Dynamics, and Driving Factors of Grassland Biomass Carbon Storage Based on Machine Learning Methods: A Case Study of the Hulunbuir Grassland
by Qiuying Zhi, Xiaosheng Hu, Ping Wang, Ming Li, Yi Ding, Yuxuan Wu, Tiantian Peng, Wenjie Li, Xiao Guan, Xiaoming Shi and Junsheng Li
Remote Sens. 2024, 16(19), 3709; https://doi.org/10.3390/rs16193709 - 5 Oct 2024
Abstract
Precisely estimating the grassland biomass carbon storage is vital for evaluating grassland carbon sequestration potential and the monitoring and management of grassland resources. With the increasing intensity of climate change (CC) and human activities (HA), it is necessary to explore spatiotemporal variations in [...] Read more.
Precisely estimating the grassland biomass carbon storage is vital for evaluating grassland carbon sequestration potential and the monitoring and management of grassland resources. With the increasing intensity of climate change (CC) and human activities (HA), it is necessary to explore spatiotemporal variations in biomass carbon storage and its response to CC and HA. In this study, we focused on the Hulunbuir Grassland, utilizing sample plots data, MODIS data, environmental factors (terrain, soil, and climate), location factor, and texture characteristics to assess the performance of four machine learning algorithms: random forest, support vector machine, gradient boosting decision tree, and extreme gradient boosting in estimating grassland aboveground biomass (AGB). Based on the optimal model combined with root-shoot ratio data, grassland distribution data, and carbon content coefficients, the spatiotemporal characteristics and driving factors of biomass carbon storage from 2001–2022 were analyzed. The results showed that (1) the random forest achieved the highest prediction accuracy for grassland AGB, making it appropriate for AGB estimation in the Hulunbuir Grassland. (2) The spectral indices were the key variables of the grassland AGB, especially the enhanced vegetation index and difference vegetation index. (3) The 22-year average total biomass (TB) of the study area was 1037.10 gC/m2, of which the 22-year average AGB was 48.73 gC/m2 and 22-year average belowground biomass was 988.37 gC/m2, showing a spatial distribution feature of gradual increase from west to east. (4) From 2001–2022, TB carbon storage showed an insignificant growth trend (p > 0.05). The 22-year average carbon storage of TB was 72.34 ± 18.07 gC. (5) Climate factors were the main driving factors for the spatial pattern of grassland TB carbon density, while the combined effects of CC and HA were the main contributors to the interannual increase in grassland TB carbon density. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

19 pages, 11653 KiB  
Article
Influence of Vegetation Phenology on the Temporal Effect of Crop Fractional Vegetation Cover Derived from Moderate-Resolution Imaging Spectroradiometer Nadir Bidirectional Reflectance Distribution Function–Adjusted Reflectance
by Yinghao Lin, Tingshun Fan, Dong Wang, Kun Cai, Yang Liu, Yuye Wang, Tao Yu and Nianxu Xu
Agriculture 2024, 14(10), 1759; https://doi.org/10.3390/agriculture14101759 - 5 Oct 2024
Abstract
Moderate-Resolution Imaging Spectroradiometer (MODIS) Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) products are being increasingly used for the quantitative remote sensing of vegetation. However, the assumption underlying the MODIS NBAR product’s inversion model—that surface anisotropy remains unchanged over the 16-day retrieval period—may [...] Read more.
Moderate-Resolution Imaging Spectroradiometer (MODIS) Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) products are being increasingly used for the quantitative remote sensing of vegetation. However, the assumption underlying the MODIS NBAR product’s inversion model—that surface anisotropy remains unchanged over the 16-day retrieval period—may be unreliable, especially since the canopy structure of vegetation undergoes stark changes at the start of season (SOS) and the end of season (EOS). Therefore, to investigate the MODIS NBAR product’s temporal effect on the quantitative remote sensing of crops at different stages of the growing seasons, this study selected typical phenological parameters, namely SOS, EOS, and the intervening stable growth of season (SGOS). The PROBA-V bioGEOphysical product Version 3 (GEOV3) Fractional Vegetation Cover (FVC) served as verification data, and the Pearson correlation coefficient (PCC) was used to compare and analyze the retrieval accuracy of FVC derived from the MODIS NBAR product and MODIS Surface Reflectance product. The Anisotropic Flat Index (AFX) was further employed to explore the influence of vegetation type and mixed pixel distribution characteristics on the BRDF shape under different stages of the growing seasons and different FVC; that was then combined with an NDVI spatial distribution map to assess the feasibility of using the reflectance of other characteristic directions besides NBAR for FVC correction. The results revealed the following: (1) Generally, at the SOSs and EOSs, the differences in PCCs before vs. after the NBAR correction mainly ranged from 0 to 0.1. This implies that the accuracy of FVC derived from MODIS NBAR is lower than that derived from MODIS Surface Reflectance. Conversely, during the SGOSs, the differences in PCCs before vs. after the NBAR correction ranged between –0.2 and 0, suggesting the accuracy of FVC derived from MODIS NBAR surpasses that derived from MODIS Surface Reflectance. (2) As vegetation phenology shifts, the ensuing differences in NDVI patterning and AFX can offer auxiliary information for enhanced vegetation classification and interpretation of mixed pixel distribution characteristics, which, when combined with NDVI at characteristic directional reflectance, could enable the accurate retrieval of FVC. Our results provide data support for the BRDF correction timescale effect of various stages of the growing seasons, highlighting the potential importance of considering how they differentially influence the temporal effect of NBAR corrections prior to monitoring vegetation when using the MODIS NBAR product. Full article
Show Figures

Figure 1

23 pages, 8867 KiB  
Article
Synergistic Potential of Optical and Radar Remote Sensing for Snow Cover Monitoring
by Jose-David Hidalgo-Hidalgo, Antonio-Juan Collados-Lara, David Pulido-Velazquez, Steven R. Fassnacht and C. Husillos
Remote Sens. 2024, 16(19), 3705; https://doi.org/10.3390/rs16193705 - 5 Oct 2024
Abstract
This research studies the characteristics of snow-covered area (SCA) from two vastly different sensors: optical (Moderate-Resolution Imaging Spectroradiometer, or MODIS, equipped on board the Terra satellite) and radar (Synthetic Aperture Radar (SAR) on-board Sentinel-1 satellites). The focus are the five mountain ranges of [...] Read more.
This research studies the characteristics of snow-covered area (SCA) from two vastly different sensors: optical (Moderate-Resolution Imaging Spectroradiometer, or MODIS, equipped on board the Terra satellite) and radar (Synthetic Aperture Radar (SAR) on-board Sentinel-1 satellites). The focus are the five mountain ranges of the Iberian Peninsula (Cantabrian System, Central System, Iberian Range, Pyrenees, and Sierra Nevada). The MODIS product was selected to identify SCA dynamics in these ranges using the Probability of Snow Cover Presence Index (PSCPI). In addition, we evaluate the potential advantage of the use of SAR remote sensing to complete optical SCA under cloudy conditions. For this purpose, we utilize the Copernicus High-Resolution Snow and Ice SAR Wet Snow (HRS&I SWS) product. The Pyrenees and the Sierra Nevada showed longer-lasting SCA duration and a higher PSCPI throughout the average year. Moreover, we demonstrate that the latitude gradient has a significant influence on the snowline elevation in the Iberian mountains (R2 ≥ 0.84). In the Iberian mountains, a general negative SCA trend is observed due to the recent climate change impacts, with a particularly pronounced decline in the winter months (December and January). Finally, in the Pyrenees, we found that wet snow detection has high potential for the spatial gap-filling of MODIS SCA in spring, contributing above 27% to the total SCA. Notably, the additional SCA provided in winter is also significant. Based on the results obtained in the Pyrenees, we can conclude that implementing techniques that combine SAR and optical satellite sensors for SCA detection may provide valuable additional SCA data for the other Iberian mountains, in which the radar product is not available. Full article
(This article belongs to the Special Issue Multi-Source Remote Sensing Data in Hydrology and Water Management)
Show Figures

Figure 1

28 pages, 5528 KiB  
Article
Estimating Rootzone Soil Moisture by Fusing Multiple Remote Sensing Products with Machine Learning
by Shukran A. Sahaar and Jeffrey D. Niemann
Remote Sens. 2024, 16(19), 3699; https://doi.org/10.3390/rs16193699 - 4 Oct 2024
Abstract
This study explores machine learning for estimating soil moisture at multiple depths (0–5 cm, 0–10 cm, 0–20 cm, 0–50 cm, and 0–100 cm) across the coterminous United States. A framework is developed that integrates soil moisture from Soil Moisture Active Passive (SMAP), precipitation [...] Read more.
This study explores machine learning for estimating soil moisture at multiple depths (0–5 cm, 0–10 cm, 0–20 cm, 0–50 cm, and 0–100 cm) across the coterminous United States. A framework is developed that integrates soil moisture from Soil Moisture Active Passive (SMAP), precipitation from the Global Precipitation Measurement (GPM), evapotranspiration from the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), vegetation data from the Moderate Resolution Imaging Spectroradiometer (MODIS), soil properties from gridded National Soil Survey Geographic (gNATSGO), and land cover information from the National Land Cover Database (NLCD). Five machine learning algorithms are evaluated including the feed-forward artificial neural network, random forest, extreme gradient boosting (XGBoost), Categorical Boosting, and Light Gradient Boosting Machine. The methods are tested by comparing to in situ soil moisture observations from several national and regional networks. XGBoost exhibits the best performance for estimating soil moisture, achieving higher correlation coefficients (ranging from 0.76 at 0–5 cm depth to 0.86 at 0–100 cm depth), lower root mean squared errors (from 0.024 cm3/cm3 at 0–100 cm depth to 0.039 cm3/cm3 at 0–5 cm depth), higher Nash–Sutcliffe Efficiencies (from 0.551 at 0–5 cm depth to 0.694 at 0–100 cm depth), and higher Kling–Gupta Efficiencies (0.511 at 0–5 cm depth to 0.696 at 0–100 cm depth). Additionally, XGBoost outperforms the SMAP Level 4 product in representing the time series of soil moisture for the networks. Key factors influencing the soil moisture estimation are elevation, clay content, aridity index, and antecedent soil moisture derived from SMAP. Full article
Show Figures

Graphical abstract

19 pages, 3356 KiB  
Article
The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application
by Yijie Ren, Binglong Chen, Lingbing Bu, Gen Hu, Jingyi Fang and Pasindu Liyanage
Remote Sens. 2024, 16(19), 3689; https://doi.org/10.3390/rs16193689 - 3 Oct 2024
Abstract
In August 2022, China successfully launched the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS). The primary payload of this satellite is an onboard multi-beam lidar system, which is capable of observing aerosol optical parameters on a global scale. This pioneering study used the Fernald [...] Read more.
In August 2022, China successfully launched the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS). The primary payload of this satellite is an onboard multi-beam lidar system, which is capable of observing aerosol optical parameters on a global scale. This pioneering study used the Fernald forward integration method to retrieve aerosol optical parameters based on the Level 2 data of the TECIS, including the aerosol depolarization ratio, aerosol backscatter coefficient, aerosol extinction coefficient, and aerosol optical depth (AOD). The validation of the TECIS-retrieved aerosol optical parameters was conducted using CALIPSO Level 1 and Level 2 data, with relative errors within 30%. A comparison of the AOD retrieved from the TECIS with the AERONET and MODIS AOD products yielded correlation coefficients greater than 0.7 and 0.6, respectively. The relative error of aerosol optical parameter profiles compared with ground-based measurements for CALIPSO was within 40%. Additionally, the correlation coefficients R2 with MODIS and AERONET AOD were approximately between 0.5 and 0.7, indicating the high accuracy of TECIS retrievals. Utilizing the TECIS retrieval results, combined with ground air quality monitoring data and HYSPLIT outcomes, a typical dust transport event was analyzed from 2 to 7 April 2023. The results indicate that dust was transported from the Taklamakan Desert in Xinjiang, China, to Henan and Anhui provinces, with a gradual decrease in the aerosol depolarization ratio and backscatter coefficient during the transport process, causing varying degrees of pollution in the downstream regions. This research verifies the accuracy of the retrieval algorithm through multi-source data comparison and demonstrates the potential application of the TECIS in the field of aerosol science for the first time. It enables the fine-scale regional monitoring of atmospheric aerosols and provides reliable data support for the three-dimensional distribution of global aerosols and related scientific applications. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

Back to TopTop