Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = RSTVOLC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10527 KiB  
Article
Mt. Etna Paroxysms of February–April 2021 Monitored and Quantified through a Multi-Platform Satellite Observing System
by Francesco Marchese, Carolina Filizzola, Teodosio Lacava, Alfredo Falconieri, Mariapia Faruolo, Nicola Genzano, Giuseppe Mazzeo, Carla Pietrapertosa, Nicola Pergola, Valerio Tramutoli and Marco Neri
Remote Sens. 2021, 13(16), 3074; https://doi.org/10.3390/rs13163074 - 5 Aug 2021
Cited by 23 | Viewed by 4232 | Correction
Abstract
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly [...] Read more.
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most intense in terms of radiative power, with values estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 2nd (17–18 February) and 7th (28 February) paroxysm generated the largest thermal anomaly at Mt. Etna after April 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions. Full article
Show Figures

Graphical abstract

14 pages, 11815 KiB  
Article
The Contribution of Multi-Sensor Infrared Satellite Observations to Monitor Mt. Etna (Italy) Activity during May to August 2016
by Francesco Marchese, Marco Neri, Alfredo Falconieri, Teodosio Lacava, Giuseppe Mazzeo, Nicola Pergola and Valerio Tramutoli
Remote Sens. 2018, 10(12), 1948; https://doi.org/10.3390/rs10121948 - 4 Dec 2018
Cited by 28 | Viewed by 4565
Abstract
In May 2016, three powerful paroxysmal events, mild Strombolian activity, and lava emissions took place at the summit crater area of Mt. Etna (Sicily, Italy). During, and immediately after the eruption, part of the North-East crater (NEC) collapsed, while extensive subsidence affected the [...] Read more.
In May 2016, three powerful paroxysmal events, mild Strombolian activity, and lava emissions took place at the summit crater area of Mt. Etna (Sicily, Italy). During, and immediately after the eruption, part of the North-East crater (NEC) collapsed, while extensive subsidence affected the Voragine crater (VOR). Since the end of the May eruptions, a diffuse fumarolic activity occurred from a fracture system that cuts the entire summit area. Starting from 7 August, a small vent (of ~20–30 m in diameter) opened up within the VOR crater, emitting high-temperature gases and producing volcanic glow which was visible at night. We investigated those volcanic phenomena from space, exploiting the information provided by the satellite-based system developed at the Institute of Methodologies for Environmental Analysis (IMAA), which monitors Italian volcanoes in near-real time by means of the RSTVOLC (Robust Satellite Techniques–volcanoes) algorithm. Results, achieved integrating Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) observations, showed that, despite some issues (e.g., in some cases, clouds masking the underlying hot surfaces), RSTVOLC provided additional information regarding Mt. Etna activity. In particular, results indicated that the Strombolian eruption of 21 May lasted longer than reported by field observations or that a short-lived event occurred in the late afternoon of the same day. Moreover, the outcomes of this study showed that the intensity of fumarolic emissions changed before 7 August, as a possible preparatory phase of the hot degassing activity occurring at VOR. In particular, the radiant flux retrieved from MODIS data decreased from 30 MW on 4 July to an average value of about 7.5 MW in the following weeks, increasing up to 18 MW a few days before the opening of a new degassing vent. These outcomes, in accordance with information provided by Sentinel-2 MSI (Multispectral Instrument) and Landsat 8-OLI (Operational Land Imager) data, confirm that satellite observations may also contribute greatly to the monitoring of active volcanoes in areas where efficient traditional surveillance systems exist. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

17 pages, 3364 KiB  
Article
Assessing Performance of the RSTVOLC Multi-Temporal Algorithm in Detecting Subtle Hot Spots at Oldoinyo Lengai (Tanzania, Africa) for Comparison with MODLEN
by Teodosio Lacava, Matthieu Kervyn, Mariangela Liuzzi, Francesco Marchese, Nicola Pergola and Valerio Tramutoli
Remote Sens. 2018, 10(8), 1177; https://doi.org/10.3390/rs10081177 - 25 Jul 2018
Cited by 5 | Viewed by 2793
Abstract
The identification of subtle thermal anomalies (i.e., of low-temperature and/or spatial extent) at volcanoes by satellite is of great interest for scientists, especially because minor changes in surface temperature might reveal an unrest phase or impending activity. A good test case for assessing [...] Read more.
The identification of subtle thermal anomalies (i.e., of low-temperature and/or spatial extent) at volcanoes by satellite is of great interest for scientists, especially because minor changes in surface temperature might reveal an unrest phase or impending activity. A good test case for assessing the sensitivity level of satellite-based methods is to study the thermal activity of Oldoinyo Lengai (OL) (Africa, Tanzania), which is the only volcano on Earth emitting natrocarbonatite lavas at a lower temperature (i.e., in the range 500–600 °C) than usual magmatic surfaces. In this work, we assess the potential of the RSTVOLC multi-temporal algorithm in detecting subtle hot spots at OL for comparison with MODLEN: A thermal anomaly detection method tailored to OL local conditions, by using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Our results investigating the eruptive events of 2000–2008 using RSTVOLC reveal the occurrence of several undocumented thermal activities of OL, and may successfully integrate MODLEN observations. In spite of some known limitations strongly affecting the identification of volcanic thermal anomalies from space (e.g., cloud cover; occurrence of short-lived events), this work demonstrates that RSTVOLC may provide a very important contribution for monitoring the OL, identifying subtle hot spots showing values of the radiant flux even around 1 MW. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

Back to TopTop