Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = hysteresis compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3944 KiB  
Article
Improvement of the Source Current Quality for a Shunt Active Power Filter Operating Using Hysteresis Technique with Stabilized Switching Frequency
by Andrzej Szromba
Energies 2024, 17(20), 5098; https://doi.org/10.3390/en17205098 - 14 Oct 2024
Viewed by 378
Abstract
Determining the current reference for a shunt active power filter (SAPF) can be carried out in many ways. Once the reference is determined, it can be shaped by SAPF switches with the use of pulse width modulation (PWM)/hysteresis control techniques. There are many [...] Read more.
Determining the current reference for a shunt active power filter (SAPF) can be carried out in many ways. Once the reference is determined, it can be shaped by SAPF switches with the use of pulse width modulation (PWM)/hysteresis control techniques. There are many variants of shaping the compensation waveform using these techniques. Nevertheless, regardless of the PWM/hysteresis technique adopted, a switching frequency current component appears in the system. It acts as a carrier used to inject a compensating current into the grid. Once the compensating current has been entered into the grid, the switching component should be reduced in it. This can be performed using RLC passive filters in various variants. The article discusses a variable/stabilized frequency hysteresis current control technique adapted for SAPF regulation with the use of current closed-loop control (source current direct control). For this technique, the passive filter should be placed outside the current control loop. The article focuses on examining the effectiveness of the interaction of the RLC filter with SAPF acting with such a control technique. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

22 pages, 3479 KiB  
Article
Modeling, System Identification, and Control of a Railway Running Gear with Independently Rotating Wheels on a Scaled Test Rig
by Tobias Posielek
Electronics 2024, 13(20), 3983; https://doi.org/10.3390/electronics13203983 - 10 Oct 2024
Viewed by 377
Abstract
The development and validation of lateral control strategies for railway running gears with independently rotating driven wheels (IRDWs) are an active research area due to their potential to enhance straight-track centering, curve steering performance, and reduce noise and wheel–rail wear. This paper focuses [...] Read more.
The development and validation of lateral control strategies for railway running gears with independently rotating driven wheels (IRDWs) are an active research area due to their potential to enhance straight-track centering, curve steering performance, and reduce noise and wheel–rail wear. This paper focuses on the practical application of theoretical models to a 1:5 scaled test rig developed by the German Aerospace Center (DLR), addressing the challenges posed by unmodeled phenomena such as hysteresis, varying damping and parameter identification. The theoretical model from prior work is adapted based on empirical measurements from the test rig, incorporating the varying open-loop stability of the front and rear wheel carriers, hysteresis effects, and other dynamic properties typically neglected in literature. A transparent procedure for identifying dynamic parameters is developed, validated through closed- and open-loop measurements. The refined model informs the design and tuning of a cascaded PI and PD controller, enhancing system stabilization by compensating for hysteresis and damping variations. The proposed approach demonstrates improved robustness and performance in controlling the lateral displacement of IRDWs, contributing to the advancement of safety-critical railway technologies. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

28 pages, 11658 KiB  
Article
A Novel Battery Temperature-Locking Method Based on Self-Heating Implemented with an Original Driving Circuit While Electric Vehicle Driving: A Numerical Investigation
by Wei Li, Shusheng Xiong and Wei Shi
World Electr. Veh. J. 2024, 15(9), 408; https://doi.org/10.3390/wevj15090408 - 6 Sep 2024
Viewed by 558
Abstract
In extremely cold environments, when battery electric vehicles (BEVs) are navigating urban roads at low speeds, the limited heating capacity of the on-board heat pump system and positive temperature coefficient (PTC) device can lead to an inevitable decline in battery temperature, potentially falling [...] Read more.
In extremely cold environments, when battery electric vehicles (BEVs) are navigating urban roads at low speeds, the limited heating capacity of the on-board heat pump system and positive temperature coefficient (PTC) device can lead to an inevitable decline in battery temperature, potentially falling below its permissible operating range. This situation can subsequently result in vehicle malfunctions and, in severe cases, traffic accidents. Henceforth, a novel battery self-heating method during driving is proposed to maintain battery temperature. This approach is ingeniously embedded within the heating mechanism within the motor driving system without any necessity to alter or modify the existing driving circuitry. In the meantime, the battery voltage can be regulated to prevent it from surpassing the limit, thereby ensuring the battery’s safety. This method introduces the dead zone into the space vector pulse width modulation (SVPWM) algorithm to form the newly proposed dSVPWM algorithm, which successfully changes the direction of the bus current in a PWM period and forms AC, and the amplitude of the battery alternating current (AC) can also be controlled by adjusting the heating intensity defined by the ratio of the dead zone and the compensation vector to the original zero vector. Through the Simulink model of the motor driving system, the temperature hysteresis locking strategy, grounded in the field-oriented control (FOC) method and employing the dSVPWM algorithm, has been confirmed to provide controllable and sufficiently stable motor speed regulation. During the low-speed phase of the China Light Vehicle Test Cycle (CLTC), the battery temperature fluctuation is meticulously maintained within a range of ±0.2 °C. The battery’s minimum temperature has been successfully locked at around −10 °C. In contrast, the battery temperature would decrease by a significant 1.44 °C per minute without the implementation of the temperature-locking strategy. The voltage of the battery pack is always regulated within the range of 255~378 V. It remains within the specified upper and lower thresholds. The battery voltage overrun can be effectively avoided. Full article
Show Figures

Figure 1

17 pages, 6632 KiB  
Article
Design of MEMS Pressure Sensor Anti-Interference System Based on Filtering and PID Compensation
by Baojie Li, Guiling Sun, Haicheng Zhang, Liang Dong and Yunlong Kong
Sensors 2024, 24(17), 5765; https://doi.org/10.3390/s24175765 - 5 Sep 2024
Viewed by 2346
Abstract
Due to the inherent temperature drift and lack of static stability in traditional pressure sensors, which make it difficult for them to meet the increasing demands of various industries, this paper designs a new system. The proposed system integrates temperature measurement and regulation [...] Read more.
Due to the inherent temperature drift and lack of static stability in traditional pressure sensors, which make it difficult for them to meet the increasing demands of various industries, this paper designs a new system. The proposed system integrates temperature measurement and regulation circuits, signal processing, and communication circuits to accurately acquire and transmit pressure sensor data. The system designs a filtering algorithm to filter the original data and develops a data-fitting operation to achieve error compensation of the static characteristics. In order to eliminate the temperature drift problem of the sensor system, the system also adopts an improved PID thermostatic control algorithm to compensate for the temperature drift. Finally, it can also transmit the processed pressure data remotely. The experimental results show that the nonlinear error at 50 °C is reduced from the initial 1.82% to 0.24%; the hysteresis error is significantly reduced from 1.23% to 0.046%; and the repeatability error control is reduced from 3.79% to 0.89%. By compensating for thermal drift, the system’s thermal sensitivity drift coefficient is reduced by 74.67%, the thermal zero drift coefficient is reduced by 66.24%, and the wireless communication range is up to 1km. The above significant optimization results fully validate the high accuracy and stability of the system, which is perfectly suited for demanding pressure measurement applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

25 pages, 8675 KiB  
Article
Estimation of Soil Moisture during Different Growth Stages of Summer Maize under Various Water Conditions Using UAV Multispectral Data and Machine Learning
by Ziqiang Chen, Hong Chen, Qin Dai, Yakun Wang and Xiaotao Hu
Agronomy 2024, 14(9), 2008; https://doi.org/10.3390/agronomy14092008 - 3 Sep 2024
Viewed by 484
Abstract
Accurate estimation of soil moisture content (SMC) is vital for effective farmland water management and informed irrigation decision-making. The utilization of unmanned aerial vehicle (UAV)-based remote sensing technology to monitor SMC offers advantages such as mobility, high timeliness, and high spatial resolution, thereby [...] Read more.
Accurate estimation of soil moisture content (SMC) is vital for effective farmland water management and informed irrigation decision-making. The utilization of unmanned aerial vehicle (UAV)-based remote sensing technology to monitor SMC offers advantages such as mobility, high timeliness, and high spatial resolution, thereby compensating for the limitations of in-situ observations and satellite remote sensing. However, previous research has primarily focused on SMC diagnostics for the entire crop growth period, often neglecting the development of targeted soil moisture modeling paradigms that account for the specific characteristics of the canopy and root zone at different growth stages. Furthermore, the variations in soil moisture status between fields, resulting from the hysteresis of water flow in irrigation channels at different levels, may influence the development of soil moisture modeling schemes, an area that has been seldom explored. In this study, SMC models based on UAV spectral information were constructed using Random Forest (RF) and Particle Swarm Optimization-Support Vector Machine (PSO-SVM) algorithms. The soil moisture modeling paradigms (i.e., input–output mapping) under different growth stages and soil moisture conditions of summer maize were systematically compared and discussed, along with the corresponding physical interpretability. Our results showed that (1) the SMC modeling schemes differ significantly across the various growth stages, with distinct input–output mappings recommended for the early (i.e., jointing, tasselling, and silking stages), middle (i.e., blister and milk stages), and late (i.e., maturing stage) periods. (2) these machine learning-based models performed best at the jointing stage, while subsequently, their accuracy generally exhibited a downward trend as the maize grew. (3) the RF model demonstrates superior robustness in estimating soil moisture status across different fields (moisture conditions), achieving optimal estimation accuracy in fields with overall higher SMC in line with the PSO-SVM model. (4) unlike the RF model’s robustness in spatial SMC diagnostics, the PSO-SVM model more reliably captured the temporal dynamics of SMC across different growth stages of summer maize. This study offers technical references for future modelers in UAV-based SMC modeling across various spatial and temporal conditions, addressing both the types of models as well as their input features. Full article
Show Figures

Figure 1

17 pages, 1907 KiB  
Article
Temperature Compensation Method for Piezoresistive Pressure Sensors Based on Gated Recurrent Unit
by Mian Liu, Zhiwu Wang, Pingping Jiang and Guozheng Yan
Sensors 2024, 24(16), 5394; https://doi.org/10.3390/s24165394 - 21 Aug 2024
Viewed by 577
Abstract
Piezoresistive pressure sensors have broad applications but often face accuracy challenges due to temperature-induced drift. Traditional compensation methods based on discrete data, such as polynomial interpolation, support vector machine (SVM), and artificial neural network (ANN), overlook the thermal hysteresis, resulting in lower accuracy. [...] Read more.
Piezoresistive pressure sensors have broad applications but often face accuracy challenges due to temperature-induced drift. Traditional compensation methods based on discrete data, such as polynomial interpolation, support vector machine (SVM), and artificial neural network (ANN), overlook the thermal hysteresis, resulting in lower accuracy. Considering the sequence-dependent nature of temperature drift, we propose the RF-IWOA-GRU temperature compensation model. Random forest (RF) is used to interpolate missing values in continuous data. A combination of gated recurrent unit (GRU) networks and an improved whale optimization algorithm (IWOA) is employed for temperature compensation. This model leverages the memory capability of GRU and the optimization efficiency of the IWOA to enhance the accuracy and stability of the pressure sensors. To validate the compensation method, experiments were designed under continuous variations in temperature and actual pressure. The experimental results show that the compensation capability of the proposed RF-IWOA-GRU model significantly outperforms that of traditional methods. After compensation, the standard deviation of pressure decreased from 10.18 kPa to 1.14 kPa, and the mean absolute error and root mean squared error were reduced by 75.10% and 76.15%, respectively. Full article
Show Figures

Figure 1

21 pages, 7181 KiB  
Article
Time-Delay Estimation Improves Active Disturbance Rejection Control for Time-Delay Nonlinear Systems
by Syeda Nadiah Fatima Nahri, Shengzhi Du, Barend J. van Wyk and Tawanda Denzel Nyasulu
Machines 2024, 12(8), 552; https://doi.org/10.3390/machines12080552 - 13 Aug 2024
Viewed by 686
Abstract
Lately, active disturbance rejection control (ADRC), a model-independent controller, has become popular for combating various forms of uncertain disturbances incurred in industrial applications. ADRC was validated for external disturbances, internal disturbances, and nonlinearities incurred under realistic scenarios. Time delay challenges all controllers, especially [...] Read more.
Lately, active disturbance rejection control (ADRC), a model-independent controller, has become popular for combating various forms of uncertain disturbances incurred in industrial applications. ADRC was validated for external disturbances, internal disturbances, and nonlinearities incurred under realistic scenarios. Time delay challenges all controllers, especially when it coexists with nonlinearities. This paper investigates the impacts of time delay and backlash-like hysteresis nonlinearity in ADRC-controlled systems. These impacts are analyzed, as in the case study, in two ADRC-based methods, namely the ADRC with delayed input method and the predictive extended state observer (PESO)-based ADRC (PESO-ADRC) method. To improve the system response and to attain a decent attenuation of uncertainties, the time-delay estimation (TDE) mechanism is introduced to the concerned ADRC-based methods. Experimental studies are conducted to verify the effectiveness and stability of the proposed TDE-ADRC methods. The results demonstrate the robustness and decent recovery of the transient response after the adverse impact of the backlash-like hysteresis on both concerned ADRC-controlled systems. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

21 pages, 7174 KiB  
Article
Laser-Tracing Multi-Station Measurements in a Non-Uniform-Temperature Field
by Hongfang Chen, Ao Zhang, Mengyang Sun, Changcheng Li, Huan Wu, Ziqi Liang and Zhaoyao Shi
Photonics 2024, 11(8), 727; https://doi.org/10.3390/photonics11080727 - 4 Aug 2024
Viewed by 598
Abstract
Due to the increasing requirements for the improvement of the accuracy of large coordinate-measuring machines (CMMs), the laser-tracing multi-station measurement technology, as one of the advanced precision measurement technologies, is worth studying in depth in terms of its practical application for the compensation [...] Read more.
Due to the increasing requirements for the improvement of the accuracy of large coordinate-measuring machines (CMMs), the laser-tracing multi-station measurement technology, as one of the advanced precision measurement technologies, is worth studying in depth in terms of its practical application for the compensation of errors in large CMMs. Since it is difficult to maintain a constant temperature of about 20 °C in the actual workshop under the influence of solar radiation and convective heat transfer, there is a gradient in the spatial temperature distribution, and the overall temperature changes with the influence of external factors with synchronous hysteresis, it is difficult for the actual calibration environment to meet the standard environmental requirements. Therefore, the influence of temperature and other environmental factors on the accuracy of laser ranging and large-scale CMM calibration should not be ignored. In this paper, on the basis of analyzing the temperature distribution and change rule of large CMM measurement space under different working conditions, the radial basis function (RBF) neural network algorithm was used to build a non-uniform-temperature field model, and based on this model and the measurement principle of the laser-tracking instrument, the method of laser tracking and interferometric ranging accuracy enhancement was put forward under a non-uniform-temperature field. Finally, based on the multi-station technique of laser tracing, an accurate solution for the volumetric error of large CMMs under the condition of non −20 °C ambient temperature was realized. Simulation results proved that compared with the traditional temperature-compensation method, the proposed method improved the measurement accuracy of the volumetric error of a large-scale CMM using laser-tracing multi-station technology in a non-uniform-temperature field by 33.5%. This study provides a new approach for improving the accuracy of laser-tracer multi-station measurement systems. Full article
(This article belongs to the Special Issue Micro-Nano Optics and High-End Measurement Instruments: 2nd Edition)
Show Figures

Figure 1

18 pages, 15179 KiB  
Article
Robust Force Control Based on Fuzzy ESO and Hysteresis Compensation for a Pneumatic Actuator-Driven Compliant Mechanism with Full-State Constraints
by Jidong Liu, Lei Sun, Zhiyuan Li, Peiwen Li, Lu Zhou and Wanbiao Lin
Actuators 2024, 13(8), 292; https://doi.org/10.3390/act13080292 - 2 Aug 2024
Viewed by 659
Abstract
This paper proposes a “planning and control” scheme for a compliant mechanism (CM) based on a pneumatic actuator (PAC) with hysteresis nonlinearity and full-state constraints. In the planning part, a novel direct inverse model is presented to compensate for hysteresis nonlinearity, enabling more [...] Read more.
This paper proposes a “planning and control” scheme for a compliant mechanism (CM) based on a pneumatic actuator (PAC) with hysteresis nonlinearity and full-state constraints. In the planning part, a novel direct inverse model is presented to compensate for hysteresis nonlinearity, enabling more accurate planning of the desired air pressure based on the desired contact force. In the control part, by fusing fuzzy logic systems (FLSs) and an extended state observer (ESO), a fuzzy ESO is developed to observe the external disturbance and the rate of change of the air pressure. Additionally, the challenges in the controller design caused by full-state constraints are overcome by constructing barrier Lyapunov functions (BLFs). It is proved that all signals of the closed-loop system are bounded, and the tracking error of the air pressure can converge to a small neighborhood of the origin. Finally, the effectiveness and robustness of the proposed method are verified by hardware experiments, which also show that the root mean square errors of force control accuracies are within 2N, achieving satisfactory force control effects. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

15 pages, 12313 KiB  
Article
Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics
by Yuxuan Cheng, Ruyan Yan, Bingyi Liu, Chun Yang and Tianyu Xie
Machines 2024, 12(8), 500; https://doi.org/10.3390/machines12080500 - 23 Jul 2024
Viewed by 593
Abstract
There is limited research on robotic systems designed for Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures using a side-view duodenoscope. The unique structure of the duodenoscope presents challenges to safely and precisely control the distal end pose. Control methods applied can reduce potential medical risks. [...] Read more.
There is limited research on robotic systems designed for Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures using a side-view duodenoscope. The unique structure of the duodenoscope presents challenges to safely and precisely control the distal end pose. Control methods applied can reduce potential medical risks. We have redesigned the control section of the duodenoscope to facilitate its manipulation by a robotic system. An orthogonal compensator is employed to rectify the motion planes to standard planes. A hysteresis compensator based on the Prandtl-Ishlinskii model enables precise control of the distal pose of the duodenoscope. Furthermore, we utilize a contact force prediction model to prevent excessive contact force at the distal end. The performance of the modified duodenoscope is comparable to that of the standard duodenoscope. Following orthogonal compensation, the deviation angles of the motion planes is reduced by 32% to 98%. Post-hysteresis compensation, the root mean square error (RMSE) of the output angle of the distal end is decreased from 8.347° to 4.826°. The accuracy of distal end contact force prediction was approximately ±25% under conditions of high contact force. In conclusion, the modification and control strategy we proposed can achieve relatively safe and precise control of bending section, laying the foundation for the subsequent roboticization of duodenoscope systems for ERCP procedures. Full article
(This article belongs to the Special Issue Design and Application of Medical and Rehabilitation Robots)
Show Figures

Figure 1

12 pages, 1878 KiB  
Article
The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking
by Xianfeng Zeng, Xiaozhi Zhang and Feng Nan
Actuators 2024, 13(7), 269; https://doi.org/10.3390/act13070269 - 17 Jul 2024
Cited by 1 | Viewed by 671
Abstract
This paper presents the design of a sliding mode controller to compensate hysteresis nonlinearity and achieve precision motion tracking for a novel piezoelectric tip/tilt platform driven by a PZT actuator. The sliding mode control scheme is based on the unique physical characteristics of [...] Read more.
This paper presents the design of a sliding mode controller to compensate hysteresis nonlinearity and achieve precision motion tracking for a novel piezoelectric tip/tilt platform driven by a PZT actuator. The sliding mode control scheme is based on the unique physical characteristics of the piezoelectric tip/tilt platform. The proposed scheme effectively guides the platform state onto a predefined sliding surface and ensures its sustained movement along this manifold. This approach reduces tracking errors compared to conventional methodologies. The stability of the sliding mode control scheme is demonstrated by the Lyapunov theory framework. It achieves precise motion control with minimal tracking error on a piezoelectric tip/tilt platform. The properties of the controller have been confirmed through experimental tests. The proposed control scheme enhances the robust tracking and stability performance on the piezoelectric tip/tilt platform, outperforming traditional control schemes. Compared with the P562.6CD produced by PI Germany, the proposed innovative approach not only boosts the platform’s resolution by 32% but also implements a 33% reduction in cost. Full article
Show Figures

Figure 1

18 pages, 9552 KiB  
Article
An In-Run Automatic Demodulation Phase Error Compensation Method for MEMS Gyroscope in Full Temperature Range
by Jianpeng Wang, Gongliu Yang, Yi Zhou, Jiangyuan Zhang, Fumin Liu and Qingzhong Cai
Micromachines 2024, 15(7), 825; https://doi.org/10.3390/mi15070825 - 26 Jun 2024
Viewed by 3870
Abstract
The demodulation phase error will cause the quadrature error to be coupled to the rate output, resulting in performance deterioration of the MEMS gyroscope. To solve this problem, an in-run automatic demodulation phase error compensation method is proposed in this paper. This method [...] Read more.
The demodulation phase error will cause the quadrature error to be coupled to the rate output, resulting in performance deterioration of the MEMS gyroscope. To solve this problem, an in-run automatic demodulation phase error compensation method is proposed in this paper. This method applies square wave angular rate input to the gyroscope and automatically identifies the value of the demodulation phase error through the designed automatic identification algorithm. To realize in-run automatic compensation, the demodulation phase error corresponding to the temperature point is measured every 10 °C in the full-temperature environment (−40~60 °C). The relationship between temperature and demodulation phase error is fitted by a third-order polynomial. The temperature is obtained by the temperature sensor and encapsulated in the ceramic packages of the MEMS gyroscope, and the in-run automatic compensation is realized based on the fitting curve. The temperature hysteresis effect on the zero-rate output (ZRO) of the gyroscope is eliminated after compensation. The bias instability (BI) of the three gyroscopes at room temperature (25 °C) is reduced by four to eight times to 0.1°/h, while that at full-temperature environment (−40~60 °C) is reduced by three to four times to 0.1°/h after in-run compensation. Full article
(This article belongs to the Special Issue Advances in MEMS Inertial Sensors)
Show Figures

Figure 1

21 pages, 4793 KiB  
Article
Compensation Observer-Based Adaptive Output Feedback Control for Multi-Agent Systems
by Zhaoyuan Liu and Ye Liu
Appl. Sci. 2024, 14(13), 5406; https://doi.org/10.3390/app14135406 - 21 Jun 2024
Viewed by 620
Abstract
This study presents a modified compensating observer control strategy for nonlinear multi-agent systems affected by unknown hysteresis signal loops. Compared to conventional high-gain observers, this approach introduces a novel compensation signal, effectively reducing the tracking error of traditional observers. Then, by utilizing a [...] Read more.
This study presents a modified compensating observer control strategy for nonlinear multi-agent systems affected by unknown hysteresis signal loops. Compared to conventional high-gain observers, this approach introduces a novel compensation signal, effectively reducing the tracking error of traditional observers. Then, by utilizing a backstepping method, an adaptive output feedback controller is designed, such that the tracking error converges to the small neighborhood around the origin. Simulation experiments with and without the compensation term demonstrate that this control strategy can effectively reduce error, but it increases input chattering to some extent. Full article
Show Figures

Figure 1

28 pages, 12978 KiB  
Article
A Novel Double Closed Loop Control of Temperature and Rotational Speed for Integrated Multi-Parameter Hydro-Viscous Speed Control System (HSCS)
by Kai Zhao, Yuan Wang, Shoukun Wang, Feiyue Gao, Xiang Feng, Hu Shen, Lin Zhang, Liang Wang, Bin Yu and Kaixian Ba
Machines 2024, 12(6), 394; https://doi.org/10.3390/machines12060394 - 10 Jun 2024
Viewed by 765
Abstract
Hydro-viscous clutch has already become an inevitable choice for special vehicle transmission in the present and future. As a nonlinear system with a large hysteresis loop, its speed control performance is affected by input rotational speed, lubricating oil temperature, lubrication pressure, and other [...] Read more.
Hydro-viscous clutch has already become an inevitable choice for special vehicle transmission in the present and future. As a nonlinear system with a large hysteresis loop, its speed control performance is affected by input rotational speed, lubricating oil temperature, lubrication pressure, and other factors. The traditional control method cannot adjust the temperature and rotational speed, which will lead to problems of narrow speed range, poor rotational speed stability, and large dynamic load impact. In order to solve the above problems, this paper studies the control method of an integrated multi-parameter hydro-viscous speed control system (HSCS) in a controlled environment. Through the mechanism analysis of the law of HSCS, the influence law of speed and temperature during the system operation is found. The temperature closed loop based on model predictive control (MPC) is introduced to control the rotational speed, and then the traditional PID control results are compensated according to the speed closed loop. Next, a novel double closed loop control method of temperature and rotational speed for HSCS is formed. Finally, the simulating verification is carried out. Compared with the traditional control method, the design method in this paper can adjust the control parameters according to the temperature of the lubricating oil and the input rotational speed and effectively expand the domain of HSCS and the speed control stability. The effective transmission ratio is extended to 0.2~0.8, and the hydro-viscous torque and speed fluctuation under the engine rotational speed fluctuation are reduced by more than 30%. The novel control method of HSCS designed in this paper can effectively improve the influence of input rotational speed and lubricating oil temperature on the speed control performance of HSCS and can be widely used in nonlinear HSCS such as hydro-viscous clutch. Full article
(This article belongs to the Special Issue Control and Mechanical System Engineering)
Show Figures

Figure 1

26 pages, 2503 KiB  
Article
Combined Control for a Piezoelectric Actuator Using a Feed-Forward Neural Network and Feedback Integral Fast Terminal Sliding Mode Control
by Eneko Artetxe, Oscar Barambones, Isidro Calvo, Asier del Rio and Jokin Uralde
Micromachines 2024, 15(6), 757; https://doi.org/10.3390/mi15060757 - 5 Jun 2024
Cited by 2 | Viewed by 874
Abstract
In recent years, there has been significant interest in incorporating micro-actuators into industrial environments; this interest is driven by advancements in fabrication methods. Piezoelectric actuators (PEAs) have emerged as vital components in various applications that require precise control and manipulation of mechanical systems. [...] Read more.
In recent years, there has been significant interest in incorporating micro-actuators into industrial environments; this interest is driven by advancements in fabrication methods. Piezoelectric actuators (PEAs) have emerged as vital components in various applications that require precise control and manipulation of mechanical systems. These actuators play a crucial role in the micro-positioning systems utilized in nanotechnology, microscopy, and semiconductor manufacturing; they enable extremely fine movements and adjustments and contribute to vibration control systems. More specifically, they are frequently used in precision positioning systems for optical components, mirrors, and lenses, and they enhance the accuracy of laser systems, telescopes, and image stabilization devices. Despite their numerous advantages, PEAs exhibit complex dynamics characterized by phenomena such as hysteresis, which can significantly impact accuracy and performance. The characterization of these non-linearities remains a challenge for PEA modeling. Recurrent artificial neural networks (ANNs) may simplify the modeling of the hysteresis dynamics for feed-forward compensation. To address these challenges, robust control strategies such as integral fast terminal sliding mode control (IFTSMC) have been proposed. Unlike traditional fast terminal sliding mode control methods, IFTSMC includes integral action to minimize steady-state errors, improving the tracking accuracy and disturbance rejection capabilities. However, accurate modeling of the non-linear dynamics of PEAs remains a challenge. In this study, we propose an ANN-based IFTSMC controller to address this issue and to enhance the precision and reliability of PEA positioning systems. We implement and validate the proposed controller in a real-time setup and compare its performance with that of a PID controller. The results obtained from real PEA experiments demonstrate the stability of the novel control structure, as corroborated by the theoretical analysis. Furthermore, experimental validation reveals a notable reduction in error compared to the PID controller. Full article
(This article belongs to the Special Issue Piezoelectric Devices and System in Micromachines)
Show Figures

Figure 1

Back to TopTop