Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,218)

Search Parameters:
Keywords = soil water balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15395 KiB  
Article
The Effect of a Parcel-Aggregated Cropping Structure Mapping Method in Irrigation-Water Estimation in Arid Regions—A Case Study of the Weigan River Basin in Xinjiang
by Haoyu Wang, Linze Bai, Chunxia Wei, Junli Li, Shuo Li, Chenghu Zhou, Philippe De Maeyer, Wenqi Kou, Chi Zhang, Zhanfeng Shen and Tim Van de Voorde
Remote Sens. 2024, 16(21), 3941; https://doi.org/10.3390/rs16213941 - 23 Oct 2024
Abstract
Effective management of agricultural water resources in arid regions relies on precise estimation of irrigation-water demand. Most previous studies have adopted pixel-level mapping methods to estimate irrigation-water demand, often leading to inaccuracies when applied in arid areas where land salinization is severe and [...] Read more.
Effective management of agricultural water resources in arid regions relies on precise estimation of irrigation-water demand. Most previous studies have adopted pixel-level mapping methods to estimate irrigation-water demand, often leading to inaccuracies when applied in arid areas where land salinization is severe and where poorly growing crops cause the growing area to be smaller than the sown area. To address this issue and improve the accuracy of irrigation-water demand estimation, this study utilizes parcel-aggregated cropping structure mapping. We conducted a case study in the Weigan River Basin, Xinjiang, China. Deep learning techniques, the Richer Convolutional Features model, and the bilayer Long Short-Term Memory model were applied to extract parcel-aggregated cropping structures. By analyzing the cropping patterns, we estimated the irrigation-water demand and calculated the supply using statistical data and the water balance approach. The results indicated that in 2020, the cultivated area in the Weigan River Basin was 5.29 × 105 hectares, distributed over 853,404 parcels with an average size of 6202 m2. Based on the parcel-aggregated cropping structure, the estimated irrigation-water demand ranges from 25.1 × 108 m3 to 30.0 × 108 m3, representing a 5.57% increase compared to the pixel-level estimates. This increase highlights the effectiveness of the parcel-aggregated cropping structure in capturing the actual irrigation-water requirements, particularly in areas with severe soil salinization and patchy crop growth. The supply was calculated at 24.4 × 108 m3 according to the water balance approach, resulting in a minimal water deficit of 0.64 × 108 m3, underscoring the challenges in managing agricultural water resources in arid regions. Overall, the use of parcel-aggregated cropping structure mapping addresses the issue of irrigation-water demand underestimation associated with pixel-level mapping in arid regions. This study provides a methodological framework for efficient agricultural water resource management and sustainable development in arid regions. Full article
Show Figures

Figure 1

36 pages, 19498 KiB  
Article
Advancing SWAT Model Calibration: A U-NSGA-III-Based Framework for Multi-Objective Optimization
by Huihui Mao, Chen Wang, Yan He, Xianfeng Song, Run Ma, Runkui Li and Zheng Duan
Water 2024, 16(21), 3030; https://doi.org/10.3390/w16213030 - 22 Oct 2024
Abstract
In recent years, remote sensing data have revealed considerable potential in unraveling crucial information regarding water balance dynamics due to their unique spatiotemporal distribution characteristics, thereby advancing multi-objective optimization algorithms in hydrological model parameter calibration. However, existing optimization frameworks based on the Soil [...] Read more.
In recent years, remote sensing data have revealed considerable potential in unraveling crucial information regarding water balance dynamics due to their unique spatiotemporal distribution characteristics, thereby advancing multi-objective optimization algorithms in hydrological model parameter calibration. However, existing optimization frameworks based on the Soil and Water Assessment Tool (SWAT) primarily focus on single-objective or multiple-objective (i.e., two or three objective functions), lacking an open, efficient, and flexible framework to integrate many-objective (i.e., four or more objective functions) optimization algorithms to satisfy the growing demands of complex hydrological systems. This study addresses this gap by designing and implementing a multi-objective optimization framework, Py-SWAT-U-NSGA-III, which integrates the Unified Non-dominated Sorting Genetic Algorithm III (U-NSGA-III). Built on the SWAT model, this framework supports a broad range of optimization problems, from single- to many-objective. Developed within a Python environment, the SWAT model modules are integrated with the Pymoo library to construct a U-NSGA-III algorithm-based optimization framework. This framework accommodates various calibration schemes, including multi-site, multi-variable, and multi-objective functions. Additionally, it incorporates sensitivity analysis and post-processing modules to shed insights into model behavior and evaluate optimization results. The framework supports multi-core parallel processing to enhance efficiency. The framework was tested in the Meijiang River Basin in southern China, using daily streamflow data and Penman–Monteith–Leuning Version 2 (PML-V2(China)) remote sensing evapotranspiration (ET) data for sensitivity analysis and parallel efficiency evaluation. Three case studies demonstrated its effectiveness in optimizing complex hydrological models, with multi-core processing achieving a speedup of up to 8.95 despite I/O bottlenecks. Py-SWAT-U-NSGA-III provides an open, efficient, and flexible tool for the hydrological community that strives to facilitate the application and advancement of multi-objective optimization in hydrological modeling. Full article
Show Figures

Figure 1

29 pages, 6771 KiB  
Article
Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru
by Lia Ramos-Fernández, Roxana Peña-Amaro, José Huanuqueño-Murillo, David Quispe-Tito, Mayra Maldonado-Huarhuachi, Elizabeth Heros-Aguilar, Lisveth Flores del Pino, Edwin Pino-Vargas, Javier Quille-Mamani and Alfonso Torres-Rua
Remote Sens. 2024, 16(20), 3882; https://doi.org/10.3390/rs16203882 - 18 Oct 2024
Viewed by 230
Abstract
In the context of global warming, rising air temperatures are increasing evapotranspiration (ETc) in all agricultural crops, including rice, a staple food worldwide. Simultaneously, the occurrence of droughts is reducing water availability, affecting traditional irrigation methods for rice cultivation (flood [...] Read more.
In the context of global warming, rising air temperatures are increasing evapotranspiration (ETc) in all agricultural crops, including rice, a staple food worldwide. Simultaneously, the occurrence of droughts is reducing water availability, affecting traditional irrigation methods for rice cultivation (flood irrigation). The objective of this study was to determine ETc (water use) and yield performance in rice crop under different irrigation regimes: treatments with continuous flood irrigation (CF) and irrigations with alternating wetting and drying (AWD5, AWD10, and AWD20) in an experimental area in INIA–Vista Florida. Water balance, rice physiological data, and yield were measured in the field, and local weather data and thermal and multispectral images were collected with a meteorological station and a UAV (a total of 13 flights). ETc values obtained by applying the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) energy balance model ranged from 2.4 to 8.9 mm d−1 for the AWD and CF irrigation regimes. In addition, ETc was estimated by a water balance using the AquaCrop model, previously parameterized with RGB image data and field weather data, soil, irrigation water, and crops, obtaining values between 4.3 and 7.1 mm d−1 for the AWD and CF irrigation regimes. The results indicated that AWD irrigation allows for water savings of 27 to 28%, although it entails a yield reduction of from 2 to 15%, which translates into an increase in water use efficiency (WUE) of from 18 to 36%, allowing for optimizing water use and improving irrigation management. Full article
Show Figures

Figure 1

13 pages, 2645 KiB  
Article
Assessing the Effectiveness of Turf Transplantation and Artificial Replanting in Restoring Abandoned Mining Areas
by Amannisa Kuerban, Guankui Gao, Abdul Waheed, Hailiang Xu, Shuyu Wang and Zewen Tong
Sustainability 2024, 16(20), 8977; https://doi.org/10.3390/su16208977 - 17 Oct 2024
Viewed by 348
Abstract
Long-term and extensive mineral mining in the Kuermutu mine section of the Two Rivers Nature Reserve in the Altai region has disrupted the ecological balance between soil and vegetation. To assess the effectiveness of various restoration measures in this abandoned mine area, we [...] Read more.
Long-term and extensive mineral mining in the Kuermutu mine section of the Two Rivers Nature Reserve in the Altai region has disrupted the ecological balance between soil and vegetation. To assess the effectiveness of various restoration measures in this abandoned mine area, we compared two restoration approaches—natural turf transplantation (NTT) and replanted economic crop grassland (ARGC)—against an unaltered control (original grassland). We employed 11 evaluation indices to conduct soil and vegetation surveys. We developed a comprehensive evaluation model using the Analytic Hierarchy Process (AHP) to assess restoration outcomes for each grassland type. Our findings indicate that both NTT and ARGC significantly improved ecological conditions, such as reducing soil fine particulate matter loss and restoring vegetation cover. This brought these areas closer to their original grassland state. The species composition and community structure of the NTT and ARGC vegetation communities improved relative to the original grassland. This was due to a noticeable increase in dominant species’ importance value. Vegetation cover averaged higher scores in NTT, while the average height was greater in ARGC. The soil water content and soil organic carbon (SOC) varied significantly with depth (p < 0.05), following a general ‘V’ pattern. NTT positively impacted soil moisture content (SMC) at the surface, whereas ARGC influenced SMC in deeper layers, with the 40–50 cm soil layer achieving 48.13% of the original grassland’s SMC. SOC levels were highest in the control (original grassland), followed by ARGC and NTT, with ARGC showing the greatest organic carbon content at 20–30 cm depths. A comprehensive AHP ecological-economic evaluation revealed that restoration effectiveness scores were 0.594 for NTT and 0.669 for ARGC, translating to 59.4% and 66.9%, respectively. ARGC restoration was found to be more effective than NTT. These results provide valuable insights into ecological restoration practices for abandoned mines in Xinjiang and can guide future effectiveness evaluations. Full article
Show Figures

Figure 1

19 pages, 6609 KiB  
Article
Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment
by Sharon Bih Kimbi, Shin-ichi Onodera, Kunyang Wang, Ichirow Kaihotsu and Yuta Shimizu
Environments 2024, 11(10), 225; https://doi.org/10.3390/environments11100225 - 15 Oct 2024
Viewed by 602
Abstract
Global urbanization, population growth, and climate change have considerably impacted water resources, making sustainable water resource management (WRM) essential. Understanding the changes in hydrological components is important for effective WRM, particularly in cities such as Higashi-Hiroshima, which is known for its saké brewing [...] Read more.
Global urbanization, population growth, and climate change have considerably impacted water resources, making sustainable water resource management (WRM) essential. Understanding the changes in hydrological components is important for effective WRM, particularly in cities such as Higashi-Hiroshima, which is known for its saké brewing industry. This study used the Soil and Water Assessment Tool (SWAT) with Hydrological Response Units (HRUs) to achieve high spatial precision in assessing the impacts of land use change and climate variability on hydrological components in a suburban catchment in western Japan. Over the 30-year study period (1980s–2000s), land use change was the main driver of hydrological variability, whereas climate change played a minor role. Increased surface runoff, along with decrease in groundwater recharge, evapotranspiration, and baseflow, resulted in an overall reduction in water yield, with a 34.9% decrease in groundwater recharge attributed to the transformation of paddy fields into residential areas. Sustainable WRM practices, including water conservation, recharge zone protection, and green infrastructure, are recommended to balance urban development with water sustainability. These findings offer valuable insights into the strategies for managing water resources in rapidly urbanizing regions worldwide, emphasizing the need for an integrated WRM system that considers both land use and climate change impacts. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

17 pages, 1697 KiB  
Article
Rational Nitrogen Reduction Helps Mitigate the Nitrogen Pollution Risk While Ensuring Rice Growth in a Tropical Rice–Crayfish Coculture System
by Yifan Li, Yixian Wu, Shaodong Wang, Hui Peng, Fan Zheng, Guoping Pan, Yifei Liu and Hongyan Liu
Agriculture 2024, 14(10), 1816; https://doi.org/10.3390/agriculture14101816 - 15 Oct 2024
Viewed by 495
Abstract
The incorporation of aquaculture feed within a rice–crayfish coculture system significantly enhances nitrogen cycling, thereby diminishing the reliance on chemical fertilizers. However, this benefit is often overlooked in practice, and farmers continue to use large quantities of chemical fertilizers to maximize production, resulting [...] Read more.
The incorporation of aquaculture feed within a rice–crayfish coculture system significantly enhances nitrogen cycling, thereby diminishing the reliance on chemical fertilizers. However, this benefit is often overlooked in practice, and farmers continue to use large quantities of chemical fertilizers to maximize production, resulting in excessive soil fertility and water nitrogen pollution. Thus, avoiding nitrogen pollution in rice–crayfish coculture systems has become a pressing issue. In this study, we conducted a two-year experiment with two rice cultivars, and a 33.3% reduction in nitrogen fertilizer in a rice–crayfish coculture system (RC), to systematically analyze the overall nitrogen balance, rice nitrogen nutrition, and soil fertility, as compared with a rice monoculture system (RM). Our findings revealed the following: (1) Under the 33.3% reduction in nitrogen fertilizer, the nitrogen surplus in the rice–crayfish coculture system was comparable to that in the rice monoculture, and was controlled at an environmental safety level. (2) Nitrogen utilization efficiency and the accumulation of nitrogen in the rice–crayfish coculture were comparable to those in the rice monoculture. The nitrogen cycle in this system was able to provide the nitrogen required for rice growth after nitrogen fertilizer reduction. (3) The rice–crayfish coculture significantly improved the overall soil fertility and the effectiveness of soil nitrogen nutrition. Furthermore, cutting off the application of nitrogen fertilizer after the mid-tillering stage effectively controlled the total nitrogen content in soil after rice maturity. In conclusion, reducing nitrogen fertilizer in a rice–crayfish coculture system is feasible and beneficial. It ensures rice production, reduces the risk of excessive nitrogen surplus and surface pollution, and promotes a greener, more environmentally friendly paddy field ecosystem. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

25 pages, 13903 KiB  
Article
Quantitative Analysis about the Spatial Heterogeneity of Water Conservation Services Function Using a Space–Time Cube Constructed Based on Ecosystem and Soil Types
by Yisheng Liu, Peng Hou, Ping Wang, Jian Zhu, Jun Zhai, Yan Chen, Jiahao Wang and Le Xie
Diversity 2024, 16(10), 638; https://doi.org/10.3390/d16100638 - 14 Oct 2024
Viewed by 266
Abstract
Precisely delineating the spatiotemporal heterogeneity of water conservation services function (WCF) holds paramount importance for watershed management. However, the existing assessment techniques exhibit common limitations, such as utilizing only multi-year average values for spatial changes and relying solely on the spatial average values [...] Read more.
Precisely delineating the spatiotemporal heterogeneity of water conservation services function (WCF) holds paramount importance for watershed management. However, the existing assessment techniques exhibit common limitations, such as utilizing only multi-year average values for spatial changes and relying solely on the spatial average values for temporal changes. Moreover, traditional research does not encompass all WCF values at each time step and spatial grid, hindering quantitative analysis of spatial heterogeneity in WCF. This study addresses these limitations by utilizing an improved water balance model based on ecosystem type and soil type (ESM-WBM) and employing the EFAST and Sobol’ method for parameter sensitivity analysis. Furthermore, a space–time cube of WCF, constructed using remote-sensing data, is further explored by Emerging Hot Spot Analysis for the expression of WCF spatial heterogeneity. Additionally, this study investigates the impact of two core parameters: neighborhood distance and spatial relationship conceptualization type. The results reveal that (1) the ESM-WBM model demonstrates high sensitivity toward ecosystem types and soil data, facilitating the accurate assessment of the impacts of ecosystem and soil pattern alterations on WCF; (2) the EHSA categorizes WCF into 17 patterns, which in turn allows for adjustments to ecological compensation policies in related areas based on each pattern; and (3) neighborhood distance and the type of spatial relationships conceptualization significantly impacts the results of EHSA. In conclusion, this study offers references for analyzing the spatial heterogeneity of WCF, providing a theoretical foundation for regional water resource management and ecological restoration policies with tailored strategies. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation Strategies)
Show Figures

Figure 1

14 pages, 8481 KiB  
Article
Effect of Caragana microphylla Lam. on Desertified Grassland Restoration
by Tiantian Zhu and Qinghe Li
Forests 2024, 15(10), 1801; https://doi.org/10.3390/f15101801 - 14 Oct 2024
Viewed by 464
Abstract
Background: The restoration of the degraded sandy grasslands in Hulun Buir is crucial for maintaining the local ecological balance and sustainable development. Caragana microphylla Lam., a shrub species widely employed in the restoration of sandy vegetation. It is essential to understand its impact [...] Read more.
Background: The restoration of the degraded sandy grasslands in Hulun Buir is crucial for maintaining the local ecological balance and sustainable development. Caragana microphylla Lam., a shrub species widely employed in the restoration of sandy vegetation. It is essential to understand its impact on the understory vegetation and soil properties during this process. Methods: This study employed ANOVA, Pearson correlation, and redundancy analysis to systematically analyze the impact of C. microphylla on the three critical stages of desertified grassland vegetation recovery: semi-fixed dunes, fixed dunes, and sandy grasslands. It provided strategies for the restoration of desertified grassland vegetation and offered additional theoretical evidence for the role of vegetation in promoting the recovery of sandy lands. Results: (1) As the degree of vegetation recovery in desertified grasslands increases, the species richness of understory vegetation, Shannon–Wiener index, community height, and biomass also increase. Both the community height and biomass within shrublands are higher than outside, with species richness within the shrublands being higher than outside during the semi-fixed and fixed-sand land stages. (2) In both the 0~10 cm and 10~20 cm soil layers, soil water content showed an increasing trend, peaking in the sandy grassland stage (1.2%), and was higher within the shrublands than outside. The soil water content at 10~20 cm was higher than in the 0~10 cm layer. In both layers, clay and silt content gradually increased with the degree of vegetation recovery in the sandy land, and higher within the shrublands than outside, while the opposite was true for sand content. (3) In both soil layers, soil organic carbon gradually increased with the degree of vegetation recovery, peaking in the sandy grassland stage (4.12 g·kg−1), and was higher within the shrublands than outside. Total nitrogen increased from the semi-fixed-sand land stage to the fixed-sand land stage, with higher levels within the shrublands than outside at all stages. Soil pH within the shrublands decreased as the degree of vegetation recovery increased. There was no significant change in the total phosphorus content. (4) In both soil layers, soil physicochemical characteristics accounted for 59.6% and 46.9% of the vegetation changes within and outside the shrublands, respectively, with the main influencing factors being the soil particle size, total nitrogen, soil water content, and soil organic carbon. Conclusions: In the process of sandy grassland restoration, C. microphylla facilitates the growth and development of vegetation by enhancing the underlying soil physicochemical properties, specifically regarding the soil particle size distribution, soil water content, soil organic carbon, and total nitrogen. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 3593 KiB  
Article
Multifactorial Analysis of the Effect of Applied Gamma-Polyglutamic Acid on Soil Infiltration Characteristics
by Shikai Gao, Xiaoyuan Zhang, Songlin Wang, Yuliang Fu, Weiheng Li, Yuanzhi Dong, Yanbin Li and Zhiguang Dai
Polymers 2024, 16(20), 2890; https://doi.org/10.3390/polym16202890 - 14 Oct 2024
Viewed by 373
Abstract
To investigate the mechanism and influence of applying gamma-polyglutamic acid (γ-PGA) on soil water infiltration, laboratory experiments and numerical simulations were conducted using Hydrus-1D. These studies assessed the impact of various application rates of γ-PGA on soil water characteristic parameters. Orthogonal simulation experiments [...] Read more.
To investigate the mechanism and influence of applying gamma-polyglutamic acid (γ-PGA) on soil water infiltration, laboratory experiments and numerical simulations were conducted using Hydrus-1D. These studies assessed the impact of various application rates of γ-PGA on soil water characteristic parameters. Orthogonal simulation experiments on soil bulk density, γ-PGA application rates, and burial depths were performed utilizing predefined soil water characteristic values (twelve groups: nine groups of numerical simulation experiments and three groups of laboratory verification tests), and the soil infiltration characteristics were analyzed. Concurrently, an empirical model was developed to elucidate the relationships between the empirical model parameters and influencing factors, as well as to examine the sensitivity of these factors to changes in soil infiltration rate. The relationship between cumulative infiltration and the distance of wetting front movement, based on the water balance equation, was refined. The results indicated that γ-PGA significantly affected soil water characteristic parameters, where the saturated water content and the reciprocal of soil intake suction increased with rising γ-PGA applications (p < 0.01), while the saturated hydraulic conductivity and the parameter n decreased (p < 0.01), with no notable changes in the retained water content (p > 0.05). The trend in cumulative infiltration influenced by various factors could be modeled by a capacitive charging model function, which yielded a superior fit. A negative correlation existed between the sensitivity index and all the influencing factors (p < 0.05), with the order of influence being soil bulk density, γ-PGA application rate, and γ-PGA burial depth, respectively. Utilizing the modified water balance equation, the ratio of cumulative infiltration to wetting front migration distance corresponded more closely with a power function. These findings provide a theoretical foundation for further studies on the effects of γ-PGA on crop growth characteristics in fields and the optimization of γ-PGA technical element combinations. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 5488 KiB  
Article
Groundwater Recharge Response to Reduced Irrigation Pumping: Checkbook Irrigation and the Water Savings Payment Plan
by Justin Gibson, Trenton E. Franz, Troy Gilmore, Derek Heeren, John Gates, Steve Thomas and Christopher M. U. Neale
Water 2024, 16(20), 2910; https://doi.org/10.3390/w16202910 - 13 Oct 2024
Viewed by 645
Abstract
Ongoing investments in irrigation technologies highlight the need to accurately estimate the longevity and magnitude of water savings at the watershed level to avoid the paradox of irrigation efficiency. This paradox arises when irrigation pumping exceeds crop water demand, leading to excess water [...] Read more.
Ongoing investments in irrigation technologies highlight the need to accurately estimate the longevity and magnitude of water savings at the watershed level to avoid the paradox of irrigation efficiency. This paradox arises when irrigation pumping exceeds crop water demand, leading to excess water that is not recovered by the watershed. Comprehensive water accounting from farm to watershed scales is challenging due to spatial variability and inadequate socio-hydrological data. We hypothesize that water savings are short term, as prior studies show rapid recharge responses to surface changes. Precise estimation of these time scales and water savings can aid water managers making decisions. In this study, we examined water savings at three 65-hectare sites in Nebraska with diverse soil textures, management practices, and groundwater depths. Surface geophysics effectively identified in-field variability in soil water content and water flux. A one-dimensional model showed an average 80% agreement with chloride mass balance estimates of deep drainage. Our findings indicate that groundwater response times are short and water savings are modest (1–3 years; 50–900 mm over 10 years) following a 120 mm/year reduction in pumping. However, sandy soils with shallow groundwater show minimal potential for water savings, suggesting limited effectiveness of irrigation efficiency programs in such regions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 2953 KiB  
Article
Crop Coefficients and Irrigation Demand in Response to Climate-Change-Induced Alterations in Phenology and Growing Season of Vegetable Crops
by Nadine Schmidt and Jana Zinkernagel
Climate 2024, 12(10), 161; https://doi.org/10.3390/cli12100161 - 11 Oct 2024
Viewed by 608
Abstract
This study investigates the effects of climate change on the irrigation demand of vegetable crops caused by alteration of climate parameters affecting evapotranspiration (ET), plant development, and growing periods in Central Europe. Utilizing a model framework comprising two varying climate scenarios (RCP 2.6 [...] Read more.
This study investigates the effects of climate change on the irrigation demand of vegetable crops caused by alteration of climate parameters affecting evapotranspiration (ET), plant development, and growing periods in Central Europe. Utilizing a model framework comprising two varying climate scenarios (RCP 2.6 and RCP 8.5) and two regional climate models (COSMO C-CLM and WETTREG 2013), we calculate the daily crop water balance (CWBc) as a measure for irrigation demand based on reference ET and the temperature-driven duration of crop coefficients until 2100. Our findings for onion show that rising temperatures may shorten cultivation periods by 5 to 17 days; however, the irrigation demand may increase by 5 to 71 mm due to higher ET. By reaching the base temperatures for onion growth earlier in the year, cultivation start can be advanced by up to 30 days. Greater utilization of winter soil moisture reduces the irrigation demand by up to 21 mm, though earlier cultivation is restricted by frost risks. The cultivation of thermophilic crops, however, cannot be advanced to the same extent, as shown for bush beans, and plants will transpire more strongly due to longer dry periods simulated for summer. The results underscore the need for adaptive crop and water management strategies to counteract the simulated changes in phenology and irrigation demand of vegetable crops. Therefore, special consideration must be given to the regional-specific and model- and scenario-dependent simulation results. Full article
Show Figures

Figure 1

27 pages, 8677 KiB  
Article
The Gains and Losses of Cultivated Land Requisition–Compensation Balance: Analysis of the Spatiotemporal Trade-Offs and Synergies in Ecosystem Services Using Hubei Province as a Case Study
by Qingsong He, Xu Jiang and Yang Zhang
Land 2024, 13(10), 1641; https://doi.org/10.3390/land13101641 - 9 Oct 2024
Viewed by 440
Abstract
The cultivated land requisition–compensation balance (CLRCB) policy is an important policy implemented by China to address the reduction in cultivated land and ensure food security. Although this policy has alleviated the loss of cultivated land quantity, it has had complex and diverse impacts [...] Read more.
The cultivated land requisition–compensation balance (CLRCB) policy is an important policy implemented by China to address the reduction in cultivated land and ensure food security. Although this policy has alleviated the loss of cultivated land quantity, it has had complex and diverse impacts on ecosystem services. Taking Hubei Province as the study area, this research explores the impact of the implementation of the CLRCB on ecosystem services and simulates the changes in ecosystem services in the study area in 2030 and the impact of CLRCB on the interactions among various services. The results show the following: (1) from 2000 to 2020, Hubei Province achieved a balance in the quantity of cultivated land through excessive compensation but failed to reach the goals of balancing cultivated land yield and productivity. (2) During the requisition–compensation process, habitat quality decreased by 501,862, and carbon storage lost 1.3 × 107 t, indicating negative ecological impacts; soil conservation services increased by 184.2 × 106 t, and water production increased by 21.29 × 108 m3. Within the cultivated land requisition–compensation area, habitat quality and carbon storage, as well as soil conservation and water production, exhibited synergistic relationships, while the remaining pairs of ecosystem services showed trade-off relationships. (3) The simulation of ecosystem services in 2030 indicates that soil conservation and water production are highest under the natural development scenario, while habitat quality and carbon storage are highest under the ecological protection scenario, both of which are superior to the urban development scenario. Under the natural development scenario, the trade-off and synergistic relationships among various ecosystem services in the cultivated land requisition–compensation area remain unchanged, while these relationships change significantly under the other two scenarios. This study emphasizes that future CLRCB should not only focus on maintaining the quantity of cultivated land but also consider the comprehensive benefits of ecosystem services, in order to achieve sustainable land-use management and ecological conservation. Full article
(This article belongs to the Special Issue Spatial Optimization and Sustainable Development of Land Use)
Show Figures

Figure 1

16 pages, 12239 KiB  
Article
Biodiversity and Soil Reinforcement Effect of Vegetation Buffer Zones: A Case Study of the Tongnan Section of the Fujiang River Basin
by Xinhao Wang, Dongsheng Liu, Zhihui Chang, Jiang Tang, Yunqi Wang, Yanlei Wang, Sheng Huang, Tong Li, Zihan Qi and Yue Hu
Water 2024, 16(19), 2847; https://doi.org/10.3390/w16192847 - 7 Oct 2024
Viewed by 535
Abstract
The riparian vegetation buffer zone is an important component of riverbank ecosystems, playing a crucial role in soil consolidation and slope protection. In this study, the riparian vegetation buffer zones in the Tongnan section of the Fujiang River Basin were selected as the [...] Read more.
The riparian vegetation buffer zone is an important component of riverbank ecosystems, playing a crucial role in soil consolidation and slope protection. In this study, the riparian vegetation buffer zones in the Tongnan section of the Fujiang River Basin were selected as the research object. Surveys and experiments were conducted to assess the species composition and the soil and water conservation effectiveness of the riparian vegetation buffer zone. There are a total of 35 species, mainly comprising angiosperms and ferns. The dominant species include Cynodon dactylon, Setaria viridis, Phragmites australis, Erigeron canadensis, and Melilotus officinalis. The Patrick richness index (R) and Shannon–Wiener diversity index (H) are more significantly influenced by the types of land use in the surrounding area, whereas the impact on the Simpson diversity index (D) and Pielou uniformity index (E) is comparatively less pronounced. When the root diameter is less than 0.2 mm, the tensile strength of Cynodon dactylon roots is the highest. For root diameters larger than 0.2 mm, Melilotus officinalis roots exhibit the highest tensile strength. The presence of plant root systems significantly reduces erosion, delaying the time to reach maximum erosion depth by 1–4 min, decreasing erosion depth by 9–38 mm, and reducing the total amount of erosion by 20.17–58.90%. The anti-scouribility effect of Cynodon dactylon is significantly better than that of Setaria viridis. The root system notably enhances soil shear strength, delaying the shear peak by 0.26–4.8 cm, increasing the shear peak by 4.76–11.37 kPa, and raising energy consumption by 23.76–46.11%. Phragmites australis has the best resistance to shear, followed by Erigeron canadensis, with Melilotus officinalis being the least resistant. Therefore, to balance the anti-scouribility effect and shear resistance of plant roots, it is recommended to use a combination of Cynodon dactylon and Phragmites australis for shallow-rooted and deep-rooted planting. This approach enhances the water and soil conservation capacity of riverbanks. Full article
Show Figures

Figure 1

19 pages, 9441 KiB  
Article
Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau
by Xiaoyang Liu, Lele Zhang, Liming Gao and Ziyi Duan
Atmosphere 2024, 15(10), 1196; https://doi.org/10.3390/atmos15101196 - 6 Oct 2024
Viewed by 590
Abstract
The study of the surface energy balance characteristics of different ecosystems in the Qinghai Plateau is of great significance for a deeper understanding of land surface processes, the water cycle, and global climate change. This study aims to compare the seasonal variations in [...] Read more.
The study of the surface energy balance characteristics of different ecosystems in the Qinghai Plateau is of great significance for a deeper understanding of land surface processes, the water cycle, and global climate change. This study aims to compare the seasonal variations in energy balance and partitioning of four typical ecosystems on the Qinghai Plateau—swamp meadows, subalpine mountain meadows, alpine shrublands, and alpine deserts. Mantel analysis and path analysis were used to explore the regulatory mechanisms of meteorological elements on energy fluxes and the Bowen ratio (β). The results showed the following: (1) Net radiation (Rn), sensible heat flux (H), and latent heat flux (LE) all exhibited a single-peak pattern of change, and the energy partitioning was closely related to the hydrothermal conditions. Swamp meadows and subalpine mountain meadows were dominated by LE throughout the year and the growing season, while H dominated in the non-growing season. Meanwhile, alpine shrublands and alpine deserts were dominated by H throughout the year. (2) β reflected the characteristics of turbulent fluxes variations and the moisture level of the underlying surface. Swamp meadows and subalpine mountain meadows were relatively moist, with the value of β all being less than 1. Alpine shrublands and deserts were comparatively arid, with the values of β all exceeding 1. The energy closure rate ranged from 48% to 90%, with better energy closure conditions observed during the growing season compared to the non-growing season. (3) Meteorological factors collectively regulated the variations in energy fluxes and its partitioning, with H and LE being primarily influenced by Rn, relative humidity (RH), and soil moisture (Ms). β was significantly affected by RH, Ms, and the saturated vapor pressure deficit (VPD). The sensitivity of the ecosystems to changes in fluxes increased with decreasing moisture, especially in alpine deserts, with Ms, VPD and RH being the most affected. Swamp meadows were significantly associated with air temperature (Ta), soil temperature (Ts), and wind speed; subalpine mountain meadows with Ta and Ts; and alpine shrublands with Ta. These results provided a basis for further analyses of the energy balance characteristics and partitioning differences of different ecosystems on the Qinghai Plateau. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

15 pages, 620 KiB  
Article
Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice (Oryza sativa) Plants
by Ei Ei, Hyun Hwa Park and Yong In Kuk
Plants 2024, 13(19), 2727; https://doi.org/10.3390/plants13192727 - 29 Sep 2024
Viewed by 615
Abstract
Plant extracts are widely used in sustainable agriculture practices to enhance crop production and reduce chemical usage in agriculture. This study employed several extraction solutions of various plant extracts to synthesize planting and spraying strategies, assess the persistence efficacy of rice, and investigate [...] Read more.
Plant extracts are widely used in sustainable agriculture practices to enhance crop production and reduce chemical usage in agriculture. This study employed several extraction solutions of various plant extracts to synthesize planting and spraying strategies, assess the persistence efficacy of rice, and investigate the influence of selected water extracts on secondary chemicals at different rice planting stages. Among 17 water extracts that were evaluated on rice seeds, 7 were enhanced to align with the lengths of rice roots 50–70% and shoots 40–50%. The analysis of extraction, spraying, and planting experiments revealed that water extracts, soil application, and transplanting were the most efficient methods for stimulating rice growth, especially 0.1 and 0.5% concentrations. The efficacy of the extracts remained intact also after 14 days of treatment. This study showed that photosynthesis and antioxidant activities may play crucial roles in plant growth. Rice growth stimulation has been linked to photosynthesis, flavonoid contents, and antioxidant enzymes, providing a balanced supply of nutrients for plant growth. Among all tested water extracts, Psidium guajava, Aloe vera, Allium sativum, and Medicago sativa extracts can be used to promote plant growth in organic farming. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Figure 1

Back to TopTop