Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,005)

Search Parameters:
Keywords = sensor-to-plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3502 KiB  
Article
Development of a Low-Cost Sensor System for Accurate Soil Assessment and Biological Activity Profiling
by Antonio Ruiz-Gonzalez, Harriet Kempson and Jim Haseloff
Micromachines 2024, 15(11), 1293; https://doi.org/10.3390/mi15111293 (registering DOI) - 24 Oct 2024
Abstract
The development of low-cost tools for rapid soil assessment has become a crucial field due to the increasing demands in food production and carbon storage. However, current methods for soil evaluation are costly and cannot provide enough information about the quality of samples. [...] Read more.
The development of low-cost tools for rapid soil assessment has become a crucial field due to the increasing demands in food production and carbon storage. However, current methods for soil evaluation are costly and cannot provide enough information about the quality of samples. This work reports for the first time a low-cost 3D printed device that can be used for soil classification as well as the study of biological activity. The system incorporated multiple physical and gas sensors for the characterisation of sample types and profiling of soil volatilome. Sensing data were obtained from 31 variables, including 18 individual light wavelengths that could be used to determine seed germination rates of tomato plants. A machine learning algorithm was trained using the data obtained by characterising 75 different soil samples. The algorithm could predict seed germination rates with high accuracy (RSMLE = 0.01, and R2 = 0.99), enabling an objective and non-invasive study of the impact of multiple environmental parameters in soil quality. To allow for a more complete profiling of soil biological activity, molecular imprinted-based fine particles were designed to quantify tryptophol, a quorum-sensing signalling molecule commonly used by fungal populations. This device could quantify the concentration of tryptophol down to 10 nM, offering the possibility of studying the interactions between fungi and bacterial populations. The final device could monitor the growth of microbial populations in soil, and offering an accurate assessment of quality at a low cost, impacting germination rates by incorporating hybrid data from the microsensors. Full article
Show Figures

Figure 1

20 pages, 6544 KiB  
Article
Scale-Dependent Effects of Urban Canopy Cover, Canopy Volume, and Impervious Surfaces on Near-Surface Air Temperature in a Mid-Sized City
by Carson Ralls, Anne Y. Polyakov and Vivek Shandas
Land 2024, 13(11), 1741; https://doi.org/10.3390/land13111741 - 23 Oct 2024
Abstract
Cities are significantly warmer than their surrounding rural environments. Known as the ‘urban heat island effect’, it can affect the health of urban residents and lead to increased energy use, public health impacts, and damage to infrastructure. Although this effect is extensively researched, [...] Read more.
Cities are significantly warmer than their surrounding rural environments. Known as the ‘urban heat island effect’, it can affect the health of urban residents and lead to increased energy use, public health impacts, and damage to infrastructure. Although this effect is extensively researched, less is known about how landscape characteristics within cities affect local temperature variation. This study examined how tree canopy cover, canopy volume, and impervious surface cover affect daytime near-surface air temperature, and how these effects vary between different scales of analysis (10, 30, 60, 90 m radii), ranging from approximate street corridor to city block size. Temperature data were obtained from a car-mounted sensor, with traverse data points recorded during morning, afternoon, and evening times, plotted throughout the city of Portland, OR. The variability in near-surface air temperature was over 10° F during each traverse period. The results indicate that near-surface air temperature increased linearly with impervious surface cover and decreased linearly with tree canopy cover, with canopy volume reducing the temperature by 1° F for every 500 cubic feet of canopy volume for evening temperatures. The magnitude of the effect of tree canopy increased with spatial scale, with 60 and 90 m scales having the greatest measurable effect. Canopy volume had a positive relationship on presumed nighttime and early-morning temperatures at 60 and 90 m scales, potentially due to the impacts of wind fluctuation and air roughness. Canopy cover still contributed the largest overall decrease in street-scale temperatures. Increasing tree canopy cover and volume effectively explained the lower daytime and evening temperatures, while reducing impervious surface cover remains critical for reducing morning and presumed nighttime urban heat. The results may inform strategies for urban foresters and planners in managing urban land cover and tree planting patterns to build increased resiliency towards moderating urban temperature under warming climate conditions. Full article
Show Figures

Figure 1

21 pages, 3356 KiB  
Article
Indoor Environmental Quality in Portuguese Office Buildings: Influencing Factors and Impact of an Intervention Study
by Fátima Felgueiras, Zenaida Mourão, André Moreira and Marta F. Gabriel
Sustainability 2024, 16(21), 9160; https://doi.org/10.3390/su16219160 - 22 Oct 2024
Abstract
Office workers spend a considerable part of their day at the workplace, making it vital to ensure proper indoor environmental quality (IEQ) conditions in office buildings. This work aimed to identify significant factors influencing IEQ and assess the effectiveness of an environmental intervention [...] Read more.
Office workers spend a considerable part of their day at the workplace, making it vital to ensure proper indoor environmental quality (IEQ) conditions in office buildings. This work aimed to identify significant factors influencing IEQ and assess the effectiveness of an environmental intervention program, which included the introduction of indoor plants, carbon dioxide (CO2) sensors, ventilation, and printer relocation (source control), in six modern office buildings in improving IEQ. Thirty office spaces in Porto, Portugal, were randomly divided into intervention and control groups. Indoor air quality, thermal comfort, illuminance, and noise were monitored before and after a 14-day intervention implementation. Occupancy, natural ventilation, floor type, and cleaning time significantly influenced IEQ levels. Biophilic interventions appeared to decrease volatile organic compound concentrations by 30%. Installing CO2 sensors and optimizing ventilation strategies in an office that mainly relies on natural ventilation effectively improved air renewal and resulted in a 28% decrease in CO2 levels. The implementation of a source control intervention led to a decrease in ultrafine particle and ozone concentrations by 14% and 85%, respectively. However, an unexpected increase in airborne particle levels was detected. Overall, for a sample of offices that presented acceptable IEQ levels, the intervention program had only minor or inconsistent impacts. Offices with declared IEQ problems are prime candidates for further research to fully understand the potential of environmental interventions. Full article
Show Figures

Figure 1

20 pages, 17753 KiB  
Article
KOALA: A Modular Dual-Arm Robot for Automated Precision Pruning Equipped with Cross-Functionality Sensor Fusion
by Charan Vikram, Sidharth Jeyabal, Prithvi Krishna Chittoor, Sathian Pookkuttath, Mohan Rajesh Elara and Wang You
Agriculture 2024, 14(10), 1852; https://doi.org/10.3390/agriculture14101852 - 21 Oct 2024
Abstract
Landscape maintenance is essential for ensuring agricultural productivity, promoting sustainable land use, and preserving soil and ecosystem health. Pruning is a labor-intensive task among landscaping applications that often involves repetitive pruning operations. To address these limitations, this paper presents the development of a [...] Read more.
Landscape maintenance is essential for ensuring agricultural productivity, promoting sustainable land use, and preserving soil and ecosystem health. Pruning is a labor-intensive task among landscaping applications that often involves repetitive pruning operations. To address these limitations, this paper presents the development of a dual-arm holonomic robot (called the KOALA robot) for precision plant pruning. The robot utilizes a cross-functionality sensor fusion approach, combining light detection and ranging (LiDAR) sensor and depth camera data for plant recognition and isolating the data points that require pruning. The You Only Look Once v8 (YOLOv8) object detection model powers the plant detection algorithm, achieving a 98.5% pruning plant detection rate and a 95% pruning accuracy using camera, depth sensor, and LiDAR data. The fused data allows the robot to identify the target boxwood plants, assess the density of the pruning area, and optimize the pruning path. The robot operates at a pruning speed of 10–50 cm/s and has a maximum robot travel speed of 0.5 m/s, with the ability to perform up to 4 h of pruning. The robot’s base can lift 400 kg, ensuring stability and versatility for multiple applications. The findings demonstrate the robot’s potential to significantly enhance efficiency, reduce labor requirements, and improve landscape maintenance precision compared to those of traditional manual methods. This paves the way for further advancements in automating repetitive tasks within landscaping applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 9980 KiB  
Article
Biofeedback-Based Closed-Loop Phytoactuation in Vertical Farming and Controlled-Environment Agriculture
by Serge Kernbach
Biomimetics 2024, 9(10), 640; https://doi.org/10.3390/biomimetics9100640 - 18 Oct 2024
Viewed by 395
Abstract
This work focuses on biohybrid systems—plants with biosensors and actuating mechanisms that enhance the ability of biological organisms to control environmental parameters, to optimize growth conditions or to cope with stress factors. Biofeedback-based phytoactuation represents the next step of development in hydroponics, vertical [...] Read more.
This work focuses on biohybrid systems—plants with biosensors and actuating mechanisms that enhance the ability of biological organisms to control environmental parameters, to optimize growth conditions or to cope with stress factors. Biofeedback-based phytoactuation represents the next step of development in hydroponics, vertical farming and controlled-environment agriculture. The sensing part of the discussed approach uses (electro)physiological sensors. The hydrodynamics of fluid transport systems, estimated electrochemically, is compared with sap flow data provided by heat-based methods. In vivo impedance spectroscopy enables the discrimination of water, nutrient and photosynthates in the plant stem. Additionally to plant physiology, the system measures several air/soil and environmental parameters. The actuating part includes a multi-channel power module to control phytolight, irrigation, fertilization and air/water preparation. We demonstrate several tested in situ applications of a closed-loop control based on real-time biofeedback. In vertical farming, this is used to optimize energy and water consumption, reduce growth time and detect stress. Biofeedback was able to reduce the microgreen production cycle from 7 days to 4–5 days and the production of wheatgrass from 10 days to 7–8 days, and, in combination with biofeedback-based irrigation, a 30% increase in pea biomass was achieved. Its energy optimization can reach 25–30%. In environmental monitoring, the system performs the biological monitoring of environmental pollution (a low concentration of O3) with tomato and tobacco plants. In AI research, a complex exploration of biological organisms, and in particular the adaptation mechanisms of circadian clocks to changing environments, has been shown. This paper introduces a phytosensor system, describes its electrochemical measurements and discusses its tested applications. Full article
(This article belongs to the Special Issue Biomechanics and Biomimetics in Engineering Design)
Show Figures

Figure 1

25 pages, 2842 KiB  
Article
A Novel Fractional High-Order Sliding Mode Control for Enhanced Bioreactor Performance
by Abraham E. Rodríguez-Mata, Jesús A. Medrano-Hermosillo, Pablo A. López-Pérez, Victor A. Gonzalez-Huitron, Rafael Castro-Linares and Jorge Said Cervantes-Rojas
Fractal Fract. 2024, 8(10), 607; https://doi.org/10.3390/fractalfract8100607 - 18 Oct 2024
Viewed by 200
Abstract
This research introduces a fractional high-order sliding mode control (FHOSMC) method that utilises an inverse integral fractional order, 0<β<1, as the high order on the FHOSMC reaching law, exhibiting a novel contribution in the related field of study. [...] Read more.
This research introduces a fractional high-order sliding mode control (FHOSMC) method that utilises an inverse integral fractional order, 0<β<1, as the high order on the FHOSMC reaching law, exhibiting a novel contribution in the related field of study. The application of the proposed approach into a bioreactor system via diffeomorphism operations demonstrates a notable improvement in the management of the bioreactor dynamics versus classic controllers. The numerical findings highlight an improved precision in tracking reference signals and an enhanced plant stability compared to proportional–integral–derivative (PID) controller implementations within challenging disturbance scenarios. The FHOSMC effectively maintains the biomass concentration at desired levels, reducing the wear of the system as well as implementation expenses. Furthermore, the theoretical analysis of the convergence within time indicates substantial potential for further enhancements. Subsequent studies might focus on extending this control approach to bioreactor systems that integrate sensor technologies and the formulation of adaptive algorithms for real-time adjustments of β-type fractional-orders. Full article
(This article belongs to the Special Issue Fractional-Order Approaches in Automation: Models and Algorithms)
Show Figures

Figure 1

25 pages, 10670 KiB  
Article
Study on a Novel Reseeding Device of a Precision Potato Planter
by Jiarui Wang, Min Liao, Hailong Xia, Rui Chen, Junju Li, Junmin Li and Jie Yang
Agriculture 2024, 14(10), 1824; https://doi.org/10.3390/agriculture14101824 - 16 Oct 2024
Viewed by 347
Abstract
In order to address the problem of a high miss-seeding rate in mechanized potato planting work, a novel reseeding device is designed and analyzed. Based on dynamic and kinematic principles, the seed potato’s motion analysis model in the seed preparation process was constructed. [...] Read more.
In order to address the problem of a high miss-seeding rate in mechanized potato planting work, a novel reseeding device is designed and analyzed. Based on dynamic and kinematic principles, the seed potato’s motion analysis model in the seed preparation process was constructed. The analysis results indicate that the seed preparation performance is positively related to the seed preparation opening length l1 and inclination angle of the seed-returning pipe θ. Then, the potato’s motion analysis model in the reseeding process was constructed. The analysis showed that the displacement of seeding potatoes in the horizontal direction ds is influenced by the initial seeding potato’s speed v0t, dropping height hs, and the angle between the seeding pipe and the horizontal ground βs. The horizontal moving distance xr of the reseeding potatoes is influenced by the angle between the bottom of the reseeding pipe and horizontal ground βs2, the distance from its centroid to the reseeding door d, and the dropping height of the potato hr. The analysis results indicated that the reseeding potato can be effectively discharged into the furrow. Then, a prototype of a reseeding control system was constructed based on the STM32 microcontroller, electric pushers, and through-beam laser sensors. The simulation analysis was conducted to verify the theoretical analysis by using EDEM2020 software. The simulation results indicated that with the increase in the seeding chain speed, the seed preparation success rate initially increased slowly and then decreased gradually. The seed preparation performance can be increased by increasing the seed preparation opening length or decreasing the seed-returning pipe inclination angle. The impact on the successful seed preparation rate is ranked by significance as follows: seed preparation opening length > seed-returning pipe inclination angle > chain speed. Then, the prototype reseeding device and the corresponding seed metering device were manufactured and a series of bench tests and field tests were conducted. The bench test results showed an average successful seed preparation rate of 93.6%. The average qualified-seeding rate, miss-seeding rate, and multi-seeding rate in the field test were 89.6%, 2.46%, and 7.94%, respectively. This study can provide a theoretical reference for the design of potato reseeding devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 10398 KiB  
Article
U-Net Semantic Segmentation-Based Calorific Value Estimation of Straw Multifuels for Combined Heat and Power Generation Processes
by Lianming Li, Zhiwei Wang and Defeng He
Energies 2024, 17(20), 5143; https://doi.org/10.3390/en17205143 - 16 Oct 2024
Viewed by 305
Abstract
This paper proposes a system for real-time estimation of the calorific value of mixed straw fuels based on an improved U-Net semantic segmentation model. This system aims to address the uncertainty in heat and power generation per unit time in combined heat and [...] Read more.
This paper proposes a system for real-time estimation of the calorific value of mixed straw fuels based on an improved U-Net semantic segmentation model. This system aims to address the uncertainty in heat and power generation per unit time in combined heat and power generation (CHPG) systems caused by fluctuations in the calorific value of straw fuels. The system integrates an industrial camera, moisture detector, and quality sensors to capture images of the multi-fuel straw. It applies the improved U-Net segmentation network for semantic segmentation of the images, accurately calculating the proportion of each type of straw. The improved U-Net network introduces a self-attention mechanism in the skip connections of the final layer of the encoder, replacing traditional convolutions by depthwise separable convolutions, as well as replacing the traditional convolutional bottleneck layers with Transformer encoder. These changes ensure that the model achieves high segmentation accuracy and strong generalization capability while maintaining good real-time performance. The semantic segmentation results of the straw images are used to calculate the proportions of different types of straw and, combined with moisture content and quality data, the calorific value of the mixed fuel is estimated in real time based on the elemental composition of each straw type. Validation using images captured from an actual thermal power plant shows that, under the same conditions, the proposed model has only a 0.2% decrease in accuracy compared to the traditional U-Net segmentation network, while the number of parameters is significantly reduced by 74%, and inference speed is improved 23%. Full article
(This article belongs to the Special Issue Application of New Technologies in Bioenergy and Biofuel Conversion)
Show Figures

Figure 1

22 pages, 6748 KiB  
Article
Leaf Moisture Content Detection Method Based on UHF RFID and Hyperdimensional Computing
by Yin Wu, Ziyang Hou, Yanyi Liu and Wenbo Liu
Forests 2024, 15(10), 1798; https://doi.org/10.3390/f15101798 - 13 Oct 2024
Viewed by 654
Abstract
Leaf moisture content (LMC) directly affects the life activities of plants and becomes a key factor to evaluate the growth status of plants. To explore a low-cost, real-time, rapid, and accurate method for LMC detection, this paper employs Ultra-High-Frequency Radio-Frequency Identification (UHF RFID) [...] Read more.
Leaf moisture content (LMC) directly affects the life activities of plants and becomes a key factor to evaluate the growth status of plants. To explore a low-cost, real-time, rapid, and accurate method for LMC detection, this paper employs Ultra-High-Frequency Radio-Frequency Identification (UHF RFID) sensor technology. By reading the tag information attached to the back of leaves, the parameters of the RSSI, phase, and reading distance of the tags are collected. In this paper, we propose an enhanced Multi-Feature Fusion algorithm based on Hyperdimensional Computing (HDC) called MFFHDC. In our proposed method, the real-valued features are encoded into hypervectors and then combined with Multi-Linear Discriminant Analysis (MLDA) for the feature fusion of different features. Finally, a retraining method based on Cosine Annealing with Warm Restarts (CAWR) is proposed to improve the model and further enhance its accuracy. Tests conducted in the experimental forest show that the proposed mechanism can effectively predict the LMC. The model’s Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2) reached 0.0195, 0.0255, and 0.9131, respectively. Additionally, comparisons with other methods demonstrate that the presented system performs excellently in most aspects. As a lightweight model, this study shows great practical application value, particularly for the limited data volume and low hardware costs. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

28 pages, 7076 KiB  
Article
Coupling Image-Fusion Techniques with Machine Learning to Enhance Dynamic Monitoring of Nitrogen Content in Winter Wheat from UAV Multi-Source
by Xinwei Li, Xiangxiang Su, Jun Li, Sumera Anwar, Xueqing Zhu, Qiang Ma, Wenhui Wang and Jikai Liu
Agriculture 2024, 14(10), 1797; https://doi.org/10.3390/agriculture14101797 - 12 Oct 2024
Viewed by 527
Abstract
Plant nitrogen concentration (PNC) is a key indicator reflecting the growth and development status of plants. The timely and accurate monitoring of plant PNC is of great significance for the refined management of crop nutrition in the field. The rapidly developing sensor technology [...] Read more.
Plant nitrogen concentration (PNC) is a key indicator reflecting the growth and development status of plants. The timely and accurate monitoring of plant PNC is of great significance for the refined management of crop nutrition in the field. The rapidly developing sensor technology provides a powerful means for monitoring crop PNC. Although RGB images have rich spatial information, they lack the spectral information of the red edge and near infrared bands, which are more sensitive to vegetation. Conversely, multispectral images offer superior spectral resolution but typically lag in spatial detail compared to RGB images. Therefore, the purpose of this study is to improve the accuracy and efficiency of crop PNC monitoring by combining the advantages of RGB images and multispectral images through image-fusion technology. This study was based on the booting, heading, and early-filling stages of winter wheat, synchronously acquiring UAV RGB and MS data, using Gram–Schmidt (GS) and principal component (PC) image-fusion methods to generate fused images and evaluate them with multiple image-quality indicators. Subsequently, models for predicting wheat PNC were constructed using machine-selection algorithms such as RF, GPR, and XGB. The results show that the RGB_B1 image contains richer image information and more image details compared to other bands. The GS image-fusion method is superior to the PC method, and the performance of fusing high-resolution RGB_B1 band images with MS images using the GS method is optimal. After image fusion, the correlation between vegetation indices (VIs) and wheat PNC has been enhanced to varying degrees in different growth periods, significantly enhancing the response ability of spectral information to wheat PNC. To comprehensively assess the potential of fused images in estimating wheat PNC, this study fully compared the performance of PNC models before and after fusion using machine learning algorithms such as Random Forest (RF), Gaussian Process Regression (GPR), and eXtreme Gradient Boosting (XGB). The results show that the model established by the fusion image has high stability and accuracy in a single growth period, multiple growth periods, different varieties, and different nitrogen treatments, making it significantly better than the MS image. The most significant enhancements were during the booting to early-filling stages, particularly with the RF algorithm, which achieved an 18.8% increase in R2, a 26.5% increase in RPD, and a 19.7% decrease in RMSE. This study provides an effective technical means for the dynamic monitoring of crop nutritional status and provides strong technical support for the precise management of crop nutrition. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

19 pages, 9136 KiB  
Article
A Novel Ultrasonic Leak Detection System in Nuclear Power Plants Using Rigid Guide Tubes with FCOG and SNR
by You-Rak Choi, Doyeob Yeo, Jae-Cheol Lee, Jai-Wan Cho and Sangook Moon
Sensors 2024, 24(20), 6524; https://doi.org/10.3390/s24206524 - 10 Oct 2024
Viewed by 527
Abstract
Leak detection in nuclear reactor coolant systems is crucial for maintaining the safety and operational integrity of nuclear power plants. Traditional leak detection methods, such as acoustic emission sensors and spectroscopy, face challenges in sensitivity, response time, and accurate leak localization, particularly in [...] Read more.
Leak detection in nuclear reactor coolant systems is crucial for maintaining the safety and operational integrity of nuclear power plants. Traditional leak detection methods, such as acoustic emission sensors and spectroscopy, face challenges in sensitivity, response time, and accurate leak localization, particularly in complex piping systems. In this study, we propose a novel leak detection approach that incorporates a rigid guide tube into the insulation layer surrounding reactor coolant pipes and combines this with an advanced detection criterion based on Frequency Center of Gravity shifts and Signal-to-Noise Ratio analysis. This dual-method strategy significantly improves the sensitivity and accuracy of leak detection by providing a stable transmission path for ultrasonic signals and enabling robust signal analysis. The rigid guide tube-based system, along with the integrated criteria, addresses several limitations of existing technologies, including the detection of minor leaks and the complexity of installation and maintenance. By enhancing the early detection of leaks and enabling precise localization, this approach contributes to increased reactor safety, reduced downtime, and lower operational costs. Experimental evaluations demonstrate the system’s effectiveness, focusing on its potential as a valuable addition to the current array of nuclear power plant maintenance technologies. Future research will focus on optimizing key parameters, such as the threshold frequency shift (Δf) and the number of randomly selected frequencies (N), using machine learning techniques to further enhance the system’s accuracy and reliability in various reactor environments. Full article
Show Figures

Figure 1

35 pages, 2367 KiB  
Review
A Review on Bioflocculant-Synthesized Copper Nanoparticles: Characterization and Application in Wastewater Treatment
by Nkanyiso C. Nkosi, Albertus K. Basson, Zuzingcebo G. Ntombela, Nkosinathi G. Dlamini and Rajasekhar V. S. R. Pullabhotla
Bioengineering 2024, 11(10), 1007; https://doi.org/10.3390/bioengineering11101007 - 10 Oct 2024
Viewed by 705
Abstract
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing [...] Read more.
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable “green” approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment. Full article
(This article belongs to the Special Issue Biological Wastewater Treatment and Resource Recovery)
Show Figures

Graphical abstract

22 pages, 2642 KiB  
Article
Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Tradescantia Plants
by Renan Falcioni, Roney Berti de Oliveira, Marcelo Luiz Chicati, Werner Camargos Antunes, Jos� Alexandre M. Dematt� and Marcos Rafael Nanni
Sensors 2024, 24(19), 6490; https://doi.org/10.3390/s24196490 - 9 Oct 2024
Viewed by 550
Abstract
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For [...] Read more.
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight structural and ultrastructural (biophysical) traits in green and purple Tradescantia leaves. The main results demonstrate that specific hyperspectral vegetation indices (HVIs) markedly improve the precision of partial least squares regression (PLSR) models, enabling reliable and nondestructive evaluations of plant biophysical attributes. PCA revealed unique spectral signatures, with the first principal component accounting for more than 90% of the variation in sensor data. High predictive accuracy was achieved for variables such as the thickness of the adaxial and abaxial hypodermis layers (R2 = 0.94) and total leaf thickness, although challenges remain in predicting parameters such as the thickness of the parenchyma and granum layers within the thylakoid membrane. The effectiveness of integrating ChlF and hyperspectral technologies, along with spectroradiometers and fluorescence sensors, in advancing plant physiological research and improving optical spectroscopy for environmental monitoring and assessment. These methods offer a good strategy for promoting sustainability in future agricultural practices across a broad range of plant species, supporting cell biology and material analyses. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

28 pages, 2541 KiB  
Review
Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach
by Lingdi Tang, Ain-ul-Abad Syed, Ali Raza Otho, Abdul Rahim Junejo, Mazhar Hussain Tunio, Li Hao, Mian Noor Hussain Asghar Ali, Sheeraz Aleem Brohi, Sohail Ahmed Otho and Jamshed Ali Channa
Agronomy 2024, 14(10), 2289; https://doi.org/10.3390/agronomy14102289 - 5 Oct 2024
Viewed by 722
Abstract
Various rapid propagation strategies have been discovered, which has facilitated large-scale plant reproduction and cultivar development. These methods, in many plant species, are used to rapidly generate large quantities (900 mini-tubers/m2) of high-quality propagule (free from contamination) at a relatively low [...] Read more.
Various rapid propagation strategies have been discovered, which has facilitated large-scale plant reproduction and cultivar development. These methods, in many plant species, are used to rapidly generate large quantities (900 mini-tubers/m2) of high-quality propagule (free from contamination) at a relatively low cost in a small space. They are also used for plant preservation. This review article aims to provide potential applications for regeneration and clonal propagation. Plant propagation using advanced agrotechnology, such as aeroponics, is becoming increasingly popular among academics and industrialists. The advancement of asexual aeroponic propagation has been achieved through advancements in monitoring and control systems using IoT and smart sensor technology. New sensor technology systems have gained substantial interest in agriculture in recent years. It is used in agriculture to precisely arrange various operations and objectives while harnessing limited resources with minimal human intervention. Modern intelligent technologies and control systems simplify sensor data collection, making it more efficient than manual data collection, which can be slow and prone to errors. Specific ambient variables like temperature, humidity, light intensity, stock solution concentrations (nutrient water), EC (electrical conductivity), pH values, CO2 content, and atomization parameters (frequency and interval) are collected more effectively through these systems. The use of intelligent technologies provides complete control over the system. When combined with IoT, it aids in boosting crop quality and yield while also lowering production costs and providing data directly to tablets and smartphones in aeroponic propagation systems. It can potentially increase the system’s productivity and usefulness compared to the older manual monitoring and operating methods. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

27 pages, 11502 KiB  
Article
Analysis of Inverter Efficiency Using Photovoltaic Power Generation Element Parameters
by Su-Chang Lim, Byung-Gyu Kim and Jong-Chan Kim
Sensors 2024, 24(19), 6390; https://doi.org/10.3390/s24196390 - 2 Oct 2024
Viewed by 477
Abstract
Photovoltaic power generation is influenced not only by variable environmental factors, such as solar radiation, temperature, and humidity, but also by the condition of equipment, including solar modules and inverters. In order to preserve energy production, it is essential to maintain and operate [...] Read more.
Photovoltaic power generation is influenced not only by variable environmental factors, such as solar radiation, temperature, and humidity, but also by the condition of equipment, including solar modules and inverters. In order to preserve energy production, it is essential to maintain and operate the equipment in optimal condition, which makes it crucial to determine the condition of the equipment in advance. This paper proposes a method of determining a degradation of efficiency by focusing on photovoltaic equipment, especially inverters, using LSTM (Long Short-Term Memory) for maintenance. The deterioration in the efficiency of the inverter is set based on the power generation predicted through the LSTM model. To this end, a correlation analysis and a linear analysis were performed between the power generation data collected at the power plant to learn the power generation prediction model and the data collected by the environmental sensor. With this analysis, a model was trained using solar radiation data and power data that are highly correlated with power generation. The results of the evaluation of the model’s performance show that it achieves a MAPE of 7.36, an RMSE of 27.91, a MAE of 18.43, and an R2 of 0.97. The verified model is applied to the power generation data of the selected inverters for the years 2020, 2021, and 2022. Through statistical analysis, it was determined that the error rate in 2022, the third year of its operation, increased by 159.55W on average from the error rate of the power generation forecast in 2020, the first year of operation. This indicates a 0.75% decrease in the inverter’s efficiency compared to the inverter’s power generation capacity. Therefore, it is judged that it can be applied effectively to analyses of inverter efficiency in the operation of photovoltaic plants. Full article
(This article belongs to the Special Issue Advances in Sensor Technologies for Microgrid and Energy Storage)
Show Figures

Figure 1

Back to TopTop