Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = fire spotting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10968 KiB  
Data Descriptor
Intelligent Fire Suppression Devices Based on Microcapsules Linked to Sensor Internet of Things
by Jong-Hwa Yoon, Xiang Zhao and Dal-Hwan Yoon
Fire 2024, 7(9), 323; https://doi.org/10.3390/fire7090323 - 17 Sep 2024
Abstract
Most fire spread is caused by the absence of suppression means at the beginning of the fire. This results in the missed golden time. There are various factors that cause initial fires, such as electrical outlets, general distribution circuits, and oil–vapor–gas cluster spaces. [...] Read more.
Most fire spread is caused by the absence of suppression means at the beginning of the fire. This results in the missed golden time. There are various factors that cause initial fires, such as electrical outlets, general distribution circuits, and oil–vapor–gas cluster spaces. In most cases, these places are out of reach of human hands or they lose the initial suppression time when a fire occurs, causing the spread of fire. This study implements an intelligent fire suppression device that connects sensor IoT based on microcapsules to secure initial fire suppression and golden time in the event of a fire in blind spots that cannot be seen by humans or at a time when it is difficult to recognize a fire. The microcapsule is a micro-collection unit that collects Novec 1230 gas generated in the semiconductor production process. The microcapsule is molded into a form with a fire suppression function and, when a fire occurs, the molded body explodes and absorbs ambient oxygen to suppress the fire. The complex-sensor IoT executes smoke and heat detection generated when a fire is suppressed within 10 s, which ensures the reliability of the detector by notifying of the fire and detecting the ignition point through communication linkages such as Ieee 485 and WiFi or LoRa. Full article
Show Figures

Figure 1

11 pages, 250 KiB  
Article
Perceptions of Exposure and Mask Use in Wildland Firefighters
by Tanis Zadunayski, Natasha Broznitsky, Drew Lichty and Nicola Cherry
Toxics 2024, 12(8), 576; https://doi.org/10.3390/toxics12080576 - 7 Aug 2024
Viewed by 759
Abstract
Wildland firefighters are exposed to airborne particulates, polycyclic aromatic hydrocarbons (PAHs), and other hazardous substances. Respiratory protection is indicated, but information is lacking on the tasks and conditions for which mask wearing should be advised. Studies to assess respiratory protection in wildland firefighters [...] Read more.
Wildland firefighters are exposed to airborne particulates, polycyclic aromatic hydrocarbons (PAHs), and other hazardous substances. Respiratory protection is indicated, but information is lacking on the tasks and conditions for which mask wearing should be advised. Studies to assess respiratory protection in wildland firefighters were carried out in western Canada in 2021 and 2023. Sampling pumps measured airborne exposures and urinary 1-hydroxypyrene (1-HP) was assayed to indicate PAH absorption. Participants in 2021 reported the time for which they wore the mask during each task. In 2023, the use of masks was reported, and firefighters rated the smoke intensity. In 2021, 72 firefighters were monitored over 164 shifts and, in 2023, 89 firefighters were monitored for 263 shifts. In 2021, mask wearing was highest for those engaged in initial attack and hot spotting. Urinary 1-HP at the end of rotation was highest for those reporting initial attack, working on a prescribed fire and mop-up. In 2023, firefighter ratings of smoke intensity were strongly associated with measured particulate mass and with urinary 1-HP, but masks were not worn more often when there was higher smoke intensity. The data from the literature did not provide a clear indication of high-exposure tasks. Better task/exposure information is needed for firefighters to make informed decisions about mask wearing. Full article
(This article belongs to the Special Issue Firefighters’ Occupational Exposures and Health Risks)
21 pages, 5555 KiB  
Article
Real-Time Wildfire Monitoring Using Low-Altitude Remote Sensing Imagery
by Hongwei Tong, Jianye Yuan, Jingjing Zhang, Haofei Wang and Teng Li
Remote Sens. 2024, 16(15), 2827; https://doi.org/10.3390/rs16152827 - 1 Aug 2024
Cited by 1 | Viewed by 540
Abstract
With rising global temperatures, wildfires frequently occur worldwide during the summer season. The timely detection of these fires, based on unmanned aerial vehicle (UAV) images, can significantly reduce the damage they cause. Existing Convolutional Neural Network (CNN)-based fire detection methods usually use multiple [...] Read more.
With rising global temperatures, wildfires frequently occur worldwide during the summer season. The timely detection of these fires, based on unmanned aerial vehicle (UAV) images, can significantly reduce the damage they cause. Existing Convolutional Neural Network (CNN)-based fire detection methods usually use multiple convolutional layers to enhance the receptive fields, but this compromises real-time performance. This paper proposes a novel real-time semantic segmentation network called FireFormer, combining the strengths of CNNs and Transformers to detect fires. An agile ResNet18 as the encoding component tailored to fulfill the efficient fire segmentation is adopted here, and a Forest Fire Transformer Block (FFTB) rooted in the Transformer architecture is proposed as the decoding mechanism. Additionally, to accurately detect and segment small fire spots, we have developed a novel Feature Refinement Network (FRN) to enhance fire segmentation accuracy. The experimental results demonstrate that our proposed FireFormer achieves state-of-the-art performance on the publicly available forest fire dataset FLAME—specifically, with an impressive 73.13% IoU and 84.48% F1 Score. Full article
Show Figures

Graphical abstract

15 pages, 2272 KiB  
Article
Comparison of Perimeter Delineation Methods for Remote Sensing Fire Spot Data in Near/Ultra-Real-Time Applications
by Hanif Bhuian, Hatef Dastour, Mohammad Razu Ahmed and Quazi K. Hassan
Fire 2024, 7(7), 226; https://doi.org/10.3390/fire7070226 - 1 Jul 2024
Cited by 1 | Viewed by 947
Abstract
Forest fires cause extensive damage to ecosystems, biodiversity, and human property, posing significant challenges for emergency response and resource management. The accurate and timely delineation of forest fire perimeters is crucial for mitigating these impacts. In this study, methods for delineating forest fire [...] Read more.
Forest fires cause extensive damage to ecosystems, biodiversity, and human property, posing significant challenges for emergency response and resource management. The accurate and timely delineation of forest fire perimeters is crucial for mitigating these impacts. In this study, methods for delineating forest fire perimeters using near-real-time (NRT) remote sensing data are evaluated. Specifically, the performance of various algorithms—buffer, concave, convex, and combination methods—using VIIRS and MODIS datasets is assessed. It was found that increasing concave α values improves the matching percentage with reference areas but also increases the commission error (CE), indicating overestimation. The results demonstrate that combination methods generally achieve higher matching percentages, but also higher CEs. These findings highlight the trade-off between improved perimeter accuracy and the risk of overestimation. The insights gained are significant for optimizing sensor data alignment techniques, thereby enhancing rapid response, resource allocation, and evacuation planning in fire management. This research is the first to employ multiple algorithms in both individual and synergistic approaches with NRT or ultra-real-time (URT) active fire data, providing a critical foundation for future studies aimed at improving the accuracy and timeliness of forest fire perimeter assessments. Such advancements are essential for effective disaster management and mitigation strategies. Full article
(This article belongs to the Special Issue Remote Sensing of Wildfire: Regime Change and Disaster Response)
Show Figures

Figure 1

23 pages, 6836 KiB  
Article
Simulation Modeling of the Process of Danger Zone Formation in Case of Fire at an Industrial Facility
by Yuri Matveev, Fares Abu-Abed, Olga Zhironkina and Sergey Zhironkin
Fire 2024, 7(7), 221; https://doi.org/10.3390/fire7070221 - 28 Jun 2024
Viewed by 759
Abstract
Proactive prevention and fighting fire at industrial facilities, often located in urbanized clusters, should include the use of modern methods for modeling danger zones that appear during the spread of the harmful combustion products of various chemicals. Simulation modeling is a method that [...] Read more.
Proactive prevention and fighting fire at industrial facilities, often located in urbanized clusters, should include the use of modern methods for modeling danger zones that appear during the spread of the harmful combustion products of various chemicals. Simulation modeling is a method that allows predicting the parameters of a danger zone, taking into account a number of technological, landscape, and natural-climatic factors that have a certain variability. The purpose of this research is to develop a mathematical simulation model of the formation process of a danger zone during an emergency at an industrial facility, including an explosion of a container with chemicals and fire, with the spread of an aerosol and smoke cloud near residential areas. The subject of this study was the development of a simulation model of a danger zone of combustion gases and its graphical interpretation as a starting point for timely decision making on evacuation by an official. The mathematical model of the process of danger zone formation during an explosion and fire at an industrial facility presented in this article is based on the creation of a GSL library from data on the mass of explosion and combustion products, verification using the Wald test, and the use of algorithms for calculating the starting and ending points of the danger zone for various factor values’ variables, constructing ellipses of the boundaries of the distribution of pollution spots. The developed model makes it possible to calculate the linear dimensions and area of the danger zone under optimistic and pessimistic scenarios, constructing a graphical diagram of the zones of toxic doses from the source of explosion and combustion. The results obtained from the modeling can serve as the basis for making quick decisions about evacuating residents from nearby areas. Full article
(This article belongs to the Special Issue Fire and Explosions Risk in Industrial Processes)
Show Figures

Figure 1

24 pages, 713 KiB  
Article
Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach
by Ana Caroline Pinheiro and Paulo Canas Rodrigues
Stats 2024, 7(3), 647-670; https://doi.org/10.3390/stats7030039 - 27 Jun 2024
Cited by 1 | Viewed by 597
Abstract
This study compares reconciliation techniques and base forecast methods to forecast a hierarchical time series of the number of fire spots in Brazil between 2011 and 2022. A three-level hierarchical time series was considered, comprising fire spots in Brazil, disaggregated by biome, and [...] Read more.
This study compares reconciliation techniques and base forecast methods to forecast a hierarchical time series of the number of fire spots in Brazil between 2011 and 2022. A three-level hierarchical time series was considered, comprising fire spots in Brazil, disaggregated by biome, and further disaggregated by the municipality. The autoregressive integrated moving average (ARIMA), the exponential smoothing (ETS), and the Prophet models were tested for baseline forecasts, and nine reconciliation approaches, including top-down, bottom-up, middle-out, and optimal combination methods, were considered to ensure coherence in the forecasts. Due to the need for transformation to ensure positive forecasts, two data transformations were considered: the logarithm of the number of fire spots plus one and the square root of the number of fire spots plus 0.5. To assess forecast accuracy, the data were split into training data for estimating model parameters and test data for evaluating forecast accuracy. The results show that the ARIMA model with the logarithmic transformation provides overall better forecast accuracy. The BU, MinT(s), and WLS(v) yielded the best results among the reconciliation techniques. Full article
Show Figures

Figure 1

21 pages, 12213 KiB  
Article
A 3D Numerical Model to Estimate Lightning Types for PyroCb Thundercloud
by Surajit Das Barman, Rakibuzzaman Shah, Syed Islam and Apurv Kumar
Appl. Sci. 2024, 14(12), 5305; https://doi.org/10.3390/app14125305 - 19 Jun 2024
Viewed by 514
Abstract
Pyrocumulonimbus (pyroCb) thunderclouds, produced from extreme bushfires, can initiate frequent cloud-to-ground (CG) lightning strikes containing extended continuing currents. This, in turn, can ignite new spot fires and inflict massive harm on the environment and infrastructures. This study presents a 3D numerical thundercloud model [...] Read more.
Pyrocumulonimbus (pyroCb) thunderclouds, produced from extreme bushfires, can initiate frequent cloud-to-ground (CG) lightning strikes containing extended continuing currents. This, in turn, can ignite new spot fires and inflict massive harm on the environment and infrastructures. This study presents a 3D numerical thundercloud model for estimating the lightning of different types and its striking zone for the conceptual tripole thundercloud structure which is theorized to produce the lightning phenomenon in pyroCb storms. More emphasis is given to the lower positive charge layer, and the impacts of strong wind shear are also explored to thoroughly examine various electrical parameters including the longitudinal electric field, electric potential, and surface charge density. The simulation outcomes on pyroCb thunderclouds with a tripole structure confirm the presence of negative longitudinal electric field initiation at the cloud’s lower region. This initiation is accompanied by enhancing the lower positive charge region, resulting in an overall positive electric potential increase. Consequently, negative surface charge density appears underneath the pyroCb thundercloud which has the potential to induce positive (+CG) lightning flashes. With wind shear extension of upper charge layers in pyroCb, the lightning initiation potential becomes negative to reduce the absolute field value and would generate negative (−CG) lightning flashes. A subsequent parametric study is carried out considering a positive correlation between aerosol concentration and charge density to investigate the sensitivity of pyroCb electrification under the influence of high aerosol conditions. The suggested model would establish the basis for identifying the potential area impacted by lightning and could also be expanded to analyze the dangerous conditions that may arise in wind energy farms or power substations in times of severe pyroCb events. Full article
Show Figures

Figure 1

23 pages, 7859 KiB  
Article
Spatiotemporal Evolution and Frontier Focus Analysis Based on Coal Fire Control Body of Knowledge
by Dandan Han, Guchen Niu, Bing Liu, Feiran Wang, Yongbo Ren, Chang Su, Yutong Yao and Zining Zhao
Fire 2024, 7(6), 187; https://doi.org/10.3390/fire7060187 - 30 May 2024
Viewed by 571
Abstract
Mine fire accidents frequently constitute a major threat to mining safety, and their potential consequences are extremely severe, which highlights the urgency of fire prevention and control research. In this study, the CiteSpace software was used to conduct a metrological analysis of 717 [...] Read more.
Mine fire accidents frequently constitute a major threat to mining safety, and their potential consequences are extremely severe, which highlights the urgency of fire prevention and control research. In this study, the CiteSpace software was used to conduct a metrological analysis of 717 relevant studies in the field of mine fire prevention and control (MFPC), aiming to reveal the research trends and trends in this field. This analysis found that the annual number of MFPC articles showed a significant upward trend, indicating that it is in rapid development during the active period. China, the United States, and Australia are the main contributors in this field, and the institutional contribution of China University of Mining and Technology is particularly outstanding, reflecting the regional concentration of research activities. The analysis of cooperation networks reveals the close cross-regional collaboration among European countries. The inhibition effect and evaluation criteria and the inhibition technology under different coal characteristics have become the focus of research. Activation energy, release, and quantum chemistry have become recent hot spots, reflecting the research on the mechanism of forward physicochemical synergistic inhibition and the in-depth exploration of the molecular level. It indicates that future research will focus on the development of temperature-responsive retardant materials, the application of quantum chemistry theory, and the exploration of the microscopic mechanism of coal spontaneous combustion through molecular simulation technology to further optimize the fire prevention strategy. In summary, the findings of this study not only provide a comprehensive picture of current research activities in the MFPC field but also indicate potential directions for future research and have important guiding significance for promoting the development of this field. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires)
Show Figures

Figure 1

23 pages, 6580 KiB  
Article
Forest Smoke-Fire Net (FSF Net): A Wildfire Smoke Detection Model That Combines MODIS Remote Sensing Images with Regional Dynamic Brightness Temperature Thresholds
by Yunhong Ding, Mingyang Wang, Yujia Fu and Qian Wang
Forests 2024, 15(5), 839; https://doi.org/10.3390/f15050839 - 10 May 2024
Viewed by 995
Abstract
Satellite remote sensing plays a significant role in the detection of smoke from forest fires. However, existing methods for detecting smoke from forest fires based on remote sensing images rely solely on the information provided by the images, overlooking the positional information and [...] Read more.
Satellite remote sensing plays a significant role in the detection of smoke from forest fires. However, existing methods for detecting smoke from forest fires based on remote sensing images rely solely on the information provided by the images, overlooking the positional information and brightness temperature of the fire spots in forest fires. This oversight significantly increases the probability of misjudging smoke plumes. This paper proposes a smoke detection model, Forest Smoke-Fire Net (FSF Net), which integrates wildfire smoke images with the dynamic brightness temperature information of the region. The MODIS_Smoke_FPT dataset was constructed using a Moderate Resolution Imaging Spectroradiometer (MODIS), the meteorological information at the site of the fire, and elevation data to determine the location of smoke and the brightness temperature threshold for wildfires. Deep learning and machine learning models were trained separately using the image data and fire spot area data provided by the dataset. The performance of the deep learning model was evaluated using metric MAP, while the regression performance of machine learning was assessed with Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The selected machine learning and deep learning models were organically integrated. The results show that the Mask_RCNN_ResNet50_FPN and XGR models performed best among the deep learning and machine learning models, respectively. Combining the two models achieved good smoke detection results (Precisionsmoke=89.12%). Compared with wildfire smoke detection models that solely use image recognition, the model proposed in this paper demonstrates stronger applicability in improving the precision of smoke detection, thereby providing beneficial support for the timely detection of forest fires and applications of remote sensing. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

16 pages, 3794 KiB  
Article
Exploring Urban Service Location Suitability: Mapping Social Behavior Dynamics with Space Syntax Theory
by Saleh Qanazi, Ihab H. Hijazi, Isam Shahrour and Rani El Meouche
Land 2024, 13(5), 609; https://doi.org/10.3390/land13050609 - 30 Apr 2024
Cited by 6 | Viewed by 1693
Abstract
Assessing urban service locations is a key issue within city planning, integral to promoting the well-being of citizens, and ensuring effective urban development. However, many current approaches emphasize spatial analysis focused solely on physical attributes, neglecting the equally vital social dimensions essential for [...] Read more.
Assessing urban service locations is a key issue within city planning, integral to promoting the well-being of citizens, and ensuring effective urban development. However, many current approaches emphasize spatial analysis focused solely on physical attributes, neglecting the equally vital social dimensions essential for enhancing inhabitants’ comfort and quality of life. When social factors are considered, they tend to operate at smaller scales. This paper addresses this gap by prioritizing integrating social factors alongside spatial analysis at the community level. By employing space syntax theory, this study investigates urban service suitability in Hajjah, a Palestinian urban community, presenting a novel approach in the literature. The research identifies good spots for essential governmental facilities like health clinics and fire stations using axial map analysis. It also suggests reallocation for some schools. Additionally, it shows ways to improve the placement of community amenities, finding ideal park locations but suboptimal mosque placements. Commercial services also exhibit areas for enhancement including gas stations and shops. The insights from this research can offer policymakers and planners insights to create more efficient, equitable, and accessible cities. The research approach incorporates social behavior dynamics into spatial analysis, promoting inclusive urban planning. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

18 pages, 4000 KiB  
Article
Predicting Wildfire Ember Hot-Spots on Gable Roofs via Deep Learning
by Mohammad Khaled Al-Bashiti, Dac Nguyen, M. Z. Naser and Nigel B. Kaye
Fire 2024, 7(5), 153; https://doi.org/10.3390/fire7050153 - 25 Apr 2024
Viewed by 1002
Abstract
Ember accumulation on and around homes can lead to spot fires and home ignition. Post wildland fire assessments suggest that this mechanism is one of the leading causes of home destruction in wildland urban interface (WUI) fires. However, the process of ember deposition [...] Read more.
Ember accumulation on and around homes can lead to spot fires and home ignition. Post wildland fire assessments suggest that this mechanism is one of the leading causes of home destruction in wildland urban interface (WUI) fires. However, the process of ember deposition and accumulation on and around houses remains poorly understood. Herein, we develop a deep learning (DL) model to analyze data from a series of ember-related wind tunnel experiments for a range of wind conditions and roof slopes. The developed model is designed to identify building roof regions where embers will remain in contact with the rooftop. Our results show that the DL model is capable of accurately predicting the position and fraction of the roof on which embers remain in place as a function of the wind speed, wind direction, roof slope, and location on the windward and leeward faces of the rooftop. The DL model was augmented with explainable AI (XAI) measures to examine the extent of the influence of these parameters on the rooftop ember coverage and potential ignition. Full article
Show Figures

Figure 1

23 pages, 19263 KiB  
Article
Indication Variability of the Particulate Matter Sensors Dependent on Their Location
by Alicja Wiora, Józef Wiora and Jerzy Kasprzyk
Sensors 2024, 24(5), 1683; https://doi.org/10.3390/s24051683 - 5 Mar 2024
Cited by 1 | Viewed by 816
Abstract
Particulate matter (PM) suspended in the air significantly impacts human health. Those of anthropogenic origin are particularly hazardous. Poland is one of the countries where the air quality during the heating season is the worst in Europe. Air quality in small towns and [...] Read more.
Particulate matter (PM) suspended in the air significantly impacts human health. Those of anthropogenic origin are particularly hazardous. Poland is one of the countries where the air quality during the heating season is the worst in Europe. Air quality in small towns and villages far from state monitoring stations is often much worse than in larger cities where they are located. Their residents inhale the air containing smoke produced mainly by coal-fired stoves. In the frame of this project, an air quality monitoring network was built. It comprises low-cost PMS7003 PM sensors and ESP8266 microcontrollers with integrated Wi-Fi communication modules. This article presents research results on the influence of the PM sensor location on their indications. It has been shown that the indications from sensors several dozen meters away from each other can differ by up to tenfold, depending on weather conditions and the source of smoke. Therefore, measurements performed by a network of sensors, even of worse quality, are much more representative than those conducted in one spot. The results also indicated the method of detecting a sudden increase in air pollutants. In the case of smokiness, the difference between the mean and median indications of the PM sensor increases even up to 400 µg/m3 over a 5 min time window. Information from this comparison suggests a sudden deterioration in air quality and can allow for quick intervention to protect people’s health. This method can be used in protection systems where fast detection of anomalies is necessary. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

15 pages, 6503 KiB  
Technical Note
AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning
by Guangyi Yang, Xuelei Zhang, Aijun Xiu, Chao Gao, Mengduo Zhang, Qingqing Tong, Wei Liu, Yang Yu, Hongmei Zhao, Shichun Zhang and Shengjin Xie
Fire 2024, 7(3), 63; https://doi.org/10.3390/fire7030063 - 22 Feb 2024
Viewed by 1449
Abstract
Open-field crop residue burning (OCRB) is a widespread agricultural practice with significant impacts on regional environments and public health. The effective management of OCRB remains a challenging task that requires timely access to various forms of monitored and forecasted information. Addressing this worldwide [...] Read more.
Open-field crop residue burning (OCRB) is a widespread agricultural practice with significant impacts on regional environments and public health. The effective management of OCRB remains a challenging task that requires timely access to various forms of monitored and forecasted information. Addressing this worldwide need, an open-source platform named AgriFireInfo v1.0, which is specifically tailored to monitoring and regulating regional OCRB activities, was developed. This technical note thoroughly illustrates the platform’s architecture, major modules, and visualization processes. Through AgriFireInfo v1.0, government agencies can access timely information about the spatial distribution of fire spots and emissions as well as meteorological conditions and air quality status. AgriFireInfo v1.0 also introduces an innovative Prevention Alarming Index, designed to identify regions prone to OCRB and promote comprehensive crop residue utilization. Furthermore, it offers the burning window and crop residue yields for controlled OCRB activities and can be used to analyze shifts in farmers’ burning behaviors and intensities. Future enhancements will focus on supplying holistic information on the burning windows and burning amounts of crop residues to further facilitate refined controlled burning activities and optimize decision-making processes. The flexibility and scalability of this platform can potentially allow users to easily customize and apply it to other regions or countries. Full article
Show Figures

Figure 1

19 pages, 7193 KiB  
Article
Ignition Locations and Simplified Design Guidelines for Enhancing the Resilience of Dwellings against Wildland Fires
by M�rio Rui Tiago Arruda, Ant�nio Renato A. Bicelli and Fernando Branco
Fire 2024, 7(2), 40; https://doi.org/10.3390/fire7020040 - 28 Jan 2024
Viewed by 1731
Abstract
This paper presents a study based on new fireproof design guidelines for dwellings against the impact of wildfires. The main objective is to present the results from the surveys of the large wildfires of 2017 in Portugal, identifying vulnerabilities in dwellings that may [...] Read more.
This paper presents a study based on new fireproof design guidelines for dwellings against the impact of wildfires. The main objective is to present the results from the surveys of the large wildfires of 2017 in Portugal, identifying vulnerabilities in dwellings that may result in spot ignitions when exposed to wildfires. Utilizing the information gathered from these surveys, it is possible to recommend fire resistance and reaction class requirements using European indoor fire standards and adapting them to suit wildfire conditions. The study focuses on classical dwellings predominantly located in high-risk fire zones within the wildland–urban interface. These assessments have the potential to generate new fireproof construction recommendations employing traditional materials commonly found in the European construction industry. Full article
(This article belongs to the Special Issue State of the Art in Combustion and Flames)
Show Figures

Figure 1

15 pages, 5453 KiB  
Article
Experimental Analysis on the Behaviors of a Laboratory Surface Fire Spreading across a Firebreak with Different Winds
by Hanwen Guo, Zhengyuan Yang, Ziqun Ye, Dong Xiang, Yunji Gao and Yuchun Zhang
Forests 2023, 14(12), 2455; https://doi.org/10.3390/f14122455 - 17 Dec 2023
Viewed by 1140
Abstract
In this work, a series of laboratory surface fire experiments were performed over a pine needle fuel bed to investigate the effectiveness of a firebreak and the behaviors of a surface fire across a firebreak. Seven wind velocities of 0~3.0 m/s and six [...] Read more.
In this work, a series of laboratory surface fire experiments were performed over a pine needle fuel bed to investigate the effectiveness of a firebreak and the behaviors of a surface fire across a firebreak. Seven wind velocities of 0~3.0 m/s and six firebreak widths of 10~35 cm are varied. The behaviors of a surface fire across the firebreak, the heat flux received by fuel surface and fuel temperature before and after the firebreak are analyzed and compared simultaneously. The main conclusions are as follows: the behaviors of a surface fire spreading across a firebreak under different wind velocities are classified into three categories—no ignition, ignition by flame contact and ignition by spot fires. When the wind velocity is not more than 1.0 m/s, the surface fire cannot successfully cross the firebreak; as wind velocity changes from 1.5 m/s to 2.5 m/s, the fuel after the firebreak can be ignited by flame contact for relatively narrow firebreak conditions; when the wind velocity increases to 3.0 m/s, the burning fuel can be blown away along the fuel bed, and the fuel behind the firebreak will be ignited by spot fire. A linear relationship between the threshold of firebreak width and the fireline intensity is obtained, and the linear fitting coefficient in this paper is larger than the results reported by Wilson (0.36). For no ignition conditions, the fuel temperature and the heat flux received by the fuel after firebreak are significantly lower than those before the firebreak, whereas their variations over time are similar to those before the firebreak for ignition conditions. Moreover, for no ignition conditions, the maximum fuel temperature and the heat flux after the firebreak increase with wind velocity, but decrease with firebreak width. Additionally, when the fuel temperature (253 °C) and the heat flux received by the fuel considering the radiation and convection (43 kW/m2) after firebreak exceed a threshold value, the surface fire can successfully cross the firebreak. Full article
(This article belongs to the Special Issue Fire Ecology and Management in Forest)
Show Figures

Figure 1

Back to TopTop