Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (386)

Search Parameters:
Keywords = NCEP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14457 KiB  
Article
Variations of Planetary Wave Activity in the Lower Stratosphere in February as a Predictor of Ozone Depletion in the Arctic in March
by Pavel Vargin, Andrey Koval, Vladimir Guryanov, Eugene Volodin and Eugene Rozanov
Atmosphere 2024, 15(10), 1237; https://doi.org/10.3390/atmos15101237 - 16 Oct 2024
Viewed by 354
Abstract
This study is dedicated to the investigation of the relationship between the wave activity in February and temperature variations in the Arctic lower stratosphere in March. To study this relationship, the correlation coefficients (CCs) between the minimum temperature of the Arctic lower stratosphere [...] Read more.
This study is dedicated to the investigation of the relationship between the wave activity in February and temperature variations in the Arctic lower stratosphere in March. To study this relationship, the correlation coefficients (CCs) between the minimum temperature of the Arctic lower stratosphere in March (Tmin) and the amplitude of the planetary wave with zonal number 1 (PW1) in February were calculated. Tmin determines the conditions for the formation of polar stratospheric clouds (PSCs) following the chemical destruction of the ozone layer. The NCEP and ERA5 reanalysis data and the modern and future climate simulations of the Earth system models INM CM5 and SOCOLv4 were employed. It is shown that the maximum significant CC value between Tmin at 70 hPa in the polar region in March and the amplitude of the PW1 in February in the reanalysis data in the lower stratosphere is 0.67 at the pressure level of 200 hPa. The CCs calculated using the model data are characterized by maximum values of ~0.5, also near the same pressure level. Thus, it is demonstrated that the change in the planetary wave activity in the lower extratropical stratosphere in February can be one of the predictors of the Tmin. For further analysis of the dynamic structure in the lower stratosphere, composites of 10 seasons with the lowest and highest Tmin of the Arctic lower stratosphere in March were assembled. For these composites, differences in the vertical distribution and total ozone content, surface temperature, and residual meridional circulation (RMC) were considered, and features of the spatial distribution of wave activity fluxes were investigated. The obtained results may be useful for the development of forecasting of the Arctic winter stratosphere circulation, especially for the late winter season, when substantial ozone depletion occurs in some years. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

19 pages, 10069 KiB  
Article
Simulated Directional Wave Spectra of the Wind Sea and Swell under Typhoon Mangkhut
by Yu Yan, Mengxi Hu, Yugen Ni and Chunhua Qiu
Atmosphere 2024, 15(10), 1174; https://doi.org/10.3390/atmos15101174 - 30 Sep 2024
Viewed by 337
Abstract
A third-generation wave model is driven by the synthetic wind field combined with the revised Holland wind and surface wind product from the National Centers for Environmental Prediction (NCEP). The temporal and spatial characteristics of the wind waves and swell during the typhoon [...] Read more.
A third-generation wave model is driven by the synthetic wind field combined with the revised Holland wind and surface wind product from the National Centers for Environmental Prediction (NCEP). The temporal and spatial characteristics of the wind waves and swell during the typhoon are studied, as well as the responses of their wave energy spectra to the source terms. The results show that the typhoon waves have a more complicated asymmetric structure than the wind field, and the maximum significant wave height is always located on the right side of the direction along which the typhoon is moving, where wind waves are dominant, due to the extended fetch. The nonlinear wave–wave interaction helps to redistribute the energy of the wind seas at a high frequency to the remotely generated swells at a low frequency, ensuring that the typhoon wave’s energy spectrum remains unimodal. This process occurs in regions without extended fetch, and a similar continued downshift in frequency as the wave–wave interaction occurs for the wind input as well when the waves outrun the typhoon, due to the nonlinear coupling between the wind and growing swells. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

19 pages, 1772 KiB  
Article
The Role of Paraclinical Investigations in Detecting Inflammation in Children and Adolescents with Obesity and Metabolic Syndrome
by Mihaela-Andreea Podeanu, Ștefănița Bianca Vintilescu, Claudiu Marinel Ionele, Raluca Elena Sandu, Carmen Elena Niculescu, Mirela-Marinela Florescu and Mioara Desdemona Stepan
Life 2024, 14(9), 1206; https://doi.org/10.3390/life14091206 - 23 Sep 2024
Viewed by 710
Abstract
Obesity is linked to the increasing prevalence of metabolic syndrome (MetS), even among the pediatric population. Some inflammatory and cardioembolic indexes derived from routine laboratory tests have captivated the attention of the medical community. Objectives: The aim of our study was to evaluate [...] Read more.
Obesity is linked to the increasing prevalence of metabolic syndrome (MetS), even among the pediatric population. Some inflammatory and cardioembolic indexes derived from routine laboratory tests have captivated the attention of the medical community. Objectives: The aim of our study was to evaluate whether these markers are effective in distinguishing varying degrees of obesity and MetS in children and adolescents. Methods: We conducted a retrospective study. A total of 71 children and adolescents, aged between 6 and 16, were included in the study. Among them, 5 were overweight, 35 had obesity, and 31 had severe obesity. According to the NCEP ATP III criteria, 32 individuals had Metabolic Syndrome (MetS), while 39 did not have MetS. Results: The MetS positive group had higher values of TG/HDL-C (p < 0.001), TC/HDL-C (p < 0.001), MHR (p = 0.015), LHR (p = 0.001), NHR (p = 0.001), atherogenic index of plasma (p < 0.001), and PHR (p < 0.001). ESR, NLR, PLR, and SII did not progressively increase with the number of MetS criteria. The ROC curve analysis demonstrated that markers such as TG/HDL-C, the atherogenic index of plasma, TC/HDL-C, LHR, NHR, and PHR were effective in identifying MetS in children and adolescents with obesity. Conclusions: In conclusion, we determined that some novel inflammatory and cardioembolic indexes are useful in assessing MetS and obesity in children and adolescents. Full article
Show Figures

Figure 1

22 pages, 1890 KiB  
Article
Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression
by Pooja Singh, Asaad Y. Shamseldin, Bruce W. Melville and Liam Wotherspoon
Hydrology 2024, 11(9), 144; https://doi.org/10.3390/hydrology11090144 - 10 Sep 2024
Viewed by 624
Abstract
This paper applied the fuzzy function approach, combined with the ridge regression model, to produce daily rainfall projections from large-scale climate variables. This study developed a statistical downscaling model based on principal components, c-means fuzzy clustering, Volterra series, and ridge regression. The model [...] Read more.
This paper applied the fuzzy function approach, combined with the ridge regression model, to produce daily rainfall projections from large-scale climate variables. This study developed a statistical downscaling model based on principal components, c-means fuzzy clustering, Volterra series, and ridge regression. The model is known, hereafter as SDC2R2. In the developed downscaling model, the use of ridge regression, instead of multiple linear regression, is proposed to downscale daily rainfall with wide range (WR) predictors. The WR predictors were applied to sufficiently incorporate climate change signals. The developed model also captured the non-linear interactions of the climate variables by applying the transformation of Volterra series realization over WR predictors. This transformation was performed by applying principal components as orthogonal filters. Further, these principal components were clustered by using c-means clustering and non-linear transformations were applied on these membership functions, to improve the prediction ability of the model. The reanalysis of climate data from the National Centres for Environmental Prediction (NCEP) was used to develop the model and was validated by using the Global Climate Model (GCM) for four locations in the Manawatu River basin. The developed model was used to obtain future daily rainfall projections from three Representative Concentrative Pathways (RCP 2.6, RCP 4.5, and RCP 8.5) scenarios from the Canadian Earth System Model (CanESM2) GCM. The performance of the model was compared with a widely used statistical downscaling model (SDSM). It was observed that the model performed better than SDSM in downscaling rainfall on a daily basis. Every scenario indicated that there is a probability of obtaining high future rainfall frequency. The results of this study provide valuable information for decision-makers since climate change may potentially impact the Manawatu basin. Full article
Show Figures

Figure 1

9 pages, 571 KiB  
Article
The Association between Diet Quality and Metabolic Syndrome among Older African American Women
by Alex Grant, Chiranjeev Dash and Lucile L. Adams-Campbell
Nutrients 2024, 16(17), 3040; https://doi.org/10.3390/nu16173040 - 9 Sep 2024
Viewed by 992
Abstract
Diet is a modifiable lifestyle factor that could impact the development of Metabolic Syndrome (MetS) and its components. MetS prevalence is high and diet quality is suboptimal among older African American women. MetS has been associated with many individual food groups, however, emerging [...] Read more.
Diet is a modifiable lifestyle factor that could impact the development of Metabolic Syndrome (MetS) and its components. MetS prevalence is high and diet quality is suboptimal among older African American women. MetS has been associated with many individual food groups, however, emerging research suggests that analyzing overall diet quality provides insight into the synergistic effects of food groups on health outcomes. In the current cross-sectional study, we examined the relationship between diet quality and MetS, and investigated associations between diet quality and MetS components among older African American women. This study was based on 357 African American women between 45 and 65 years from the NHANES 2011–2018 datasets. This analysis utilized the NCEP ATP III (2001) criteria for women to diagnose MetS. MetS was dichotomized in addition to a MetS z-score being calculated for each participant using a sex- and race-specific equation. Participants’ diet quality was measured using the HEI-2015. Linear and logistic regressions were performed to assess the association between HEI-2015 diet quality and metabolic syndrome and its components. 65% of African American women aged 45–65 in the NHANES 2011–2018 had MetS. Study participants had an average HEI-2015 score of 55.4 out of 100. As HEI-2015 quartiles increased, the mean MetS z-score decreased (p-value: 0.0011). Age-adjusted models demonstrated statistically significant inverse relationships between HEI-2015 and waist circumference (β: −0.217; 95% CI: −0.372, −0.063), systolic blood pressure (β: −0.215; 95% CI: −0.359, −0.072), blood glucose (β: −0.344; 95% CI: −0.681, −0.0066), and triglycerides (β: −0.652; 95% CI: −1.05, −0.251). Significant associations could not be established between MetS and diet quality, assessed with the HEI-2015, among African American women aged 45–65 enrolled in NHANES 2011–2018. However, statistically significant relationships were observed between increased HEI-2015 scores and lowered risks of abdominal obesity, hyperglycemia, hypertriglyceridemia, and systolic hypertension. The findings of this study affirm the necessity of public health strategies to improve diet quality among African-American women which could help to reduce their risks of chronic diseases. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

26 pages, 9488 KiB  
Article
The Implementation of Cloud and Vertical Velocity Relocation/Cycling System in the Vortex Initialization of the HAFS
by JungHoon Shin, Zhan Zhang, Bin Liu, Yonghui Weng, Qingfu Liu, Avichal Mehra and Vijay Tallapragada
Atmosphere 2024, 15(8), 1006; https://doi.org/10.3390/atmos15081006 - 20 Aug 2024
Viewed by 419
Abstract
The first version operational Hurricane Analysis and Forecast System (HAFS) implemented the Vortex Initialization (VI) technique to optimize tropical cyclone structure and intensity, which was adopted from the Hurricane Weather Research and Forecasting system (HWRF) and does not initialize cloud hydrometeors and vertical [...] Read more.
The first version operational Hurricane Analysis and Forecast System (HAFS) implemented the Vortex Initialization (VI) technique to optimize tropical cyclone structure and intensity, which was adopted from the Hurricane Weather Research and Forecasting system (HWRF) and does not initialize cloud hydrometeors and vertical velocity. This limitation in the VI caused the inconsistency issue between hurricane vortex and its cloud in the model initial condition. A new VI, which can relocate or cycle cloud hydrometeors and vertical velocity, has been developed to solve this issue. For the cold start, the VI simply relocates the cloud and vertical velocity fields of Global Forecasting System (GFS) analysis; for the warm start, the cloud and vertical velocity associated with a hurricane in the GFS analysis are replaced by the fields extracted from the 6 h HAFS forecast of a previous cycle. This new VI has been tested for the 2023 HAFS-A real-time experiment configuration, and another sensitivity experiment without relocating or cycling both cloud and vertical velocity is conducted to examine the effect of the new VI. A comparison of the results reveals that the new VI improves the intensity forecast and generates a very realistic initial cloud field in correct position. Validating the model initial conditions with observed radar data reveals that the new VI captures the secondary eyewall of major hurricanes and asymmetric convective structure of weak tropical storms. This improvement of the cloud field in the model initial condition through the new VI expects to provide a better background for further data assimilation. Additional sensitivity experiment that only relocates or cycles cloud hydrometeors without correcting the vertical velocity field results in poorer intensity forecasts, which highlights the importance of vertical velocity in the model initial condition. Full article
Show Figures

Figure 1

14 pages, 3809 KiB  
Article
Variations in the Thermal Low-Pressure Location Index over the Qinghai–Tibet Plateau and Its Relationship with Summer Precipitation in China
by Qingxia Xie, Mingfei Zhou, Yulei Zhu, Hongzhong Tang, Dongpo He, Jing Yang and Qingbing Pang
Atmosphere 2024, 15(8), 931; https://doi.org/10.3390/atmos15080931 - 4 Aug 2024
Viewed by 677
Abstract
The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes [...] Read more.
The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes a location index for the thermal low-pressure center situated over the Qinghai–Tibet Plateau. Temporal variations in the location index and summer (July) precipitation patterns in China were studied. Over the past six decades, thermal low-pressure centers have been predominantly positioned near 90° E and 32.5° N within a geopotential height of 4360 gpm, with their distribution extending from east to west rather than from south to north. The longitudinal and latitudinal position indices showed the same linear trend, with a negative trend before the 21st century, and then began to turn positive. Mutation analysis highlights pronounced weakening mutations occurring in 1981 and 1973, with the longitudinal index transitioning from an interannual cycle of approximately 6–8 years, while the latitudinal index displays quasi-cyclic oscillations of 5 and 8 and 12–14 years. Strong negative correlations are evident between the location indices and precipitation along the southeastern edge of the Qinghai–Tibet Plateau and in southern China, contrasting with the positive correlations observed in the central-eastern plateau, northwest, north, and the Huang-Huai region of China. The center of the thermal low is located to the east and north, corresponding to the deeper surface thermal low in most areas east of China, and the stronger transport of warm and wet air from the southwest wind, leading to greater convergence of southwest wind and northwest wind in China’s northern region. The south of the Yangtze River is controlled by the strengthening West Pacific subtropical high and South Asia high, resulting in a significant decrease in precipitation, and the warm and humid air from the southwest on the west side of the West Pacific subtropical high is also transported to the north, increasing the precipitation in most parts of the north. Full article
(This article belongs to the Special Issue The Impact of Climate Change on Water Resources)
Show Figures

Figure 1

15 pages, 1879 KiB  
Article
Assessment of the Liver Steatosis and Fibrosis Risk in Metabolic Syndrome and Its Individual Components, Considering the Varying Definitions Used in Clinical Practice throughout Time: A Retrospective Cross-Sectional Study
by Szymon Suwała and Roman Junik
Biomedicines 2024, 12(8), 1739; https://doi.org/10.3390/biomedicines12081739 - 2 Aug 2024
Viewed by 604
Abstract
Multiple modifications of metabolic syndrome diagnostic criteria have been made—NCEP: ATP III (from 2001, modified in 2004), IDF (2005), IDF Consortium (2009), or Polish Scientific Society Consortium standards (2022) are now frequently in use. Hepatosteatosis and hepatofibrosis are commonly mentioned aspects of metabolic [...] Read more.
Multiple modifications of metabolic syndrome diagnostic criteria have been made—NCEP: ATP III (from 2001, modified in 2004), IDF (2005), IDF Consortium (2009), or Polish Scientific Society Consortium standards (2022) are now frequently in use. Hepatosteatosis and hepatofibrosis are commonly mentioned aspects of metabolic syndrome that greatly increase the likelihood of developing complications. The objective of the study was to assess different diagnostic criteria for metabolic syndrome based on the prevalence of liver steatosis and fibrosis. A retrospective analysis was conducted on the medical data of 2102 patients. Out of all the single criteria, meeting the obesity criterion based on waist circumference showed the highest increase in the risk of hepatosteatosis (by 64–69%, depending on the definition used)—hypertriglyceridemia increased the risk of hepatofibrosis by 71%. Regardless of the specific criteria used, patients with metabolic syndrome had a 34–36% increased likelihood of developing hepatosteatosis—the probability of hepatofibrosis varied between 42% and 47% for the criteria established in 2004, 2005, and 2009, while the Polish 2022 criteria were not statistically significant (p = 0.818). It seems appropriate to establish consistent metabolic syndrome diagnostic criteria—the 2009 IDF guidelines are the most effective in assessing hepatosteatosis and fibrosis risk. Full article
(This article belongs to the Special Issue Recent Advances in Obesity-Related Metabolic Diseases)
Show Figures

Figure 1

28 pages, 16344 KiB  
Article
Operational Forest-Fire Spread Forecasting Using the WRF-SFIRE Model
by Manish P. Kale, Sri Sai Meher, Manoj Chavan, Vikas Kumar, Md. Asif Sultan, Priyanka Dongre, Karan Narkhede, Jitendra Mhatre, Narpati Sharma, Bayvesh Luitel, Ningwa Limboo, Mahendra Baingne, Satish Pardeshi, Mohan Labade, Aritra Mukherjee, Utkarsh Joshi, Neelesh Kharkar, Sahidul Islam, Sagar Pokale, Gokul Thakare, Shravani Talekar, Mukunda-Dev Behera, D. Sreshtha, Manoj Khare, Akshara Kaginalkar, Naveen Kumar and Parth Sarathi Royadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(13), 2480; https://doi.org/10.3390/rs16132480 - 6 Jul 2024
Viewed by 1908
Abstract
In the present research, the open-source WRF-SFIRE model has been used to carry out surface forest fire spread forecasting in the North Sikkim region of the Indian Himalayas. Global forecast system (GFS)-based hourly forecasted weather model data obtained through the National Centers for [...] Read more.
In the present research, the open-source WRF-SFIRE model has been used to carry out surface forest fire spread forecasting in the North Sikkim region of the Indian Himalayas. Global forecast system (GFS)-based hourly forecasted weather model data obtained through the National Centers for Environmental Prediction (NCEP) at 0.25 degree resolution were used to provide the initial conditions for running WRF-SFIRE. A landuse–landcover map at 1:10,000 scale was used to define fuel parameters for different vegetation types. The fuel parameters, i.e., fuel depth and fuel load, were collected from 23 sample plots (0.1 ha each) laid down in the study area. Samples of different categories of forest fuels were measured for their wet and dry weights to obtain the fuel load. The vegetation specific surface area-to-volume ratio was referenced from the literature. The atmospheric data were downscaled using nested domains in the WRF model to capture fire–atmosphere interactions at a finer resolution (40 m). VIIRS satellite sensor-based fire alert (375 m spatial resolution) was used as ignition initiation point for the fire spread forecasting, whereas the forecasted hourly weather data (time synchronized with the fire alert) were used for dynamic forest-fire spread forecasting. The forecasted burnt area (1.72 km2) was validated against the satellite-based burnt area (1.07 km2) obtained through Sentinel 2 satellite data. The shapes of the original and forecasted burnt areas matched well. Based on the various simulation studies conducted, an operational fire spread forecasting system, i.e., Sikkim Wildfire Forecasting and Monitoring System (SWFMS), has been developed to facilitate firefighting agencies to issue early warnings and carry out strategic firefighting. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

11 pages, 650 KiB  
Article
Additive Effect of Metabolic Syndrome on Brain Atrophy in People Living with HIV–Magnetic Resonance Volumetry Study
by Vanja Andric, Jasmina Boban, Daniela Maric, Dusko Kozic, Snezana Brkic and Aleksandra Bulovic
Metabolites 2024, 14(6), 331; https://doi.org/10.3390/metabo14060331 - 13 Jun 2024
Viewed by 823
Abstract
With people living with HIV (PLWH) reaching the senium, the importance of aging-related comorbidities such as metabolic syndrome (MS) becomes increasingly important. This study aimed to determine the additive effect of MS on brain atrophy in PLWH. This prospective study included 43 PLWH, [...] Read more.
With people living with HIV (PLWH) reaching the senium, the importance of aging-related comorbidities such as metabolic syndrome (MS) becomes increasingly important. This study aimed to determine the additive effect of MS on brain atrophy in PLWH. This prospective study included 43 PLWH, average age of 43.02 ± 10.93 years, and 24 healthy controls, average age of 36.87 ± 8.89 years. PLWH were divided into two subgroups: without MS and with MS, according to NCEP ATP III criteria. All patients underwent brain magnetic resonance imaging (MRI) on a 3T clinical scanner with MR volumetry, used for defining volumes of cerebrospinal fluid (CSF) spaces and white and grey matter structures, including basal ganglia. A Student’s t-test was used to determine differences in brain volumes between subject subgroups. The binary classification was performed to determine the sensitivity and specificity of volumetry findings and cut-off values. Statistical significance was set at p < 0.05. PLWH presented with significantly lower volumes of gray matter, putamen, thalamus, globus pallidus, and nc. accumbens compared to healthy controls; cut-off values were: for gray matter 738.130 cm3, putamen 8.535 cm3, thalamus 11.895 cm3, globus pallidus 2.252 cm3, and nc. accumbens 0.715 cm3. The volumes of CSF and left lateral ventricles were found to be higher in PLWH with MS compared to those without MS, where, with a specificity of 0.310 and sensitivity of 0.714, it can be assumed that PLWH with a CSF volume exceeding 212.83 cm3 are likely to also have MS. This suggests that PLWH with metabolic syndrome may exhibit increased CSF volume above 212.83 cm3 as a consequence of brain atrophy. There seems to be an important connection between MS and brain volume reduction in PLWH with MS, which may add to the accurate identification of persons at risk of developing HIV-associated cognitive impairment. Full article
Show Figures

Figure 1

18 pages, 6222 KiB  
Article
Anthropogenic Activity in the Topo-Climatic Interaction of the Tapajós River Basin, in the Brazilian Amazon
by V�nia dos Santos Franco, Aline Maria Meiguins de Lima, Rodrigo Rafael Souza de Oliveira, Everaldo Barreiros de Souza, Giordani Rafael Concei��o Sodr�, Diogo Correa Santos, Marcos Adami, Edivaldo Afonso de Oliveira Serr�o and Thaiane Soeiro da Silva Dias
Hydrology 2024, 11(6), 82; https://doi.org/10.3390/hydrology11060082 - 13 Jun 2024
Viewed by 818
Abstract
This research aimed to analyze the relationship between deforestation (DFT) and climatic variables during the rainy (CHU+) and less-rainy (CHU−) seasons in the Tapajós River basin. Data were sourced from multiple institutions, including the Climatic Research Unit (CRU), Center for Weather Forecasts and [...] Read more.
This research aimed to analyze the relationship between deforestation (DFT) and climatic variables during the rainy (CHU+) and less-rainy (CHU−) seasons in the Tapajós River basin. Data were sourced from multiple institutions, including the Climatic Research Unit (CRU), Center for Weather Forecasts and Climate Studies (CPTEC), PRODES Program (Monitoring of Brazilian Amazon Deforestation Project), National Water Agency (ANA) and National Centers for Environmental Prediction/National Oceanic and Atmospheric Administration (NCEP/NOAA). The study assessed anomalies (ANOM) in maximum temperature (TMAX), minimum temperature (TMIN) and precipitation (PREC) over three years without the occurrence of the El Niño–Southern Oscillation (ENSO) atmospheric–oceanic phenomenon. It also examined areas with higher DFT density using the Kernel methodology and analyzed the correlation between DFT and climatic variables. Additionally, it assessed trends using the Mann–Kendall technique for both climatic and environmental data. The results revealed significant ANOM in TEMP and PREC. In PREC, the highest values of ANOM were negative in CHU+. Regarding temperature, the most significant values were positive ANOM in the south, southwest and northwestern regions of the basin. Concerning DFT density, data showed that the highest concentration was of medium density, primarily along the highways. The most significant correlations were found between DFT and TEMP during the CHU− season in the Middle and Lower Tapajós sub-basins, regions where the forest still exhibits more preserved characteristics. Furthermore, the study identified a positive trend in TEMP and a negative trend in PREC. Full article
(This article belongs to the Special Issue Trends and Variations in Hydroclimatic Variables)
Show Figures

Figure 1

17 pages, 7188 KiB  
Article
Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal River Basin, Africa
by Jinyu Meng, Zengchuan Dong, Guobin Fu, Shengnan Zhu, Yiqing Shao, Shujun Wu and Zhuozheng Li
Remote Sens. 2024, 16(9), 1638; https://doi.org/10.3390/rs16091638 - 3 May 2024
Cited by 1 | Viewed by 1372
Abstract
Accurate and punctual precipitation data are fundamental to understanding regional hydrology and are a critical reference point for regional flood control. The aims of this study are to evaluate the performance of three widely used precipitation datasets—CRU TS, ERA5, and NCEP—as potential alternatives [...] Read more.
Accurate and punctual precipitation data are fundamental to understanding regional hydrology and are a critical reference point for regional flood control. The aims of this study are to evaluate the performance of three widely used precipitation datasets—CRU TS, ERA5, and NCEP—as potential alternatives for hydrological applications in the Bahr el Ghazal River Basin in South Sudan, Africa. This includes examining the spatial and temporal evolution of regional precipitation using relatively accurate precipitation datasets. The findings indicate that CRU TS is the best precipitation dataset in the Bahr el Ghazal Basin. The spatial and temporal distributions of precipitation from CRU TS reveal that precipitation in the Bahr el Ghazal Basin has a clear wet season, with June–August accounting for half of the annual precipitation and peaking in July and August. The long-term annual total precipitation exhibits a gradual increasing trend from the north to the south, with the southwestern part of the Basin having the largest percentage of wet season precipitation. Notably, the Bahr el Ghazal Basin witnessed a significant precipitation shift in 1967, followed by an increasing trend. Moreover, the spatial and temporal precipitation evolutions reveal an ongoing risk of flooding in the lower part of the Basin; therefore, increased engineering counter-measures might be needed for effective flood prevention. Full article
Show Figures

Figure 1

40 pages, 23230 KiB  
Article
Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean
by Dimitris Mitropoulos, Ioannis Pytharoulis, Prodromos Zanis and Christina Anagnostopoulou
Atmosphere 2024, 15(4), 442; https://doi.org/10.3390/atmos15040442 - 2 Apr 2024
Viewed by 1246
Abstract
Greece and the surrounding areas experienced an early warm spell with characteristics of a typical summer Mediterranean heatwave in mid-May 2020. The maximum 2 m temperature at Kalamata (southern Greece) reached 40 °C on 16 May and at Aydin (Turkey), it was 42.6 [...] Read more.
Greece and the surrounding areas experienced an early warm spell with characteristics of a typical summer Mediterranean heatwave in mid-May 2020. The maximum 2 m temperature at Kalamata (southern Greece) reached 40 °C on 16 May and at Aydin (Turkey), it was 42.6 °C on 17 May. There was a 10-standard deviation positive temperature anomaly (relative to the 1975–2005 climatology) at 850 hPa, with a southwesterly flow and warm advection over Greece and western Turkey from 11 to 20 May. At 500 hPa, a ridge was located over the Eastern Mediterranean, resulting in subsidence. The aims of this study were (a) to investigate the prevailing synoptic conditions during this event in order to document its occurrence and (b) to assess whether this out-of-season heatwave was predictable on subseasonal timescales. The subseasonal predictability is not a well-researched scientific topic in the Eastern Mediterranean Sea. The ensemble global forecasts from six international meteorological centres (European Centre for Medium-Range Weather Forecasts—ECMWF, United Kingdom Met Office—UKMO, China Meteorological Administration—CMA, Korea Meteorological Administration—KMA, National Centers for Environmental Prediction—NCEP and Hydrometeorological Centre of Russia—HMCR) and limited area forecasts using the Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF) forced by Climate Forecast System version 2 (CFSv.2; NCEP) forecasts were evaluated for lead times ranging from two to six weeks using statistical scores. WRF was integrated using two telescoping nests covering Europe, the Mediterranean basin and large part of the Atlantic Ocean, with a grid spacing of 25 km, and Greece–western Turkey at 5 km. The results showed that there were some accurate forecasts initiated two weeks before the event’s onset. There was no systematic benefit from the increase of the WRF model’s resolution from 25 km to 5 km for forecasting the 850 hPa temperature, but regarding the prediction of maximum air temperature near the surface, the high resolution (5 km) nest of WRF produced a marginally better performance than the coarser resolution domain (25 km). Full article
(This article belongs to the Special Issue Numerical Weather Prediction Models and Ensemble Prediction Systems)
Show Figures

Figure 1

19 pages, 6307 KiB  
Article
Measurement of Downwelling Radiance Using a Low-Cost Compact Fourier-Transform Infrared System for Monitoring Atmospheric Conditions
by Haklim Choi and Jongjin Seo
Remote Sens. 2024, 16(7), 1136; https://doi.org/10.3390/rs16071136 - 25 Mar 2024
Viewed by 829
Abstract
Temperature and water vapor play crucial roles in the Earth’s climate system, and it is important to understand and monitor the variation in the thermodynamic profile within the lower troposphere. Among various observation platforms for understanding the vertical structure of temperature and humidity, [...] Read more.
Temperature and water vapor play crucial roles in the Earth’s climate system, and it is important to understand and monitor the variation in the thermodynamic profile within the lower troposphere. Among various observation platforms for understanding the vertical structure of temperature and humidity, ground-based Fourier-transform infrared (FTIR) can provide detailed information about the lower troposphere by complementing the limitations of radiosonde or satellite methods. However, these ground-based systems have limitations in terms of cost, operation, and mobility. Herein, we introduce a cost-effective and easily deployable FTIR observation system designed to enhance monitoring capabilities for atmospheric conditions. The atmospheric downwelling radiance spectrum of sky is measured by applying a real-time radiative calibration using a blackbody. From the observed radiance spectrum, the thermodynamic profile (temperature and the water vapor mixing ratio) of the lower troposphere was retrieved using an algorithm based on the optimal estimation method (OEM). The retrieved vertical structure results in the lower troposphere were similar to the fifth-generation reanalysis database (ERA-5) of the European Center for Medium-range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction final analysis (NCEP FNL). This provides a potential possibility for monitoring atmospheric conditions by a compact FTIR system. Full article
(This article belongs to the Special Issue Remote Sensing and Machine Learning of Signal and Image Processing)
Show Figures

Figure 1

9 pages, 905 KiB  
Article
Effect of Adding Apolipoprotein B Testing on the Prevalence of Dyslipidemia and Risk of Cardiovascular Disease in the Korean Adult Population
by Rihwa Choi, Sang Gon Lee and Eun Hee Lee
Metabolites 2024, 14(3), 169; https://doi.org/10.3390/metabo14030169 - 18 Mar 2024
Viewed by 1551
Abstract
Traditional lipid parameters—including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and non-HDL-C (calculated as TC minus HDL-C)—have long been used as indicators of cardiovascular disease (CVD) risk. The laboratory records of 9604 Korean adults who underwent traditional [...] Read more.
Traditional lipid parameters—including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and non-HDL-C (calculated as TC minus HDL-C)—have long been used as indicators of cardiovascular disease (CVD) risk. The laboratory records of 9604 Korean adults who underwent traditional lipid panel tests (TC, TG, and HDL), as well as ApoB testing, were analyzed to evaluate the prevalence of dyslipidemia and high CVD risk (utilizing the NCEP ATP III criteria for traditional lipid panels and various ApoB test cutoffs recommended by international guidelines (145 mg/dL, 130 mg/dL, and 100 mg/dL)). The overall prevalence of dyslipidemia, as determined by traditional lipid panel criteria, was 27.4%. Utilizing the ApoB cutoffs of 145 mg/dL, 130 mg/dL, and 100 mg/dL resulted in prevalence figures of 5.3%, 11.0%, and 36.3%, respectively. The concordance in dyslipidemia classification between traditional lipid tests and ApoB at cutoffs of 145 mg/dL, 130 mg/dL, and 100 mg/dL was 78.4%, 81.3%, and 74.7%, respectively. Up to 17.5% of participants, based on an ApoB cutoff of ≥100 mg/dL, exhibited isolated high ApoB in the absence of traditional lipid test anomalies. Incorporating ApoB testing could enhance the identification of Koreans at high CVD risk. Full article
(This article belongs to the Special Issue Lipid Biomarkers and Cardiometabolic Diseases)
Show Figures

Figure 1

Back to TopTop