Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (129)

Search Parameters:
Keywords = near-surface geophysics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8722 KiB  
Article
Geophysical Mapping of Cemented Subsoils for Agricultural Development in Southern Peru
by Edgard Gonzales, Javier Ticona, Armando Minaya, Richard Krahenbuhl, Jeffrey Shragge, Jared Low and Hanna Flamme
Sustainability 2024, 16(16), 6801; https://doi.org/10.3390/su16166801 - 8 Aug 2024
Viewed by 702
Abstract
Cemented subsoils, commonly referred to as caliche, pose a regular challenge for agricultural development in arid and semi-arid regions like coastal southern Peru. These subsurface features restrict root penetration, limit water infiltration and hinder essential soil processes, ultimately reducing crop yields and agricultural [...] Read more.
Cemented subsoils, commonly referred to as caliche, pose a regular challenge for agricultural development in arid and semi-arid regions like coastal southern Peru. These subsurface features restrict root penetration, limit water infiltration and hinder essential soil processes, ultimately reducing crop yields and agricultural productivity. Accurate and efficient mapping of caliche is important for optimizing land-use planning and implementing sustainable agricultural practices. This study presents the application of near-surface geophysical techniques for mapping caliche deposits in the context of agricultural development at the future Majes II site in the Arequipa region of southern Peru. Specifically, we employed high-frequency ground-penetrating radar (GPR) and frequency-domain electromagnetics (FDEM) at a testbed on the Majes II site to evaluate their ability to delineate the extent, thickness, and depth of caliche within the local geology. GPR offers high-resolution imaging, effectively capturing sharp contrasts between caliche and surrounding materials, providing detailed information on the thickness (approximately 0.4 m) and the depth (up to 1.5 m) of the caliche layers. FDEM provides valuable insights into the presence of caliche at a faster rate of data acquisition and processing, enabling rapid assessment of the extent of caliche deposits, although with the tradeoff of lower resolution and depth information. We demonstrate that these two geophysical methods can be used separately or in an integrated manner for collaborative interpretation at the Majes II site to inform land management decisions, including identifying areas with favorable conditions for crop production and implementing targeted interventions to mitigate the adverse effects of caliche on agricultural productivity. Full article
Show Figures

Figure 1

40 pages, 31280 KiB  
Article
Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA
by Hector R. Hinojosa-Prieto, Allen M. Rutherford and Jesse D. Brown
Heritage 2024, 7(8), 4045-4084; https://doi.org/10.3390/heritage7080191 - 31 Jul 2024
Viewed by 800
Abstract
The newly constructed Bois d’Arc Lake Reservoir in Fannin County, Texas, USA, inevitably flooded a large ground surface area (67.34 km2) when the reservoir began impounding water in April 2021. Inside this (now) flooded area, land-based archaeological data recovery investigations discovered [...] Read more.
The newly constructed Bois d’Arc Lake Reservoir in Fannin County, Texas, USA, inevitably flooded a large ground surface area (67.34 km2) when the reservoir began impounding water in April 2021. Inside this (now) flooded area, land-based archaeological data recovery investigations discovered and documented several archaeological sites, now registered in the state of Texas; though, only two neighboring sites, namely, 41FN178 and 41FN244, are examined here. The first phase of archaeological testing at these sites included shovel testing, test unit excavations, and geoarchaeological trenching that yielded archaeological artifacts suggesting that Middle Caddo Indian peoples (AD 1200–1400) might have occupied this landscape. As the sites were recognized before the reservoir’s impoundment phase, this merited a non-invasive, non-destructive, high-resolution near-surface geophysical study to map strategic areas within sites 41FN178 and 41FN244 that might yield potential shallow targets of archaeological context. The adopted geophysical survey comprised 3D direct current electrical resistivity imaging (ERI) and land horizontal magnetic gradiometry (HMG), each mapping a total surface area of 2133 and 15,640 m2, respectively. The combination of 3D ERI and land HMG surveys was instrumental in rapidly mapping the horizontal and vertical extent of shallowly buried anomalies within a large area prior to the completion of the dam and the beginning of water impoundment. Based on the geophysical insights, the outline of several Caddo houses with functional internal and external features (e.g., burnt cooking surfaces, storage pits, refuse pits, fired soil, ditches, a dump site, and a compound fence) are thought to exist within the uppermost 2 m of the Quaternary stratigraphy at both sites. At site 41FN244, 3D ERI found numerous resistive anomalies surrounding a conductive anomaly, collectively interpreted as a group of post-holes surrounding the remains of a Caddo house’s inner clay floor. It also found a cluster of several resistive anomalies interpreted as midden or middens. The HMG survey carried across areas from which archaeological test units also yielded positive findings, at sites 41FN178 and 41FN244, identified numerous scattered monopolar and dipolar anomalies interpreted as post-molds of Caddo houses, compound enclosures or fences, and adjacent middens. Archaeological excavations guided by the geophysical results yielded significant cultural material and post-mold features at site 244, which validate the geophysical interpretation in a preliminary context. Additionally, several dispersed magnetic anomalies are thought to be shallowly buried hearths, burn cooking surfaces, storage pits, and ditches. The mapped magnetic anomalies agree with the location and distribution of previously found archaeological artifacts and the extent of resistive and conductive resistivity anomalies. Follow-up archaeological excavations of these geophysical anomalies have preliminarily confirmed interpretations. Full article
(This article belongs to the Special Issue Unveiling the Past: Multidisciplinary Investigations in Archaeology)
Show Figures

Figure 1

16 pages, 7506 KiB  
Article
Application of Integrated Geological and Geophysical Surveys on the Exploration of Chalcedony Deposits: A Case Study on Nanhong Agate in Liangshan, China
by Shengping Gong, Keqiang Zhao, Mingming Wang, Shengwu Yan, Yong Li and Jianzhou Yang
Minerals 2024, 14(7), 677; https://doi.org/10.3390/min14070677 - 28 Jun 2024
Viewed by 698
Abstract
Nanhong agate, esteemed for its vivid color and natural shine, is experiencing a scarcity in supply despite its high demand. The primary deposits of agate, typically found near the surface, have not been extensively explored due to the predominance of traditional manual excavation [...] Read more.
Nanhong agate, esteemed for its vivid color and natural shine, is experiencing a scarcity in supply despite its high demand. The primary deposits of agate, typically found near the surface, have not been extensively explored due to the predominance of traditional manual excavation methods. This research examined the Nanhong agate deposits in the Zhaojue–Meigu region of Liangshan, China, employing the integration of geological and geophysical surveys. Field geological surveys allowed us to outline the general areas where agate is found. Following this, using magnetic surveys, vertical electrical sounding, and controlled-source audio magnetotellurics, agate deposits were located within the conglomerate layer of the second member of the Feixianguan Formation from the Lower Triassic period at depths of less than 100 m. Our results identify mineralized layers, Xuanwei Formation mudstone, and the underlying bedrock, thus supporting the creation of a mineral prediction map. This research provides essential insights and guidance for agate exploration and the development of associated mineral resources. Full article
Show Figures

Figure 1

17 pages, 5044 KiB  
Article
Design, Development and Application of a Modular Electromagnetic Induction (EMI) Sensor for Near-Surface Geophysical Surveys
by Luzian Wolf and Adrian Flores Orozco
Sensors 2024, 24(13), 4159; https://doi.org/10.3390/s24134159 - 26 Jun 2024
Viewed by 1472
Abstract
Low-frequency electromagnetic induction (EMI) is a non-invasive geophysical method that is based on the induction of electromagnetic (EM) waves into the subsurface to quantify changes in electrical conductivity. In this study, we present an open (design details and software are accessible) and modular [...] Read more.
Low-frequency electromagnetic induction (EMI) is a non-invasive geophysical method that is based on the induction of electromagnetic (EM) waves into the subsurface to quantify changes in electrical conductivity. In this study, we present an open (design details and software are accessible) and modular system for the collection of EMI data. The instrument proposed allows for the separations between the transmitter to be adjusted and up to four receiving antennas as well as the acquisition frequency (in the range between 3 and 50 kHz) to permit measurements with variable depth of investigation. The sensor provides access to raw data and the software described in this study allows control of the signal processing chain. The design specifications permit apparent conductivity measurements in the range of between 1 mS/m and 1000 mS/m, with a resolution of 1.0 mS/m and with a sampling rate of up to 10 samples per second. The sensor allows for a synchronous acquisition of a time stamp and a location stamp for each data sample. The sensor has a mass of less than 5 kg, is portable and suitable for one-person operation, provides 4 h of operation time on one battery charge, and provides sufficient rigidity for practical field operations. Full article
(This article belongs to the Special Issue Sensors and Geophysical Electromagnetics)
Show Figures

Graphical abstract

12 pages, 2392 KiB  
Article
Assessing an Abandoned Pyrite Cinder Deposit in Southeast Spain with Electrical Resistivity Tomography: A Case Study
by Marco D. Vásconez-Maza, Marcos A. Martínez-Segura, Pedro Martínez-Pagán, María C. Bueso, Ximena Capa-Camacho, Oussama Jabrane and Ángel Faz
Minerals 2024, 14(7), 652; https://doi.org/10.3390/min14070652 - 26 Jun 2024
Viewed by 1147
Abstract
Industrial activities have historically generated significant quantities of by-products, including pyrite cinders, a residue produced during the synthesis of sulphuric acid. This study presents a multidisciplinary approach to characterise an abandoned pyrite cinder deposit. Combining geophysical (electrical resistivity tomography—ERT), geochemical, and statistical methods, [...] Read more.
Industrial activities have historically generated significant quantities of by-products, including pyrite cinders, a residue produced during the synthesis of sulphuric acid. This study presents a multidisciplinary approach to characterise an abandoned pyrite cinder deposit. Combining geophysical (electrical resistivity tomography—ERT), geochemical, and statistical methods, we assess the physicochemical properties of the deposit and its environmental implications. Our findings reveal the presence of heavy metals, with lead (7017.5 mg.kg−1) being the most concentrated element on the surface of the deposit, exceeding local legal thresholds by more than 163 times, posing environmental risks and inhibiting vegetation growth. Subsurface characterisation indicates a decreasing concentration trend of metals with depth, alongside variations in pH and electrical conductivity. Clustering analysis identifies groups of similar behaviours between resistivity, the most abundant heavy metals, and other variables, providing valuable insights into the complex interplay within the deposit. Our study underscores the importance of integrated approaches in assessing and managing hazardous waste sites, with implications for environmental remediation strategies. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

18 pages, 7386 KiB  
Article
Sea Surface Height Measurements Based on Multi-Antenna GNSS Buoys
by Xiaoming Xue, Jichao Yang, Qing Zhao, Shengli Wang, Ranshuo Zhao and Hulin Shao
Sensors 2024, 24(11), 3451; https://doi.org/10.3390/s24113451 - 27 May 2024
Viewed by 802
Abstract
Sea level monitoring is an essential foundational project for studying global climate change and the rise in sea levels. Satellite radar altimeters, which can sometimes provide inaccurate sea surface height data near the coast, are affected by both the instrument itself and geophysical [...] Read more.
Sea level monitoring is an essential foundational project for studying global climate change and the rise in sea levels. Satellite radar altimeters, which can sometimes provide inaccurate sea surface height data near the coast, are affected by both the instrument itself and geophysical factors. Buoys equipped with GNSS receivers offer a relatively flexible deployment at sea, allowing for long-term, high-precision measurements of sea surface heights. When operating at sea, GNSS buoys undergo complex movements with multiple degrees of freedom. Attitude measurements are a crucial source of information for understanding the motion state of the buoy at sea, which is related to the buoy’s stability and reliability during its development. In this study, we designed and deployed a four-antenna GNSS buoy with both position and attitude measurement capabilities near Jimiya Wharf in Qingdao, China, to conduct offshore sea surface monitoring activities. The GNSS data were processed using the Precise Point Positioning (PPK) method to obtain a time series of sea surface heights, and the accuracy was evaluated using synchronous observation data from a small sea surface height radar. The difference between the GNSS buoy and the full-time radar was calculated, resulting in a root-mean-square error (RMSE) of 1.15 cm. Concurrently, the attitude of the GNSS buoy was calculated using multi-antenna technology, and the vertical elevation of the GNSS buoy antenna was corrected using the obtained attitude data. The RMSE between the corrected GNSS buoy data and the high ground radar was 1.12 cm, indicating that the four-antenna GNSS buoy can not only acquire high-precision coastal sea level data but also achieve synchronous measurement of the buoy’s attitude. Furthermore, the data accuracy was also improved after the sea level attitude correction. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 6014 KiB  
Article
High-Frequency and High-Current Transmission Techniques for Multiple Earth Electrical Characteristic Measurement Systems Based on Adaptive Impedance Matching through Phase Comparison
by Kuiyuan Zhang, Shulin Yang, Meng Wang and Rongbo Zhang
Sensors 2024, 24(10), 3110; https://doi.org/10.3390/s24103110 - 14 May 2024
Viewed by 704
Abstract
With the increase in groundwater exploration, underground mineral resource exploration, and non-destructive investigation of cultural relics, high-resolution earth electrical characteristic measurement has emerged as a mainstream technique owing to its advantageous non-destructive detection capability. To enhance the transmission power of the high-frequency transmitter [...] Read more.
With the increase in groundwater exploration, underground mineral resource exploration, and non-destructive investigation of cultural relics, high-resolution earth electrical characteristic measurement has emerged as a mainstream technique owing to its advantageous non-destructive detection capability. To enhance the transmission power of the high-frequency transmitter in high-resolution multiple earth electrical characteristic measurement systems (MECS), this study proposes a high-frequency, high-current transmission technique based on adaptive impedance matching and implemented through the integration of resonant capacitors, a controllable reactor, high-frequency transformers, and corresponding control circuits. A high-current precisely controllable reactor with a 94% inductance variation range was designed and combined with resonant capacitors to reduce circuit impedance. Additionally, high-frequency transformers were employed to further increase the transmission voltage. A prototype was developed and tested, demonstrating an increase in transmission current at frequencies between 10 and 120 kHz with a peak active power of 200 W. Under the same transmission voltage, compared to the transmission circuit without impedance matching, the transmission current increased to a maximum of 16.7 times (average of 10.8 times), whereas compared to the transmission circuit using only traditional impedance matching, the transmission current increased by a maximum of 10.0 times (average of 4.2 times), effectively improving the exploration resolution. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

33 pages, 54495 KiB  
Article
Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia)
by Petra Jamšek Rupnik, Jure Atanackov, Barbara Horn, Branko Mušič, Marjana Zajc, Christoph Grützner, Kamil Ustaszewski, Sumiko Tsukamoto, Matevž Novak, Blaž Milanič, Anže Markelj, Kristina Ivančič, Ana Novak, Jernej Jež, Manja Žebre, Miloš Bavec and Marko Vrabec
Remote Sens. 2024, 16(9), 1490; https://doi.org/10.3390/rs16091490 - 23 Apr 2024
Viewed by 1863
Abstract
We applied an interdisciplinary approach to analyze the late Quaternary activity of the Sava Fault in the Slovenian Southern Alps. The Sava Fault is an active strike-slip fault, and part of the Periadriatic Fault System that accommodated the convergence of Adria and Europe. [...] Read more.
We applied an interdisciplinary approach to analyze the late Quaternary activity of the Sava Fault in the Slovenian Southern Alps. The Sava Fault is an active strike-slip fault, and part of the Periadriatic Fault System that accommodated the convergence of Adria and Europe. It is one of the longest faults in the Southern Alps. Using high-resolution digital elevation models from lidar and photogrammetric surveys, we were able to overcome the challenges of assessing fault activity in a region with intense surface processes, dense vegetation, and relatively low fault slip rates. By integrating remote sensing analysis, geomorphological mapping, structural geological investigations, and near-surface geophysics (electrical resistivity tomography and ground penetrating radar), we were able to find subtle geomorphological indicators, detect near-surface deformation, and show distributed surface deformation and a complex fault pattern. Using optically stimulated luminescence dating, we tentatively estimated a slip rate of 1.8 ± 0.4 mm/a for the last 27 ka, which exceeds previous estimates and suggests temporal variability in fault behavior. Our study highlights the importance of modern high-resolution remote sensing techniques and interdisciplinary approaches in detecting tectonic deformation in relatively low-strain rate environments with intense surface processes. We show that slip rates can vary significantly depending on the studied time window. This is a critical piece of information since slip rates are a key input parameter for seismic hazard studies. Full article
Show Figures

Figure 1

21 pages, 23330 KiB  
Article
Assessment of Near-Surface Geophysical Methods Used to Discover Karst Bauxite Deposits in the Dinarides Using the Example of Posušje Area, Bosnia and Herzegovina
by Franjo Šumanovac, Josipa Kapuralić, Ivica Pavičić and Luka Perković
Minerals 2024, 14(4), 378; https://doi.org/10.3390/min14040378 - 3 Apr 2024
Viewed by 888
Abstract
Geophysical exploration of bauxite deposits has been carried out in the area of Posušje in Bosnia and Herzegovina, which were formed on an Upper Cretaceous carbonate substrate, whereas the hanging wall rocks can be Paleogene limestones and sedimentary clastic rocks. Karst terrains are [...] Read more.
Geophysical exploration of bauxite deposits has been carried out in the area of Posušje in Bosnia and Herzegovina, which were formed on an Upper Cretaceous carbonate substrate, whereas the hanging wall rocks can be Paleogene limestones and sedimentary clastic rocks. Karst terrains are demanding for geophysical exploration due to the relatively complex geological relationships and exceptional near-surface inhomogeneities that generate large noises and challenging conditions for taking field measurements. The fundamental question is whether geophysical research can detect exceptionally irregular karst bauxite deposits with relatively small dimensions. The basic idea is to combine several geophysical methods and a joint interpretation of several data sets to increase the efficiency of geophysical surveying in detecting complex bauxite deposits in karst terrains. Therefore, fundamental near-surface research methods, electrical tomography and seismic refraction are used. In addition, magnetometry was used to examine whether bauxite deposits yield potential magnetic anomalies that could help in detecting them. Research undertaken in the area of Posušje was carried out in the first step on already discovered and known bauxite deposits to determine whether geophysical responses correlate with the occurrence of bauxite deposits and to evaluate the effectiveness of each of the applied surface geophysical methods. Measurements were taken at several locations, and results for two micro-locations, Krstače and Mratnjača, are shown. Geophysical measurements were firstly performed on discovered bauxite deposits in order to reliably determine the possibility of identifying deposits in geophysical inverse models. Bauxite deposits were clearly recognised as characteristic geophysical responses in inversion models using both methods, electrical tomography and seismic refraction. Although the response of bauxite deposits is expressed in both models, resistivity and velocity, it is much more evident in resistivity models. The characteristic resistivity response was confirmed by the discovery of a new deposit. Therefore, the conclusion is that electrical resistivity tomography should be considered a basic method for exploring karst bauxite deposits. Seismic refraction provides a better characterisation of deposits and reduces the interpretation ambiguity. This solution can generally be applied to the problem of researching bauxite deposits in the Dinarides and similar geological models in the Mediterranean. Magnetometric measurements have shown that no magnetic anomalies could be associated with bauxite deposits, and only magnetometry was not successful in discovering bauxite deposits. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

15 pages, 6901 KiB  
Article
Environmental Monitoring of Pig Slurry Ponds Using Geochemical and Geoelectrical Techniques
by Ximena Capa-Camacho, Pedro Martínez-Pagán, José A. Acosta, Marcos A. Martínez-Segura, Marco Vásconez-Maza and Ángel Faz
Water 2024, 16(7), 1016; https://doi.org/10.3390/w16071016 - 31 Mar 2024
Viewed by 1216
Abstract
The efficient management of slurry, which is a by-product rich in nutrients derived from feces, urine, cleaning water, and animal waste that stands out for its high concentration of nutrients such as nitrogen, phosphorus, and potassium, is of vital importance, highlighting the importance [...] Read more.
The efficient management of slurry, which is a by-product rich in nutrients derived from feces, urine, cleaning water, and animal waste that stands out for its high concentration of nutrients such as nitrogen, phosphorus, and potassium, is of vital importance, highlighting the importance of slurry management in storage ponds, which. The Murcia–Spain region has an important number of pig farms. Hence, infrastructures dedicated to managing by-products are necessary to prevent environmental pollution and eutrophication of groundwater. The aim of a recent study was to evaluate the relationship between electrical values and geochemical parameters of pig slurry stored in a pond using ERT and geochemical analysis. In addition, the study was designed to monitor the pond to determine the geochemical characteristics of the slurry and to assess the risk of lateral contamination. The study results indicate a noticeable decrease in electrical resistivity values at 0.4 and 1.6 m depth in surveys 1 and 2. The reduction ranges from 50 to 100 percent. This paper presents a new method for monitoring slurry ponds using electrical resistivity tomography. This non-invasive method provides detailed information on the distribution and characteristics of the fluids, as well as a clear picture of the electrical resistivity of the subsurface. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

19 pages, 59549 KiB  
Technical Note
Near-Surface Geophysical Characterization of a Marble Deposit to Promote a Sustainable Small-Scale Mining
by Nathália de Souza Penna, Jorge Luís Porsani, Rodrigo Corra Rangel, Victor Hugo Hott Costa, Nicolas Correa de Oliveira, Marcelo Cesar Stangari and Conrado de Carvalho Braz de Faria Sousa
Remote Sens. 2024, 16(7), 1147; https://doi.org/10.3390/rs16071147 - 26 Mar 2024
Cited by 2 | Viewed by 1012
Abstract
Small-scale mining (SSM) is responsible for almost all the production of non-metallic minerals in the world and represents around 80% of the mining in Brazil. The lack of direct geological information increases the level of uncertainty associated with the exploratory process, compromises mine [...] Read more.
Small-scale mining (SSM) is responsible for almost all the production of non-metallic minerals in the world and represents around 80% of the mining in Brazil. The lack of direct geological information increases the level of uncertainty associated with the exploratory process, compromises mine planning, limits mineral extraction, and contributes to maximizing environmental issues. In this research, near-surface geophysical methods, including Electrical Resistivity, Capacitive Resistivity, Ground Penetrating Radar (GPR), and Transient Electromagnetic (TEM), were applied to characterize a marble deposit in an SSM located in the Campos do Jordão region, São Paulo state, southeast Brazil. The geophysical methods used provide indirect information about the subsurface geology based on the contrast in electrical and electromagnetic properties. Resistivity results show the efficiency of locating marble deposits, as well as fracture zones. GPR profiles allowed for the investigation of the structural heterogeneities in the subsurface. Geophysical data and lithological information from drill holes were integrated into Micromine software and guided the development of a geological model and a conceptual pit model. The information inferred from the pit modeling allowed us to analyze the potential of the deposit and should be used to assist in developing sustainable mining planning. The results of this work demonstrate that the investment in geophysical research can support the modernization of an SSM and contribute to more sustainable and productive mining. Full article
(This article belongs to the Special Issue Multi-Scale Remote Sensed Imagery for Mineral Exploration)
Show Figures

Graphical abstract

39 pages, 43506 KiB  
Article
Assessing Conservation Conditions at La Fortaleza de Kuelap, Peru, Based on Integrated Close-Range Remote Sensing and Near-Surface Geophysics
by Ivan Ghezzi, Jacek Kościuk, Warren Church, Parker VanValkenburgh, Bartłomiej Ćmielewski, Matthias Kucera, Paweł B. Dąbek, Jeff Contreras, Nilsson Mori, Giovanni Righetti, Stefano Serafini and Carol Rojas
Remote Sens. 2024, 16(6), 1053; https://doi.org/10.3390/rs16061053 - 16 Mar 2024
Viewed by 2679
Abstract
We combined datasets from multiple research projects and remote sensing technologies to evaluate conservation conditions at La Fortaleza de Kuelap, a pre-Hispanic site in Peru that suffered significant damage under heavy seasonal rains in April 2022. To identify the causes of the collapse [...] Read more.
We combined datasets from multiple research projects and remote sensing technologies to evaluate conservation conditions at La Fortaleza de Kuelap, a pre-Hispanic site in Peru that suffered significant damage under heavy seasonal rains in April 2022. To identify the causes of the collapse and where the monument is at further risk, we modeled surface hydrology using a DTM derived from drone LiDAR data, reconstructed a history of collapses, and calculated the volume of the most recent by fusing terrestrial LiDAR and photogrammetric datasets. In addition, we examined subsurface water accumulation with electrical resistivity, reconstructed the stratification of the monument with seismic refraction, and analyzed vegetation loss and ground moisture accumulation using satellite imagery. Our results point to rainwater infiltration as the most significant source of risk for La Fortaleza’s perimeter walls. Combined with other adverse natural conditions and contemporary conservation interventions, this led to the 2022 collapse. Specialists need to consider these factors when tasked with conserving monuments located in comparable high-altitude perhumid environments. This integration of analytical results demonstrates how multi-scalar and multi-instrumental approaches provide comprehensive and timely assessments of conservation needs. Full article
Show Figures

Figure 1

18 pages, 4667 KiB  
Article
Cooperative Exploration Model of Coal–Lithium Deposit: A Case Study of the Haerwusu Coal–Lithium Deposit in the Jungar Coalfield, Inner Mongolia, Northern China
by Xin Li, Yingchun Wei, Daiyong Cao, Jinhao Wei, Xiangyang Liu, Yun Zhang and Bo Dong
Minerals 2024, 14(2), 179; https://doi.org/10.3390/min14020179 - 7 Feb 2024
Cited by 6 | Viewed by 1167
Abstract
Lithium (Li) is an important strategic metal mineral resource, irreplaceable in the fields of modern industry, new energy technology, nuclear fusion, and energy storage devices. Li is an important supplement to traditional strategic metal mineral resources and has become an important avenue of [...] Read more.
Lithium (Li) is an important strategic metal mineral resource, irreplaceable in the fields of modern industry, new energy technology, nuclear fusion, and energy storage devices. Li is an important supplement to traditional strategic metal mineral resources and has become an important avenue of mineral resource exploration. Therefore, there is an urgent need to establish a cooperative exploration model of coal and Li deposits to lay a theoretical foundation from the perspective of technical optimization and economic rationality. This study is based on the distribution characteristics of the Haerwusu coal–Li deposit, and the effectiveness of the response to exploration techniques, the economical and effective exploration techniques, the reasonable exploration engineering design, and resource estimation parameters is investigated. Therefore, the cooperative exploration model of the coal–Li deposit is established. The high-Li areas in the surface of the Haerwusu Li deposit is distributed near the B1 anticline or in the middle area between the X1 syncline and the B1 anticline, and the vertical distribution of Li content is irregular. The exploration techniques, exploration engineering design, and resource estimation are reviewed and optimized. According to the geological, geochemical, and geophysical conditions, a reasonable cooperative exploration model for coal–Li deposits is established from the two aspects of the coordination of multi-mineral exploration and the coordination of various exploration technologies. The determination of the coal–Li deposit cooperative exploration model has important practical significance for improving the resource security system. Full article
Show Figures

Figure 1

18 pages, 2670 KiB  
Article
Absolute Calibration of a UAV-Mounted Ultra-Wideband Software-Defined Radar Using an External Target in the Near-Field
by Asem Melebari, Piril Nergis, Sepehr Eskandari, Pedro Ramos Costa and Mahta Moghaddam
Remote Sens. 2024, 16(2), 231; https://doi.org/10.3390/rs16020231 - 6 Jan 2024
Cited by 2 | Viewed by 1084
Abstract
We describe a method to calibrate a Software-Defined Radar (SDRadar) system mounted on an uncrewed aerial vehicle (UAV) with an ultra-wideband (UWB) waveform operated in the near-field region. Radar calibration is a prerequisite for using the full capabilities of the radar system to [...] Read more.
We describe a method to calibrate a Software-Defined Radar (SDRadar) system mounted on an uncrewed aerial vehicle (UAV) with an ultra-wideband (UWB) waveform operated in the near-field region. Radar calibration is a prerequisite for using the full capabilities of the radar system to retrieve geophysical parameters accurately. We introduce a framework and process to calibrate the SDRadar with the UWB waveform in the 675 MHz–3 GHz range in the near-field region. Furthermore, we present the framework for computing the near-field radar cross section (RCS) of an external passive calibration target, a trihedral corner reflector (CR), using HFSS software and with consideration for specific antennas. The calibration performance was evaluated with various distances between the calibration target and radar antennas. The necessity for the knowledge of the near-field RCS to calibrate SDRadar was demonstrated, which sets this work apart from the standard method of using a trihedral CR for backscatter radar calibration. We were able to achieve approximately 0.5 dB accuracy when calibrating the SDRadar in the anechoic chamber using a trihedral CR. In outdoor field conditions, where the ground rough surface scattering effects are present, the calibration performance was lower, approximately 1.5 dB. A solution is proposed to overcome the ground effect by elevating the CR above the ground level, which enables applying time-gating around the CR echo, excluding the reflection from the ground. Full article
Show Figures

Graphical abstract

18 pages, 19566 KiB  
Article
Assessing Shallow Soft Deposits through Near-Surface Geophysics and UAV-SfM: Application in Pocket Beaches Environments
by Luciano Galone, Sebastiano D’Amico, Emanuele Colica, Peter Iregbeyen, Pauline Galea, Lluís Rivero and Fabio Villani
Remote Sens. 2024, 16(1), 40; https://doi.org/10.3390/rs16010040 - 21 Dec 2023
Cited by 3 | Viewed by 1071
Abstract
This study employs a multimethod approach to investigate the sediment distribution in two pocket beaches, Ramla Beach and Mellieha S Beach, in Malta. Both study sites were digitally reconstructed using unmanned aerial vehicle (UAV) photogrammetry. For each case, an ERT and a dense [...] Read more.
This study employs a multimethod approach to investigate the sediment distribution in two pocket beaches, Ramla Beach and Mellieha S Beach, in Malta. Both study sites were digitally reconstructed using unmanned aerial vehicle (UAV) photogrammetry. For each case, an ERT and a dense network of ambient seismic noise measurements processed through a horizontal-to-vertical spectral ratio (HVSR) technique were acquired. Electrical resistivity tomography (ERT) analysis enables the estimation of sediment thickness in each beach. HVSR analysis revealed peaks related to beach sediments overlying limestone rocks in both sites and also indicated a deeper stratigraphic contact in Mellieha S Beach. Based on ERT measurements, sediment thickness is calculated for each HVSR measurement. Interpolation of results allows for bedrock surface modelling in each case study, and when combined with digital terrain models (DTMs) derived from photogrammetric models, sediment volumes are estimated for each site. The geometry of this surface is analyzed from a geological perspective, showing structural control of sediment distribution due to a normal fault in Mellieha S Beach and stratigraphic control facilitated by a highly erodible surface in Ramla Beach. The results emphasize the importance of adopting a three-dimensional perspective in coastal studies for precise sediment volume characterization and a deeper understanding of pocket beach dynamics. This practical multimethod approach presented here offers valuable tools for future coastal research and effective coastal management, facilitating informed decision making amidst the growing vulnerability of coastal zones to climate change impacts. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology Ⅱ)
Show Figures

Figure 1

Back to TopTop