Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = phycocyanin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1586 KiB  
Review
The Neuroprotective Role of Cyanobacteria with Focus on the Anti-Inflammatory and Antioxidant Potential: Current Status and Perspectives
by Fl�via Rodrigues, Mariana Reis, Leonor Ferreira, Clara Grosso, Ricardo Ferraz, M�nica Vieira, Vitor Vasconcelos and Ros�rio Martins
Molecules 2024, 29(20), 4799; https://doi.org/10.3390/molecules29204799 - 10 Oct 2024
Abstract
Neurodegenerative diseases are linked to the process of neurodegeneration. This can be caused by several mechanisms, including inflammation and accumulation of reactive oxygen species. Despite their high incidence, there is still no effective treatment or cure for these diseases. Cyanobacteria have been seen [...] Read more.
Neurodegenerative diseases are linked to the process of neurodegeneration. This can be caused by several mechanisms, including inflammation and accumulation of reactive oxygen species. Despite their high incidence, there is still no effective treatment or cure for these diseases. Cyanobacteria have been seen as a possible source for new compounds with anti-inflammatory and antioxidant potential, such as polysaccharides (sacran), phycobiliproteins (phycocyanin) and lipopeptides (honaucins and malyngamides), which can be interesting to combat neurodegeneration. As a promising case of success, Arthrospira (formerly Spirulina) has revealed a high potential for preventing neurodegeneration. Additionally, advantageous culture conditions and sustainable production of cyanobacteria, which are allied to the development of genetic, metabolic, and biochemical engineering, are promising. The aim of this review is to compile and highlight research on the anti-inflammatory and antioxidant potential of cyanobacteria with focus on the application as neuroprotective agents. Also, a major goal is to address essential features that brand cyanobacteria as an ecoefficient and economically viable option, linking health to sustainability. Full article
Show Figures

Figure 1

38 pages, 2438 KiB  
Review
Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin
by Mirosława Chwil, Rok Mihelič, Renata Matraszek-Gawron, Paulina Terlecka, Michał M. Skoczylas and Karol Terlecki
Pharmaceuticals 2024, 17(10), 1321; https://doi.org/10.3390/ph17101321 - 3 Oct 2024
Abstract
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0–71.3/46.0–63.0), carbohydrates (16.0–20.0/12.0–17.0), fats (0.9–14.2/6.4–14.3), polyphenolic compounds and phenols (7.3–33.2/7.8–44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises [...] Read more.
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0–71.3/46.0–63.0), carbohydrates (16.0–20.0/12.0–17.0), fats (0.9–14.2/6.4–14.3), polyphenolic compounds and phenols (7.3–33.2/7.8–44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises the research on the chemical profile, therapeutic effects in dermatological problems, application of Arthrospira and Spirulina microalgae, and contraindications to their use. The pro-health properties of these microalgae were analysed based on the relevant literature from 2019 to 2024. The antiviral mechanism of microalgal activity involves the inhibition of viral replication and enhancement of immunity. The anti-acne activity is attributed to alkaloids, alkanes, phenols, alkenes, phycocyanins, phthalates, tannins, carboxylic and phthalic acids, saponins, and steroids. The antibacterial activity generally depends on the components and structure of the bacterial cell wall. Their healing effect results from the inhibition of inflammatory and apoptotic processes, reduction of pro-inflammatory cytokines, stimulation of angiogenesis, and proliferation of fibroblasts and keratinocytes. The photoprotective action is regulated by amino acids, phlorotannins, carotenoids, mycosporins, and polyphenols inhibiting the production of tyrosinase, pro-inflammatory cytokines, and free oxygen radicals in fibroblasts and the stimulation of collagen production. Microalgae are promising molecular ingredients in innovative formulations of parapharmaceuticals and cosmetics used in the prophylaxis and therapy of dermatological problems. This review shows the application of spirulina-based commercial skin-care products as well as the safety and contraindications of spirulina use. Furthermore, the main directions for future studies of the pro-health suitability of microalgae exerting multidirectional effects on human skin are presented. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

11 pages, 813 KiB  
Article
Extraction and Concentration of Spirulina Water-Soluble Metabolites by Ultrafiltration
by Claudia Salazar-Gonz�lez, Carolina Mendoza Ramos, Hugo A. Mart�nez-Correa and Hugo Fabi�n Lobat�n Garc�a
Plants 2024, 13(19), 2770; https://doi.org/10.3390/plants13192770 - 3 Oct 2024
Abstract
Spirulina (Arthospira platensis) is known for its rich content of natural compounds like phycocyanin, chlorophylls, carotenoids, and high protein levels, making it a nutrient-dense food. Over the past decade, research has aimed to optimize the extraction, separation, and purification of these [...] Read more.
Spirulina (Arthospira platensis) is known for its rich content of natural compounds like phycocyanin, chlorophylls, carotenoids, and high protein levels, making it a nutrient-dense food. Over the past decade, research has aimed to optimize the extraction, separation, and purification of these valuable metabolites, focusing on technologies such as high-pressure processing, ultrasound-assisted extraction, and microwave-assisted extraction as well as enzymatic treatments, chromatographic precipitation, and membrane separation. In this study, various extraction methods (conventional vs. ultrasound-assisted), solvents (water vs. phosphate buffer), solvent-to-biomass ratios (1:5 vs. 1:10), and ultrafiltration (PES membrane of MWCO 3 kDa, 2 bar) were evaluated. The quantities of total protein, phycocyanin (PC), chlorophyll a (Cla), and total carotenoids (TCC) were measured. The results showed that ultrasound-assisted extraction (UAE) with phosphate buffer at a 1:10 ratio yielded a metabolite-rich retentate (MRR) with 37.0 ± 1.9 mg/g of PC, 617 ± 15 mg/g of protein, 0.4 ± 0.2 mg/g of Cla, and 0.15 ± 0.14 mg/g of TCC. Water extraction in the concentration process achieved the highest concentrations in MRR, with approximately 76% PC, 92% total protein, 62% Cla, and 41% TCC. These findings highlight the effective extraction and concentration processes to obtain a metabolite-rich retentate from Spirulina biomass, reducing the volume tenfold and showing potential as a functional ingredient for the food, cosmetic, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

19 pages, 4570 KiB  
Article
Effects of Arthrospira platensis on Human Umbilical Vein Endothelial Cells
by Anne Kr�ger-Genge, Kudor Harb, Steffen Braune, Conrad H. G. Jung, Sophia Westphal, Stefanie B�r, Olivia Mauger, Jan-Heiner K�pper and Friedrich Jung
Life 2024, 14(10), 1253; https://doi.org/10.3390/life14101253 - 1 Oct 2024
Abstract
Atherosclerosis is initiated by injury or damage to the vascular endothelial cell monolayer. Therefore, the early repair of the damaged vascular endothelium by a proliferation of neighbouring endothelial cells is important to prevent atherosclerosis and thrombotic events. Arthrospira platensis (AP) has been used [...] Read more.
Atherosclerosis is initiated by injury or damage to the vascular endothelial cell monolayer. Therefore, the early repair of the damaged vascular endothelium by a proliferation of neighbouring endothelial cells is important to prevent atherosclerosis and thrombotic events. Arthrospira platensis (AP) has been used as a dietary supplement, mainly due to its high content of vitamins, minerals, amino acids, and pigments such as chlorophylls, carotenoids, and phycocyanin, ingredients with antioxidant, anti-inflammatory, and anti-thrombotic properties. Therefore, in this prospective, placebo-controlled, data-driven, sample-size-estimated in vitro study, we tested whether an aqueous extract of AP at different concentrations (50, 100, and 200 µg/mL) had an effect on the different cellular parameters of human umbilical vein endothelial cells. Therefore, cell impedance measurement and cell proliferation were measured to investigate the monolayer formation. In addition, cell viability, integrity, and metabolism were analysed to evaluate singular cellular functions, especially the antithrombotic state. Furthermore, cell–cell and cell–substrate interactions were observed. The highest proliferation was achieved after the addition of 100 µg/mL. This was consistently confirmed by two independent optical experiments in cell cultures 48 h and 85 h after seeding and additionally by an indirect test. At this concentration, the activation or dysfunction of HUVECs was completely prevented, as confirmed by prostacyclin and interleukin-6 levels. In conclusion, in this study, AP induced a significant increase in HUVEC proliferation without inducing an inflammatory response but altered the hemostasiological balance in favour of prostacyclin over thromboxane, thereby creating an antithrombotic state. Thus, APE could be applied in the future as an accelerator of endothelial cell proliferation after, e.g., stent placement or atherosclerosis. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 5173 KiB  
Article
Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization
by Diana-Ioana Buliga, Alexandra Mocanu, Edina Rusen, Aurel Diacon, Gabriela Toader, Oana Brincoveanu, Ioan Călinescu and Aurelian Cristian Boscornea
Mar. Drugs 2024, 22(10), 434; https://doi.org/10.3390/md22100434 - 25 Sep 2024
Abstract
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio [...] Read more.
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 w/v). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the RP value, phycocyanin extract obtained by MAE (1:15 w/v algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R2 value at higher pH was nearly 1, indicating a superior fit compared with lower pH values. Full article
(This article belongs to the Special Issue Recent Advances in Marine-Derived Pigments)
Show Figures

Graphical abstract

25 pages, 4231 KiB  
Article
Estimating Chlorophyll-a and Phycocyanin Concentrations in Inland Temperate Lakes across New York State Using Sentinel-2 Images: Application of Google Earth Engine for Efficient Satellite Image Processing
by Sara Akbarnejad Nesheli, Lindi J. Quackenbush and Lewis McCaffrey
Remote Sens. 2024, 16(18), 3504; https://doi.org/10.3390/rs16183504 - 21 Sep 2024
Abstract
Harmful algae blooms (HABs) have been reported with greater frequency in lakes across New York State (NYS) in recent years. In situ sampling is used to assess water quality, but such observations are time intensive and therefore practically limited in their spatial extent. [...] Read more.
Harmful algae blooms (HABs) have been reported with greater frequency in lakes across New York State (NYS) in recent years. In situ sampling is used to assess water quality, but such observations are time intensive and therefore practically limited in their spatial extent. Previous research has used remote sensing imagery to estimate phytoplankton pigments (typically chlorophyll-a or phycocyanin) as HAB indicators. The primary goal of this study was to validate a remote sensing-based method to estimate cyanobacteria concentrations at high temporal (5 days) and spatial (10–20 m) resolution, to allow identification of lakes across NYS at a significant risk of algal blooms, thereby facilitating targeted field investigations. We used Google Earth Engine (GEE) as a cloud computing platform to develop an efficient methodology to process Sentinel-2 image collections at a large spatial and temporal scale. Our research used linear regression to model the correlation between in situ observations of chlorophyll-a (Chl-a) and phycocyanin and indices derived from Sentinel-2 data to evaluate the potential of remote sensing-derived inputs for estimating cyanobacteria concentrations. We tested the performance of empirical models based on seven remote-sensing-derived indices, two in situ measurements, two cloud mitigation approaches, and three temporal sampling windows across NYS lakes for 2019 and 2020. Our best base model (R2 of 0.63), using concurrent sampling data and the ESA cloud masking—i.e., the QA60 bitmask—approach, related the maximum peak height (MPH) index to phycocyanin concentrations. Expanding the temporal match using a one-day time window increased the available training dataset size and improved the fit of the linear regression model (R2 of 0.71), highlighting the positive impact of increasing the training dataset on model fit. Applying the Cloud Score+ method for filtering cloud and cloud shadows further improved the fit of the phycocyanin estimation model, with an R2 of 0.84, but did not result in substantial improvements in the model’s application. The fit of the Chl-a models was generally poorer, but these models still had good accuracy in detecting moderate and high Chl-a values. Future work will focus on exploring alternative algorithms that can incorporate diverse data sources and lake characteristics, contributing to a deeper understanding of the relationship between remote sensing data and water quality parameters. This research provides a valuable tool for cyanobacteria parameter estimation with confidence quantification to identify lakes at risk of algal blooms. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

13 pages, 1658 KiB  
Article
Reduction of Multispecies Biofilms on an Acrylic Denture Base Model by Antimicrobial Photodynamic Therapy Mediated by Natural Photosensitizers
by Ali Shahi Ardakani, Stefano Benedicenti, Luca Solimei, Sima Shahabi and Shima Afrasiabi
Pharmaceuticals 2024, 17(9), 1232; https://doi.org/10.3390/ph17091232 - 18 Sep 2024
Abstract
Objectives: The aim of this study is to investigate the antimicrobial efficacy of antimicrobial photodynamic therapy (PDT) using natural photosensitizers (curcumin, riboflavin, and phycocyanin) and light-emitting diode (LED) irradiation against multispecies biofilms in an acrylic denture base model. Materials and Methods: Forty-five acrylic [...] Read more.
Objectives: The aim of this study is to investigate the antimicrobial efficacy of antimicrobial photodynamic therapy (PDT) using natural photosensitizers (curcumin, riboflavin, and phycocyanin) and light-emitting diode (LED) irradiation against multispecies biofilms in an acrylic denture base model. Materials and Methods: Forty-five acrylic specimens were fabricated using heat-curing acrylic resin. The specimens were then infected with a mixed culture of bacterial and fungal species (including Streptococcus mutans, Streptococcus sanguinis, Candida albicans, and Candida glabrata) for 4 days. The acrylic discs were divided into nine groups, with each group containing five discs: control, 0.2% chlorhexidine, 5.25% sodium hypochlorite, curcumin, riboflavin, phycocyanin alone or along with LED. After treatment, the number of colony-forming units (CFUs) per milliliter was counted. In addition, the extent of biofilm degradation was assessed using the crystal violet staining method and scanning electron microscopy. Results: All experimental groups exhibited a significant reduction in colony numbers for both bacterial and fungal species compared to the control (p < 0.001). The PDT groups exhibited a statistically significant reduction in colony counts for both bacteria and fungi compared to the photosensitizer-only groups. Conclusions: The results of this in vitro study show that PDT with natural photosensitizers and LED devices can effectively reduce the viability and eradicate the biofilm of microorganisms responsible for causing denture infections. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

18 pages, 1778 KiB  
Article
In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration
by Daiva Galinytė, Jurga Bernatoniene, Modestas Žilius, Kristina Rysevaitė-Kyguolienė, Arūnas Savickas, Jūratė Karosienė, Vitalis Briedis, Dainius Haroldas Pauža and Nijolė Savickienė
Pharmaceuticals 2024, 17(9), 1224; https://doi.org/10.3390/ph17091224 - 17 Sep 2024
Abstract
Background: This study explored the most suitable materials for incorporating cyano-phycocyanin (C-PC) into hydrogels, focusing on maintaining the C-PC’s long-term structural integrity and stabilityNext, the release of C-PC from the hydrogels and its skin penetration were investigated. Methods: A series of 1% ( [...] Read more.
Background: This study explored the most suitable materials for incorporating cyano-phycocyanin (C-PC) into hydrogels, focusing on maintaining the C-PC’s long-term structural integrity and stabilityNext, the release of C-PC from the hydrogels and its skin penetration were investigated. Methods: A series of 1% (w/w) C-PC hydrogels was prepared using various gelling agents and preservatives. Spectrophotometric measurements compared the amount of C-PC in the hydrogels to the initially added amount. After selecting the most suitable gelling agent and preservative, two C-PC hydrogels, with and without propylene glycol (PG) (Sigma-Aldrich, St. Louis, MO, USA), were produced for further testing. In vitro release studies utilized modified Franz-type diffusion cells, while ex vivo skin-permeation studies employed Bronaugh-type cells and human skin. Confocal laser scanning microscopy analyzed C-PC accumulation in the skin. Results: The findings demonstrated that sodium alginate (Sigma-Aldrich, St. Louis, MO, USA), hydroxyethyl cellulose (HEC) (Sigma-Aldrich, St. Louis, MO, USA), and SoligelTM (Givaudan, Vernier, Switzerland) are effective biopolymers for formulating hydrogels while maintaining C-PC stability. After 6 h, C-PC release from the hydrogel containing PG was approximately 10% or 728.07 (±19.35) μg/cm2, significantly higher than the nearly 7% or 531.44 (±26.81) μg/cm2 release from the hydrogel without PG (p < 0.05). The ex vivo qualitative skin-permeation study indicated that PG enhances C-PC penetration into the outermost skin layer. Conclusion: PG’s ability to enhance the release of C-PC from the hydrogel, coupled with its capacity to modify the skin barrier ex vivo, facilitates the penetration of C-PC into the stratum corneum. Full article
(This article belongs to the Special Issue Pharmaceutical Formulation Characterization Design)
Show Figures

Graphical abstract

10 pages, 627 KiB  
Article
Structural Insights into Phycocyanin Langmuir–Blodgett Multilayers via Serial Femtosecond Crystallography with X-ray Free-Electron Laser
by Eugenia Pechkova, Fabio Massimo Speranza, Paola Ghisellini, Stefano Fiordoro, Cristina Rando and Roberto Eggenhöffner
Crystals 2024, 14(9), 767; https://doi.org/10.3390/cryst14090767 - 29 Aug 2024
Viewed by 292
Abstract
Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has revolutionized classical X-ray diffraction experiments by utilizing ultra-short, intense, and coherent X-ray pulses. However, the SFX approach still requires thousands of nearly identical samples, leading to significant protein consumption. We propose utilizing Langmuir–Blodgett [...] Read more.
Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has revolutionized classical X-ray diffraction experiments by utilizing ultra-short, intense, and coherent X-ray pulses. However, the SFX approach still requires thousands of nearly identical samples, leading to significant protein consumption. We propose utilizing Langmuir–Blodgett protein multilayers, which are characterized by long-range order, thermal stability, and the ability to induce protein crystallization, even in proteins that cannot be crystallized by conventional methods. This study aimed to combine the intrinsic properties of Langmuir–Blodgett multilayers with advanced XFEL techniques at the Linac Coherent Light Source. Since the macromolecule organization can be explored in nano or 2D crystals exploiting the properties of SFX–XFEL radiation that enable the capture of high-resolution diffraction images before radiation damage occurs, we propose Langmuir–Blodgett protein nanofilm technology as a novel approach for direct “on-chip” protein sample preparation. The present study extends previous investigations into Langmuir–Blodgett phycocyanin multilayer nanofilms using synchrotron radiation cryo-EM microscopy and second-order nonlinear imaging of chiral crystal (SONICC) experiments. We also examined the thermal stability of phycocyanin Langmuir–Blodgett multilayered films deposited on Si3N4 membranes to evaluate structural changes occurring at 150 °C compared with room temperature. Phycocyanin Langmuir–Blodgett films are worthy of investigation in view of their suitability for tissue engineering and other applications due to their thermal integrity and stability as the results of the present investigation reveal. Full article
(This article belongs to the Special Issue X-ray Protein Crystallography)
Show Figures

Figure 1

12 pages, 6660 KiB  
Article
Amide–π Interactions in the Structural Stability of Proteins: Role in the Oligomeric Phycocyanins
by Luka M. Breberina, Mario V. Zlatović, Srđan Đ. Stojanović and Milan R. Nikolić
Computation 2024, 12(9), 172; https://doi.org/10.3390/computation12090172 - 27 Aug 2024
Viewed by 353
Abstract
This study investigates the influences and environmental preferences of amide–π interactions, a relatively unexplored class of charge-free interactions, in oligomeric phycocyanins. In a data set of 20 proteins, we observed 2086 amide–π interactions, all of which were part of the protein backbone. Phe [...] Read more.
This study investigates the influences and environmental preferences of amide–π interactions, a relatively unexplored class of charge-free interactions, in oligomeric phycocyanins. In a data set of 20 proteins, we observed 2086 amide–π interactions, all of which were part of the protein backbone. Phe and Tyr residues were found to be involved in amide–π interactions more frequently than Trp or His. The most favorable amide–π interactions occurred within a pair distance range of 5–7 Å, with a distinct angle preference for T-shaped ring arrangements. Multiple interaction patterns suggest that approximately 76% of the total interacting residues participate in multiple amide–π interactions. Our ab initio calculations revealed that most amide–π interactions have energy from 0 to −2 kcal/mol. Stabilization centers of phycocyanins showed that all residues in amide–π interactions play a crucial role in locating one or more such centers. Around 78% of the total interacting residues in the dataset contribute to creating hot-spot regions. Notably, the amide–π interacting residues were found to be highly evolutionarily conserved. These findings enhance our understanding of the structural stability and potential for protein engineering of phycocyanins used as bioactive natural colorants in various industries, including food and pharmaceuticals. Full article
(This article belongs to the Section Computational Chemistry)
Show Figures

Figure 1

18 pages, 1810 KiB  
Article
Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content
by Nicola Pio Russo, Marika Ballotta, Luca Usai, Serenella Torre, Maurizio Giordano, Giacomo Fais, Mattia Casula, Debora Dess�, Paola Nieri, Eya Damergi, Giovanni Antonio Lutzu and Alessandro Concas
Mar. Drugs 2024, 22(9), 381; https://doi.org/10.3390/md22090381 - 24 Aug 2024
Viewed by 876
Abstract
Arthrospira platensis holds promise for biotechnological applications due to its rapid growth and ability to produce valuable bioactive compounds like phycocyanin (PC). This study explores the impact of salinity and brewery wastewater (BWW) on the mixotrophic cultivation of A. platensis. Utilizing BWW [...] Read more.
Arthrospira platensis holds promise for biotechnological applications due to its rapid growth and ability to produce valuable bioactive compounds like phycocyanin (PC). This study explores the impact of salinity and brewery wastewater (BWW) on the mixotrophic cultivation of A. platensis. Utilizing BWW as an organic carbon source and seawater (SW) for salt stress, we aim to optimize PC production and biomass composition. Under mixotrophic conditions with 2% BWW and SW, A. platensis showed enhanced biomass productivity, reaching a maximum of 3.70 g L−1 and significant increases in PC concentration. This study also observed changes in biochemical composition, with elevated protein and carbohydrate levels under salt stress that mimics the use of seawater. Mixotrophic cultivation with BWW and SW also influenced the FAME profile, enhancing the content of C16:0 and C18:1 FAMES. The purity (EP of 1.15) and yield (100 mg g−1) of PC were notably higher in mixotrophic cultures, indicating the potential for commercial applications in food, cosmetics, and pharmaceuticals. This research underscores the benefits of integrating the use of saline water with waste valorization in microalgae cultivation, promoting sustainability and economic efficiency in biotechnological processes. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Graphical abstract

20 pages, 4951 KiB  
Article
Spectral Characteristics, In Silico Perspectives, Density Functional Theory (DFT), and Therapeutic Potential of Green-Extracted Phycocyanin from Spirulina
by Velichka Andonova, Krastena Nikolova, Ivelin Iliev, Svetlana Georgieva, Nadezhda Petkova, Mehran Feizi-Dehnayebi, Stoyanka Nikolova and Anelia Gerasimova
Int. J. Mol. Sci. 2024, 25(17), 9170; https://doi.org/10.3390/ijms25179170 - 23 Aug 2024
Cited by 1 | Viewed by 325
Abstract
Phycocyanin (PC) is a naturally occurring green pigment in Spirulina. It was extracted by ultrasonic extraction using green technology, and its structure was studied using IR- and NMR-spectroscopy. Spectral data confirmed the PC structure. This study also involves an in silico assessment of [...] Read more.
Phycocyanin (PC) is a naturally occurring green pigment in Spirulina. It was extracted by ultrasonic extraction using green technology, and its structure was studied using IR- and NMR-spectroscopy. Spectral data confirmed the PC structure. This study also involves an in silico assessment of the diverse applications of green pigment PC. Utilizing QSAR, PreADME/T, SwissADME, and Pro-Tox, this study explores the safety profile, pharmacokinetics, and potential targets of PC. QSAR analysis reveals a favorable safety profile, with the parent structure and most metabolites showing no binding to DNA or proteins. PreADME/T indicates low skin permeability, excellent intestinal absorption, and medium permeability, supporting oral administration. Distribution analysis suggests moderate plasma protein binding and cautious blood–brain barrier permeability, guiding formulation strategies. Metabolism assessments highlight interactions with key cytochrome P450 enzymes, influencing drug interactions. Target prediction analysis unveils potential targets, suggesting diverse therapeutic effects, including cardiovascular benefits, anti-inflammatory activities, neuroprotection, and immune modulation. Based on the in silico analysis, PC holds promise for various applications due to its safety, bioavailability, and potential therapeutic benefits. Experimental validation is crucial to elucidate precise molecular mechanisms, ensuring safe and effective utilization in therapeutic and dietary contexts. DFT calculations, including geometry optimization, MEP analysis, HOMO-LUMO energy surface, and quantum reactivity parameters of the PC compound, were obtained using the B3LYP/6–311G(d,p) level. This integrated approach contributes to a comprehensive understanding of PC’s pharmacological profile and informs future research directions. Full article
(This article belongs to the Special Issue Computational, Structural and Spectroscopic Studies of Macromolecules)
Show Figures

Graphical abstract

14 pages, 5350 KiB  
Article
Optimization of Phycocyanobilin Synthesis in E. coli BL21: Biotechnological Insights and Challenges for Scalable Production
by Julia Esclapez, Laura Matarredona, Guillermo Zafrilla, M�nica Camacho, Mar�a-Jos� Bonete and Basilio Zafrilla
Genes 2024, 15(8), 1058; https://doi.org/10.3390/genes15081058 - 12 Aug 2024
Viewed by 562
Abstract
Phycocyanobilin (PCB) is a small chromophore found in certain phycobiliproteins, such as phycocyanins (PCs) and allophycocyanins (APCs). PCB, along with other phycobilins (PBs) and intermediates such as biliverdin (BV) or phycoerythrobilin (PEB), is attracting increasing biotechnological interest due to its fluorescent and medicinal [...] Read more.
Phycocyanobilin (PCB) is a small chromophore found in certain phycobiliproteins, such as phycocyanins (PCs) and allophycocyanins (APCs). PCB, along with other phycobilins (PBs) and intermediates such as biliverdin (BV) or phycoerythrobilin (PEB), is attracting increasing biotechnological interest due to its fluorescent and medicinal properties that allow potential applications in biomedicine and the food industry. This study aims to optimize PCB synthesis in Escherichia coli BL21 (DE3) and scale the process to a pre-industrial level. Parameters such as optimal temperature, inducer concentration, initial OD600, and stirring speed were analyzed in shake flask cultures to maximize PCB production. The best results were obtained at a temperature of 28 °C, an IPTG concentration of 0.1 mM, an initial OD600 of 0.5, and an orbital shaking speed of 260 rpm. Furthermore, the optimized protocol was scaled up into a 2 L bioreactor batch, achieving a maximum PCB concentration of 3.8 mg/L. Analysis of the results revealed that biosynthesis of exogenous PBs in Escherichia coli BL21 (DE3) is highly dependent on the metabolic burden of the host. Several scenarios, such as too rapid growth, high inducer concentration, or mechanical stress, can advance entry into the stationary phase. That progressively halts pigment synthesis, leading, in some cases, to its excretion into the growth media and ultimately triggering rapid degradation by the host. These conclusions provide a promising protocol for scalable PCB production and highlight the main biotechnological challenges to increase the yields of the process. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1106 KiB  
Article
Molecular Screening for Cyanobacteria and Their Cyanotoxin Potential in Diverse Habitats
by Maša Jablonska, Tina Eleršek, Polona Kogovšek, Sara Skok, Andreea Oarga-Mulec and Janez Mulec
Toxins 2024, 16(8), 333; https://doi.org/10.3390/toxins16080333 - 27 Jul 2024
Viewed by 687
Abstract
Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and [...] Read more.
Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and niches remain underexplored. We collected 61 samples of: (i) biofilms from springs, (ii) aerial microbial mats from buildings and subaerial mats from caves, and (iii) water from borehole wells, caves, alkaline, saline, sulphidic, thermal, and iron springs, rivers, seas, and melted cave ice from five countries (Croatia, Georgia, Italy, Serbia, and Slovenia). We used (q)PCR to detect cyanobacteria (phycocyanin intergenic spacer—PC-IGS and cyanobacteria-specific 16S rRNA gene) and cyanotoxin genes (microcystins—mcyE, saxitoxins—sxtA, cylindrospermopsins—cyrJ), as well as amplicon sequencing and morphological observations for taxonomic identification. Cyanobacteria were detected in samples from caves, a saline spring, and an alkaline spring. While mcyE or sxtA genes were not observed in any sample, cyrJ results showed the presence of a potential cylindrospermopsin producer in a biofilm from a sulphidic spring in Slovenia. This study contributes to our understanding of cyanobacteria occurrence in diverse habitats, including rare and extreme ones, and provides relevant methodological considerations for future research in such environments. Full article
Show Figures

Graphical abstract

11 pages, 783 KiB  
Article
Effects of a Dietary Microalgae (Arthrospira platensis) Supplement on Stress, Well-Being, and Performance in Water Polo Players: A Clinical Case Series
by Ignazio La Mantia, Antonino Maniaci, Giuseppe Scibilia and Paolo Scollo
Nutrients 2024, 16(15), 2421; https://doi.org/10.3390/nu16152421 - 25 Jul 2024
Viewed by 978
Abstract
Background: A common tactic used by athletes to improve performance, lessen tiredness, and hasten recovery is dietary supplementation. We aimed to assess the role of a microalgae dietary liquid supplement additivated with Copper 22.5% NRV in water polo players’ performance. Methods: Twenty male [...] Read more.
Background: A common tactic used by athletes to improve performance, lessen tiredness, and hasten recovery is dietary supplementation. We aimed to assess the role of a microalgae dietary liquid supplement additivated with Copper 22.5% NRV in water polo players’ performance. Methods: Twenty male water polo players were split into two groups: ten (spirulina group) took a twice-daily nutritional supplement containing 15 mL of spirulina liquid extract (titrated in Phycocyanin 1 mg/mL) and additivated with Copper 22.5% NRV for eight weeks, and ten (the placebo group) did not take the supplement. Subjective evaluations were finished using the Athlete’s Subjective Performance Scale (ASPS). Levels of the biomarker creatine phosphokinase (CPK) were also assessed. Results: The spirulina group’s mean total ASPS score increased significantly from baseline to follow-up and was significantly better than that of the placebo group (p < 0.001). Conversely, ASPS ratings in the placebo group slightly decreased. A positive correlation between spirulina supplementation and less severe ASPS was found using correlation matrix analysis. However, there was a slight difference in CPK levels from the baseline to the follow-up in the spirulina group. Conclusions: A dietary supplement comprising spirulina and copper may help water polo players’ subjective performance measurements by lowering muscular tension. Larger, randomized controlled trials are yet required. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

Back to TopTop