Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = Marek’s disease vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5072 KiB  
Article
Construction of Recombinant Marek’s Disease Virus Co-Expressing VP1 and VP2 of Chicken Infectious Anemia Virus
by Kai Li, Yongzhen Liu, Changjun Liu, Yanping Zhang, Hongyu Cui, Xiaole Qi, Jiayong Zhang, Jia Xu, Suyan Wang, Yuntong Chen, Yulu Duan, Yulong Gao and Xiaomei Wang
Vaccines 2024, 12(9), 1047; https://doi.org/10.3390/vaccines12091047 - 13 Sep 2024
Viewed by 632
Abstract
The chicken infectious anemia virus (CIAV) has been reported in major poultry-producing countries and poses a significant threat to the poultry industry worldwide. In this study, two Marek’s disease virus (MDV) recombinants, rMDV-CIAV-1 and rMDV-CIAV-2, were generated by inserting the CIAV VP1 and [...] Read more.
The chicken infectious anemia virus (CIAV) has been reported in major poultry-producing countries and poses a significant threat to the poultry industry worldwide. In this study, two Marek’s disease virus (MDV) recombinants, rMDV-CIAV-1 and rMDV-CIAV-2, were generated by inserting the CIAV VP1 and VP2 genes into the MDV vaccine strain 814 at the US2 site using the fosmid-based rescue system. For rMDV-CIAV-1, an internal ribosome entry site was inserted between VP1 and VP2, so that both proteins were produced from a single open reading frame. In rMDV-CIAV-2, VP1 and VP2 were cloned into different open reading frames and inserted into the MDV genome. The recombinant viruses simultaneously expressed VP1 and VP2 in infected chicken embryo fibroblasts and exhibited growth kinetics similar to those of the parent MDV. The two recombinant viruses induced antibodies against CIAV in chickens. A single dose of the recombinant viruses provided strong protection against CIAV-induced anemia in chickens. These recombinant VP1- and VP2-expressing MDVs are potential vaccines against CIAV in chickens. Full article
(This article belongs to the Special Issue Vaccines for Chicken)
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
A Marek’s Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens
by Fatemeh Fazel, Ayumi Matsuyama-Kato, Mohammadali Alizadeh, Jiayu Zheng, Charlotte Fletcher, Bhavya Gupta, Myles St-Denis, Nitish Boodhoo and Shayan Sharif
Viruses 2024, 16(7), 1156; https://doi.org/10.3390/v16071156 - 18 Jul 2024
Viewed by 1220
Abstract
Marek’s disease (MD), caused by the Marek’s disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate [...] Read more.
Marek’s disease (MD), caused by the Marek’s disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens. Full article
(This article belongs to the Special Issue Marek's Disease Virus)
Show Figures

Figure 1

16 pages, 2154 KiB  
Article
Temporal Changes in Splenic Immune Cell Populations following Infection with a Very Virulent plus MDV in Commercial Meat-Type Chickens
by Nagwa Khaled, Raveendra R. Kulkarni, Tobias Käser and Isabel M. Gimeno
Viruses 2024, 16(7), 1092; https://doi.org/10.3390/v16071092 - 6 Jul 2024
Viewed by 939
Abstract
Marek’s disease virus (MDV) can cause severe immunosuppression in chickens. Our previous study showed that infection with very virulent plus (vv+) MDV strains of one-day-old commercial meat-type chickens possessing maternal antibodies against MDV resulted in severe depletion of splenocytes at 28–30 days of [...] Read more.
Marek’s disease virus (MDV) can cause severe immunosuppression in chickens. Our previous study showed that infection with very virulent plus (vv+) MDV strains of one-day-old commercial meat-type chickens possessing maternal antibodies against MDV resulted in severe depletion of splenocytes at 28–30 days of age. In the present study, we have investigated the effect of vv+MDV strain 686 on splenic immunophenotypes at 6, 20, and 30 days post-infection (dpi). Both live and dead cells were analyzed, and the data were statistically compared to the uninfected control. The results revealed a decrease in the total live cell population starting on day 20, primarily affecting B cells, CD8β+, and gamma delta (γδ) T cells, while the frequencies of both live and dead CD3+ and CD4+ T cells were increased. The MHC-I expression of CD3+ and CD4+ T cells was higher at 20 and 30 dpi, while the expression of MHC-II on these cells was downregulated at 6 dpi but was upregulated at 30 dpi. Collectively, these results suggest that maternal antibodies seem to delay the negative effects of vv+MDV on the splenic lymphoid populations, albeit being non-protective. Our results emphasize the importance of MD vaccination in vv+MDV endemic areas. Full article
(This article belongs to the Special Issue Marek's Disease Virus)
Show Figures

Figure 1

16 pages, 7123 KiB  
Article
A New Dual Fluorescence Method for Rapid Detection of Infectious Bronchitis Virus at Constant Temperature
by Xinheng Zhang, Xiuhong Wu, Keyu Feng, Qian Wang and Qingmei Xie
Microorganisms 2024, 12(7), 1315; https://doi.org/10.3390/microorganisms12071315 - 27 Jun 2024
Viewed by 877
Abstract
Infectious bronchitis virus (IBV) causes infectious bronchitis in chicken, an acute, highly contagious respiratory infection. Because of genetic mutations and recombination, IBV forms many subtypes, which makes it difficult to treat the disease and apply commercial vaccines. Therefore, to detect IBV in time [...] Read more.
Infectious bronchitis virus (IBV) causes infectious bronchitis in chicken, an acute, highly contagious respiratory infection. Because of genetic mutations and recombination, IBV forms many subtypes, which makes it difficult to treat the disease and apply commercial vaccines. Therefore, to detect IBV in time and stop the virus from spreading, a novel and convenient IBV detection technology based on reverse transcription recombinase-aided amplification (RT-RAA) was established in this study. According to the S1 gene of IBV CH I–V and Mass genotypes and S1 gene of IBV CH VI genotype, a set of optimal primers were designed and selected to establish a real-time dual fluorescence RT-RAA method. The lowest detection line was 10 copies/μL of RNA molecules and the method exhibited no cross-reactivity with avian reticuloendotheliosis virus (REV), infectious bursal disease virus (IBDV), avian leukosis virus (ALV), Newcastle disease virus (NDV), chicken infectious anemia virus (CIAV), infectious laryngotracheitis virus (ILTV), Marek’s disease virus (MDV), and H9N2 avian influenza virus (H9N2), demonstrating high specificity. When compared to qPCR detection results, our method achieved a sensitivity of 96.67%, a specificity of 90%, and a Kappa value of 0.87 for the IBV CH I–V and Mass genotypes, and achieved a sensitivity of 100%, a specificity of 97.73%, and a Kappa value of 0.91 for the IBV CH VI genotype. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
Show Figures

Figure 1

12 pages, 4594 KiB  
Article
Dynamic Changes in Viral Loads during Co-Infection with a Recombinant Turkey Herpesvirus Vector Vaccine and Very Virulent Marek’s Disease Virus In Vivo
by Tian Ding, Min Xiong, Yang Xu, Xing Pu, Qin-sen Wang, Mo-ru Xu, Hong-xia Shao, Kun Qian, Hai-bin Dang and Ai-jian Qin
Viruses 2024, 16(7), 1042; https://doi.org/10.3390/v16071042 - 27 Jun 2024
Viewed by 791
Abstract
Marek’s disease (MD), caused by the Marek’s disease virus (MDV), is a common infectious tumor disease in chickens and was the first neoplastic disease preventable by vaccination. However, the vaccine cannot completely prevent virulent MDV infections, allowing both the vaccine and virulent MDV [...] Read more.
Marek’s disease (MD), caused by the Marek’s disease virus (MDV), is a common infectious tumor disease in chickens and was the first neoplastic disease preventable by vaccination. However, the vaccine cannot completely prevent virulent MDV infections, allowing both the vaccine and virulent MDV to coexist in the same chicken for extended periods. This study aims to investigate the changes in viral load of the very virulent strain Md5 and the rHVT-IBD vaccine in different chicken tissues using a real-time PCR assay. The results showed that the rHVT-IBD vaccine significantly reduced the viral load of MDV-Md5 in different organs, while the load of rHVT-IBD was significantly increased when co-infected with Md5. Additionally, co-infection with Md5 and rHVT-IBD in chickens not only changed the original viral load of both viruses but also affected the positive rate of Md5 at 14 days post-vaccination. The positive rate decreased from 100% to 14.29% (feather tips), 0% (skin), 33.33% (liver), 16.67% (spleen), 28.57% (thymus), 33.33% (bursa), and 66.67% (PBL), respectively. This study enhances our understanding of the interactions between HVT vector vaccines and very virulent MDV in chickens and provides valuable insights for the future development of MD vaccines. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

27 pages, 1311 KiB  
Review
Current Status of Poultry Recombinant Virus Vector Vaccine Development
by Haoran Wang, Jiaxin Tian, Jing Zhao, Ye Zhao, Huiming Yang and Guozhong Zhang
Vaccines 2024, 12(6), 630; https://doi.org/10.3390/vaccines12060630 - 6 Jun 2024
Viewed by 1823
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying [...] Read more.
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek’s disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy. Full article
Show Figures

Figure 1

14 pages, 3743 KiB  
Article
mRNA Splicing of UL44 and Secretion of Alphaherpesvirinae Glycoprotein C (gC) Is Conserved among the Mardiviruses
by Huai Xu, Widaliz Vega-Rodriguez, Valeria Campos and Keith W. Jarosinski
Viruses 2024, 16(5), 782; https://doi.org/10.3390/v16050782 - 15 May 2024
Viewed by 1074
Abstract
Marek’s disease (MD), caused by gallid alphaherpesvirus 2 (GaAHV2) or Marek’s disease herpesvirus (MDV), is a devastating disease in chickens characterized by the development of lymphomas throughout the body. Vaccine strains used against MD include gallid alphaherpesvirus 3 (GaAHV3), a non-oncogenic chicken alphaherpesvirus [...] Read more.
Marek’s disease (MD), caused by gallid alphaherpesvirus 2 (GaAHV2) or Marek’s disease herpesvirus (MDV), is a devastating disease in chickens characterized by the development of lymphomas throughout the body. Vaccine strains used against MD include gallid alphaherpesvirus 3 (GaAHV3), a non-oncogenic chicken alphaherpesvirus homologous to MDV, and homologous meleagrid alphaherpesvirus 1 (MeAHV1) or turkey herpesvirus (HVT). Previous work has shown most of the MDV gC produced during in vitro passage is secreted into the media of infected cells although the predicted protein contains a transmembrane domain. We formerly identified two alternatively spliced gC mRNAs that are secreted during MDV replication in vitro, termed gC104 and gC145 based on the size of the intron removed for each UL44 (gC) transcript. Since gC is conserved within the Alphaherpesvirinae subfamily, we hypothesized GaAHV3 (strain 301B/1) and HVT also secrete gC due to mRNA splicing. To address this, we collected media from 301B/1- and HVT-infected cell cultures and used Western blot analyses and determined that both 301B/1 and HVT produced secreted gC. Next, we extracted RNAs from 301B/1- and HVT-infected cell cultures and chicken feather follicle epithelial (FFE) skin cells. RT-PCR analyses confirmed one splicing variant for 301B/1 gC (gC104) and two variants for HVT gC (gC104 and gC145). Interestingly, the splicing between all three viruses was remarkably conserved. Further analysis of predicted and validated mRNA splicing donor, branch point (BP), and acceptor sites suggested single nucleotide polymorphisms (SNPs) within the 301B/1 UL44 transcript sequence resulted in no gC145 being produced. However, modification of the 301B/1 gC145 donor, BP, and acceptor sites to the MDV UL44 sequences did not result in gC145 mRNA splice variant, suggesting mRNA splicing is more complex than originally hypothesized. In all, our results show that mRNA splicing of avian herpesviruses is conserved and this information may be important in developing the next generation of MD vaccines or therapies to block transmission. Full article
(This article belongs to the Special Issue Marek's Disease Virus)
Show Figures

Figure 1

17 pages, 321 KiB  
Article
Effects of the Marek’s Disease Vaccine on the Performance, Meat Yield, and Incidence of Woody Breast Myopathy in Ross 708 Broilers When Administered Alone or in Conjunction with In ovo and Dietary Supplemental 25-Hydroxycholecalciferol
by Seyed Abolghasem Fatemi, Ayoub Mousstaaid, Christopher J. Williams, Joshua Deines, Sabin Poudel, Ishab Poudel, Elianna Rice Walters, April Waguespack Levy and Edgar David Peebles
Animals 2024, 14(9), 1308; https://doi.org/10.3390/ani14091308 - 26 Apr 2024
Cited by 2 | Viewed by 1365
Abstract
The effects of the Marek’s disease vaccine (MDV) on the live performance, breast meat yield, and incidence of woody breast myopathy (WBM) of Ross 708 broilers were investigated when administered alone or in conjunction with in ovo and dietary supplemental 25-hydroxycholecalciferol (25OHD3 [...] Read more.
The effects of the Marek’s disease vaccine (MDV) on the live performance, breast meat yield, and incidence of woody breast myopathy (WBM) of Ross 708 broilers were investigated when administered alone or in conjunction with in ovo and dietary supplemental 25-hydroxycholecalciferol (25OHD3). At 18 d of incubation (doi), four in ovo injection treatments were randomly assigned to live embryonated Ross 708 broiler hatching eggs: (1) non-injected; (2) commercial MDV alone; or MDV containing either (3) 1.2 or (4) 2.4 μg of 25OHD3. An Inovoject multi-egg injector was used to inject a 50 μL solution volume into each egg. The birds were provided a commercial diet that contained 250 IU of cholecalciferol/kg of feed (control) or a commercial diet that was supplemented with an additional 2760 IU of 25OHD3/kg of feed (HyD-diet). In the growout period, 14 male broilers were placed in each of 48 floor pens resulting 6 replicated pens per in ovo x dietary treatment combination. Live performance variable were measured at each dietary phases from 0 to 14, 15 to 28, and 29 to 40 d of age (doa). At 14 and 40 doa, pectoralis major (P. major) and pectoralis minor (P. minor) muscles were determined for one bird within each of the six replicate pens. At 41 doa, WBM incidence was determined. No significant main or interaction effects occurred for WBM among the dietary or in ovo injection treatments. However, in response to in ovo 25OHD3 supplementation, BW and BWG in the 29 to 40 doa period and BWG and FCR in the 0 to 40 doa period improved. In addition, at 40 and 41 doa, breast meat yield increased in response to in ovo and dietary 25OHD3 supplementation. Future research is needed to determine the possible reasons that may have been involved in the aforementioned improvements. Full article
(This article belongs to the Collection Current Advances in Poultry Research)
20 pages, 1992 KiB  
Article
Epigenetic Factor MicroRNAs Likely Mediate Vaccine Protection Efficacy against Lymphomas in Response to Tumor Virus Infection in Chickens through Target Gene Involved Signaling Pathways
by Lei Zhang, Qingmei Xie, Shuang Chang, Yongxing Ai, Kunzhe Dong and Huanmin Zhang
Vet. Sci. 2024, 11(4), 139; https://doi.org/10.3390/vetsci11040139 - 22 Mar 2024
Viewed by 1810
Abstract
Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek’s disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD [...] Read more.
Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek’s disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-β, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways. Full article
Show Figures

Figure 1

7 pages, 457 KiB  
Communication
Vitamin Compatibility with the Marek’s Disease Vaccine
by Seyed Abolghasem Fatemi, Christopher J. Williams, Joshua Deines and Edgar David Peebles
Poultry 2023, 2(4), 442-448; https://doi.org/10.3390/poultry2040033 - 25 Sep 2023
Cited by 3 | Viewed by 1381
Abstract
In ovo injection of the Marek’s disease (MD) vaccine (MDV) has been widely practiced in commercial US hatcheries. However, the MDV is very sensitive and may not be compatible with some nutrients when administered together by in ovo injection. When individually administered by [...] Read more.
In ovo injection of the Marek’s disease (MD) vaccine (MDV) has been widely practiced in commercial US hatcheries. However, the MDV is very sensitive and may not be compatible with some nutrients when administered together by in ovo injection. When individually administered by in ovo injection, L-Ascorbic acid (L-AA) and 25-hydroxyvitamin D3 (25OHD3) have previously exhibited very promising results on the post-hatch physiological and immunological characteristics of broilers subjected to stressful commercial conditions. However, the compatibility of the MDV with these vitamins has not been previously explored. Their compatibility must first be established before their combined administration by in ovo injection can be considered. Therefore, the objective in this study was to determine the compatibility of the MDV with various levels of 25OHD3 or L-AA. The treatments employed were MDV-alone, MDV in combination with 0.6 (low) or 2.4 (high) μg doses of 25OHD3, or MDV in combination with 1.2 (low) or 12 (high) mg doses of L-AA. The live and dead ratio of primary chick embryo fibroblast cells infected by the MD virus (CEF-MDV) in each treatment was determined every 30 min for 2 h. The L-AA at both the low and high doses resulted in a 70% death of CEF-MDV within 1 h, but either dose of the 25OHD3 exhibited only an approximate 5% lower CEF-MDV survival as compared to those in the MDV-alone treatment. Therefore, it is suggested that the two designated doses of 25OHD3 have the potential to be effectively combined with the MDV for subsequent administration by in ovo injection. Full article
Show Figures

Figure 1

14 pages, 6184 KiB  
Article
Identification of Disalicyloyl Curcumin as a Potential DNA Polymerase Inhibitor for Marek’s Disease Herpesvirus: A Computational Study Using Virtual Screening and Molecular Dynamics Simulations
by Aziza Cherif, Zarrin Basharat, Muhammad Yaseen, Mashooq Ahmad Bhat, Imad Uddin, Noha I. Ziedan, Fazal Mabood, Najla Sadfi-Zouaoui and Abdelmonaem Messaoudi
Molecules 2023, 28(18), 6576; https://doi.org/10.3390/molecules28186576 - 12 Sep 2023
Cited by 1 | Viewed by 1601
Abstract
Marek’s disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective [...] Read more.
Marek’s disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of −12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

20 pages, 3644 KiB  
Article
Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek’s Disease Virus
by Nitish Boodhoo, Ayumi Matsuyama-Kato, Sugandha Raj, Fatemeh Fazel, Myles St-Denis and Shayan Sharif
Viruses 2023, 15(8), 1633; https://doi.org/10.3390/v15081633 - 27 Jul 2023
Cited by 3 | Viewed by 1410
Abstract
The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek’s disease virus (MDV). We demonstrate [...] Read more.
The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek’s disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens. To elaborate on the role of chIL-17A in MD, the full-length chIL-17A coding sequence was cloned into a pCDNA3.1-V5/HIS TOPO plasmid. The effect of treatment with pcDNA:chIL-17A plasmid in combination with a vaccine (HVT) and very virulent(vv)MDV challenge or vvMDV infection was assessed. In combination with HVT vaccination, chickens that were inoculated with the pcDNA:chIL-17A plasmid had reduced tumor incidence compared to chickens that received the empty vector control or that were vaccinated only (66.6% in the HVT + empty vector group and 73.33% in HVT group versus 53.3% in the HVT + pcDNA:chIL-17A). Further analysis demonstrated that the chickens that received the HVT vaccine and/or plasmid expressing IL-17A had lower MDV-Meq transcripts in the spleen. In conclusion, chIL-17A can influence the immunity conferred by HVT vaccination against MDV infection in chickens. Full article
Show Figures

Figure 1

16 pages, 1749 KiB  
Article
Emerging Hypervirulent Marek’s Disease Virus Variants Significantly Overcome Protection Conferred by Commercial Vaccines
by Jin-Ling Liu, Man Teng, Lu-Ping Zheng, Feng-Xia Zhu, Shu-Xue Ma, Lin-Yan Li, Zhi-Hui Zhang, Shu-Jun Chai, Yongxiu Yao and Jun Luo
Viruses 2023, 15(7), 1434; https://doi.org/10.3390/v15071434 - 25 Jun 2023
Cited by 8 | Viewed by 2181
Abstract
As one of the most important avian immunosuppressive and neoplastic diseases, Marek’s disease (MD), caused by oncogenic Marek’s disease virus (MDV), has caused huge economic losses worldwide over the past five decades. In recent years, MD outbreaks have occurred frequently in MD-vaccinated chicken [...] Read more.
As one of the most important avian immunosuppressive and neoplastic diseases, Marek’s disease (MD), caused by oncogenic Marek’s disease virus (MDV), has caused huge economic losses worldwide over the past five decades. In recent years, MD outbreaks have occurred frequently in MD-vaccinated chicken flocks, but the key pathogenic determinants and influencing factors remain unclear. Herein, we analyzed the pathogenicity of seven newly isolated MDV strains from tumor-bearing chickens in China and found that all of them were pathogenic to chicken hosts, among which four MDV isolates, SDCW01, HNXZ05, HNSQ05 and HNSQ01, were considered to be hypervirulent MDV (HV-MDV) strains. At 73 days of the virus infection experiment, the cumulative incidences of MD were 100%, 93.3%, 90% and 100%, with mortalities of 83.3%, 73.3%, 60% and 86.7%, respectively, for the four viruses. The gross occurrences of tumors were 50%, 33.3%, 30% and 63.3%, respectively, accompanied by significant hepatosplenomegaly and serious atrophy of the immune organs. Furthermore, the immune protection effects of four commercial MD vaccines against SDCW01, CVI988, HVT, CVI988+HVT, and 814 were explored. Unexpectedly, during the 67 days of post-virus challenge, the protection indices (PIs) of these four MD vaccines were only 46.2%, 38.5%, 50%, and 28%, respectively, and the birds that received the monovalent CVI988 or HVT still developed tumors with cumulative incidences of 7.7% and 11.5%, respectively. To our knowledge, this is the first demonstration of the simultaneous comparison of the immune protection efficacy of multiple commercial MD vaccines with different vaccine strains. Our study revealed that the HV-MDV variants circulating in China could significantly break through the immune protection of the classical MD vaccines currently widely used. For future work, there is an urgent need to develop novel, more effective MD vaccines for tackling the new challenge of emerging HV-MDV strains or variants for the sustainable control of MD. Full article
Show Figures

Figure 1

16 pages, 1552 KiB  
Article
Differences in Pathogenicity and Vaccine Resistance Discovered between Two Epidemic Strains of Marek’s Disease Virus in China
by Zheng-Hao Yu, Yan-Ping Zhang, Xing-Ge Lan, Ya-Nan Wang, Rong-Rong Guo, Kai Li, Li Gao, Xiao-Le Qi, Hong-Yu Cui, Xiao-Mei Wang, Yu-Long Gao and Chang-Jun Liu
Viruses 2023, 15(4), 945; https://doi.org/10.3390/v15040945 - 11 Apr 2023
Cited by 2 | Viewed by 1975
Abstract
Despite highly effective vaccines, Marek’s disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 [...] Read more.
Despite highly effective vaccines, Marek’s disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain’s infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-β and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China. Full article
Show Figures

Figure 1

18 pages, 4464 KiB  
Article
Role of T Cells in Vaccine-Mediated Immunity against Marek’s Disease
by Mohammad Heidari, Huanmin Zhang, Lakshmi T Sunkara and Syed Mudasir Ahmad
Viruses 2023, 15(3), 648; https://doi.org/10.3390/v15030648 - 28 Feb 2023
Cited by 4 | Viewed by 2199
Abstract
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and [...] Read more.
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development. Full article
(This article belongs to the Special Issue Marek’s Disease Virus)
Show Figures

Figure 1

Back to TopTop