Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = thermal camera communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7153 KiB  
Article
Lean Demonstration of On-Board Thermal Anomaly Detection Using Machine Learning
by Jan Thoemel, Konstantinos Kanavouras, Maanasa Sachidanand, Andreas Hein, Miguel Ortiz del Castillo, Leo Pauly, Arunkumar Rathinam and Djamila Aouada
Aerospace 2024, 11(7), 523; https://doi.org/10.3390/aerospace11070523 - 27 Jun 2024
Viewed by 719
Abstract
Moore’s law states that the performance of computers doubles about every two years. This has dramatic consequences for any modern high development and for satellites. The long development cycles cause these expensive assets to be obsolete before the start of their operations. The [...] Read more.
Moore’s law states that the performance of computers doubles about every two years. This has dramatic consequences for any modern high development and for satellites. The long development cycles cause these expensive assets to be obsolete before the start of their operations. The advancement also presents challenges to their design, particularly from a thermal perspective, as more heat is dissipated and circuits are more fragile. These challenges mandate that faster spacecraft development methods are found and thermal management technologies are developed. We elaborate on existing development methodologies and present our own lean method. We explore the development of a thermal anomaly-detection payload, extending from conception to in-orbit commissioning, to stimulate discussions on space hardware development approaches. The payload consists of four miniaturized infrared cameras, heating sources in view of the cameras simulating an anomaly, an on-board processor, and peripherals for electrical and communication interfaces. The paper outlines our methodology and its application, showcasing the success of our efforts with the first-light activation of our cameras in orbit. We show our lean method, featuring reference technical and management models, from which we derive further development tools; such details are normally not available in the scientific-engineering literature. Additionally, we address the shortcomings identified during our development, such as the failure of an on-board component and propose improvements for future developments. Full article
Show Figures

Figure 1

18 pages, 4632 KiB  
Article
ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes
by Pierre-Etienne Martin, Gregor Kachel, Nicolas Wieg, Johanna Eckert and Daniel B. M. Haun
Signals 2024, 5(1), 147-164; https://doi.org/10.3390/signals5010008 - 15 Mar 2024
Cited by 1 | Viewed by 1175 | Correction
Abstract
The ApeTI dataset was built with the aim of retrieving physiological signals such as heart rate, breath rate, and cognitive load from thermal images of great apes. We want to develop computer vision tools that psychologists and animal behavior researchers can use to [...] Read more.
The ApeTI dataset was built with the aim of retrieving physiological signals such as heart rate, breath rate, and cognitive load from thermal images of great apes. We want to develop computer vision tools that psychologists and animal behavior researchers can use to retrieve physiological signals noninvasively. Our goal is to increase the use of a thermal imaging modality in the community and avoid using more invasive recording methods to answer research questions. The first step to retrieving physiological signals from thermal imaging is their spatial segmentation to then analyze the time series of the regions of interest. For this purpose, we present a thermal imaging dataset based on recordings of chimpanzees with their face and nose annotated using a bounding box and nine landmarks. The face and landmarks’ locations can then be used to extract physiological signals. The dataset was acquired using a thermal camera at the Leipzig Zoo. Juice was provided in the vicinity of the camera to encourage the chimpanzee to approach and have a good view of the face. Several computer vision methods are presented and evaluated on this dataset. We reach mAPs of 0.74 for face detection and 0.98 for landmark estimation using our proposed combination of the Tifa and Tina models inspired by the HRNet models. A proof of concept of the model is presented for physiological signal retrieval but requires further investigation to be evaluated. The dataset and the implementation of the Tina and Tifa models are available to the scientific community for performance comparison or further applications. Full article
Show Figures

Figure 1

19 pages, 16471 KiB  
Article
Reduced CPU Workload for Human Pose Detection with the Aid of a Low-Resolution Infrared Array Sensor on Embedded Systems
by Marcos G. Alves, Gen-Lang Chen, Xi Kang and Guang-Hui Song
Sensors 2023, 23(23), 9403; https://doi.org/10.3390/s23239403 - 25 Nov 2023
Cited by 1 | Viewed by 1411
Abstract
Modern embedded systems have achieved relatively high processing power. They can be used for edge computing and computer vision, where data are collected and processed locally, without the need for network communication for decision-making and data analysis purposes. Face detection, face recognition, and [...] Read more.
Modern embedded systems have achieved relatively high processing power. They can be used for edge computing and computer vision, where data are collected and processed locally, without the need for network communication for decision-making and data analysis purposes. Face detection, face recognition, and pose detection algorithms can be executed with acceptable performance on embedded systems and are used for home security and monitoring. However, popular machine learning frameworks, such as MediaPipe, require relatively high usage of CPU while running, even when idle with no subject in the scene. Combined with the still present false detections, this wastes CPU time, elevates the power consumption and overall system temperature, and generates unnecessary data. In this study, a low-cost low-resolution infrared thermal sensor array was used to control the execution of MediaPipe’s pose detection algorithm using single-board computers, which only runs when the thermal camera detects a possible subject in its field of view. A lightweight algorithm with several filtering layers was developed, which allowed the effective detection and isolation of a person in the thermal image. The resulting hybrid computer vision proved effective in reducing the average CPU workload, especially in environments with low activity, almost eliminating MediaPipe’s false detections, and reaching up to 30% power saving in the best-case scenario. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

33 pages, 12704 KiB  
Article
Development of an IoT-Based SCADA System for Monitoring of Plant Leaf Temperature and Air and Soil Parameters
by Aryuanto Soetedjo and Evy Hendriarianti
Appl. Sci. 2023, 13(20), 11294; https://doi.org/10.3390/app132011294 - 14 Oct 2023
Cited by 1 | Viewed by 2508
Abstract
Plant leaf temperature and its environmental parameters provide valuable information on plant growth. This paper presents the development of a plant monitoring system using an IoT-based SCADA (Supervisory Control and Data Acquisition). The developed SCADA system monitors the leaf temperature and the air [...] Read more.
Plant leaf temperature and its environmental parameters provide valuable information on plant growth. This paper presents the development of a plant monitoring system using an IoT-based SCADA (Supervisory Control and Data Acquisition). The developed SCADA system monitors the leaf temperature and the air parameters of temperature and humidity, as well as the soil parameters of temperature, moisture, pH, electrical conductivity, nitrogen, phosphorous, and potassium. A novel method is proposed for measuring the leaf temperature using a low-cost 8 × 8 array thermal camera. The sensor systems in the field are developed to wirelessly communicate with the Hawell IoT Cloud HMI via a Modbus TCP protocol. To visualize the thermal image on the HMI dashboard, a novel approach is proposed wherein the data are transferred using the Modbus TCP protocol. The HMI is connected to a cloud server and can be accessed by the users using the web browser or mobile application on a smartphone. The experimental results show that the proposed hardware, software, and communication protocol are reliable for real-time and continuous plant monitoring. Further, the evaluation of sensor data shows that the data from the thermal camera and air parameters sensor can be independently interpreted. However, the data from the soil sensor should be interpreted in consideration of the other parameters. Full article
Show Figures

Figure 1

14 pages, 4585 KiB  
Article
A Lightweight Remote Sensing Payload for Wildfire Detection and Fire Radiative Power Measurements
by Troy D. Thornberry, Ru-Shan Gao, Steven J. Ciciora, Laurel A. Watts, Richard J. McLaughlin, Angelina Leonardi, Karen H. Rosenlof, Brian M. Argrow, Jack S. Elston, Maciej Stachura, Joshua Fromm, W. Alan Brewer, Paul Schroeder and Michael Zucker
Sensors 2023, 23(7), 3514; https://doi.org/10.3390/s23073514 - 27 Mar 2023
Cited by 1 | Viewed by 3012
Abstract
Small uncrewed aerial systems (sUASs) have the potential to serve as ideal platforms for high spatial and temporal resolution wildfire measurements to complement aircraft and satellite observations, but typically have very limited payload capacity. Recognizing the need for improved data from wildfire management [...] Read more.
Small uncrewed aerial systems (sUASs) have the potential to serve as ideal platforms for high spatial and temporal resolution wildfire measurements to complement aircraft and satellite observations, but typically have very limited payload capacity. Recognizing the need for improved data from wildfire management and smoke forecasting communities and the potential advantages of sUAS platforms, the Nighttime Fire Observations eXperiment (NightFOX) project was funded by the US National Oceanic and Atmospheric Administration (NOAA) to develop a suite of miniaturized, relatively low-cost scientific instruments for wildfire-related measurements that would satisfy the size, weight and power constraints of a sUAS payload. Here we report on a remote sensing system developed under the NightFOX project that consists of three optical instruments with five individual sensors for wildfire mapping and fire radiative power measurement and a GPS-aided inertial navigation system module for aircraft position and attitude determination. The first instrument consists of two scanning telescopes with infrared (IR) channels using narrow wavelength bands near 1.6 and 4 µm to make fire radiative power measurements with a blackbody equivalent temperature range of 320–1500 °C. The second instrument is a broadband shortwave (0.95–1.7 µm) IR imager for high spatial resolution fire mapping. Both instruments are custom built. The third instrument is a commercial off-the-shelf visible/thermal IR dual camera. The entire system weighs about 1500 g and consumes approximately 15 W of power. The system has been successfully operated for fire observations using a Black Swift Technologies S2 small, fixed-wing UAS for flights over a prescribed grassland burn in Colorado and onboard an NOAA Twin Otter crewed aircraft over several western US wildfires during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field mission. Full article
(This article belongs to the Special Issue Unmanned Aerial Systems and Remote Sensing)
Show Figures

Graphical abstract

16 pages, 3465 KiB  
Article
Phenomenology of Neapolitan Pizza Baking in a Traditional Wood-Fired Oven
by Aniello Falciano, Mauro Moresi and Paolo Masi
Foods 2023, 12(4), 890; https://doi.org/10.3390/foods12040890 - 19 Feb 2023
Cited by 5 | Viewed by 3479
Abstract
Despite Neapolitan pizza is a globally renowned Italian food, its obligatory baking in wood-fired ovens has so far received little attention in the scientific community. Since heat transfer during pizza baking is not at all uniform, the main aim of this work was [...] Read more.
Despite Neapolitan pizza is a globally renowned Italian food, its obligatory baking in wood-fired ovens has so far received little attention in the scientific community. Since heat transfer during pizza baking is not at all uniform, the main aim of this work was to analyze the phenomenology of Neapolitan pizza baking in a pilot-scale wood-fired pizza oven operating in quasi steady-state conditions. The different upper area sections of pizza covered or not by the main topping ingredients (i.e., tomato puree, sunflower oil, or mozzarella cheese), as well the bottom of the pizza and the growth of its raised rim, were characterized by visual colorimetric analysis, while the time course of their corresponding temperatures was monitored using an infrared thermal scanning camera. The maximum temperature of the pizza bottom was equal to 100 ± 9 °C, while that of the upper pizza side ranged from 182 °C to 84 or 67 °C in the case of white pizza, tomato pizza, or margherita pizza, respectively, mainly because of their diverse moisture content and emissivity. The pizza weight loss was nonlinearly related to the average temperature of the upper pizza side. The formation of brown or black colored areas on the upper and lower sides of baked pizza was detected with the help of an electronic eye. The upper side exhibited greater degrees of browning and blackening than the lower one, their maximum values being about 26 and 8%, respectively, for white pizza. These results might help develop a specific modelling and monitoring strategy to reduce variability and maximize the quality attributes of Neapolitan pizza. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

15 pages, 5359 KiB  
Article
Heat Transfer Model and Soft Sensing for Segmented Fluidized Bed Dryer
by Mengke Lu, Patrick Kranz, Andrew Salmon, Sam Wilkinson and Rok Sibanc
Processes 2022, 10(12), 2609; https://doi.org/10.3390/pr10122609 - 6 Dec 2022
Cited by 4 | Viewed by 1948
Abstract
The aim of this work is to evaluate thermal behaviors and develop a soft sensor for online prediction of LOD (loss-on-drying) in the segmented fluidized bed dryer (Seg-FBD) in the ConsiGma25 line, which is regarded as the intermediate critical quality attribute for the [...] Read more.
The aim of this work is to evaluate thermal behaviors and develop a soft sensor for online prediction of LOD (loss-on-drying) in the segmented fluidized bed dryer (Seg-FBD) in the ConsiGma25 line, which is regarded as the intermediate critical quality attribute for the final drug product. Preheating and drying experiments are performed and heat transfers and conductions among the Seg-FBD are evaluated based on the temperature measurements from sensors and an infrared thermal camera. A temperature distribution in dryer cells and high heat conductions in walls are found. Considerable heat transfers between the neighboring dryer cells are determined, which equal approximately 7% of the energy provided from the heated air. The cell-to-cell heat transfers are implemented into the heat transfer and drying models of the Seg-FBD. The models are calibrated successively in gPROMS Formulated Products (gFP) and the temperature and LOD errors are less than 2 °C and 0.5 wt.%, respectively. Subsequently, a soft sensor is established by combining data sources, a real-time data communication method, and the developed drying model, and it shows the capability of predicting real-time LOD, where the error of end-point LOD is within 0.5 wt.%. The work provides detailed steps and applicable tools for developing a soft sensor, and the online deployment of the soft sensor could support continuous production in the Seg-FBD by enabling visualization of process status and determination of process end point. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

14 pages, 2812 KiB  
Article
Efficient and Secure WiFi Signal Booster via Unmanned Aerial Vehicles WiFi Repeater Based on Intelligence Based Localization Swarm and Blockchain
by Gehad Abdullah Amran, Shuang Wang, Mohammed A. A. Al-qaness, Syed Agha Hassnain Mohsan, Rizwan Abbas, Eissa Ghaleb, Samah Alshathri and Mohamed Abd Elaziz
Micromachines 2022, 13(11), 1924; https://doi.org/10.3390/mi13111924 - 8 Nov 2022
Cited by 5 | Viewed by 3992
Abstract
Recently, the unmanned aerial vehicles (UAV) under the umbrella of the Internet of Things (IoT) in smart cities and emerging communities have become the focus of the academic and industrial science community. On this basis, UAVs have been used in many military and [...] Read more.
Recently, the unmanned aerial vehicles (UAV) under the umbrella of the Internet of Things (IoT) in smart cities and emerging communities have become the focus of the academic and industrial science community. On this basis, UAVs have been used in many military and commercial systems as emergency transport and air support during natural disasters and epidemics. In such previous scenarios, boosting wireless signals in remote or isolated areas would need a mobile signal booster placed on UAVs, and, at the same time, the data would be secured by a secure decentralized database. This paper contributes to investigating the possibility of using a wireless repeater placed on a UAV as a mobile booster for weak wireless signals in isolated or rural areas in emergency situations and that the transmitted information is protected from external interference and manipulation. The working mechanism is as follows: one of the UAVs detect a human presence in a predetermined area with the thermal camera and then directs the UAVs to the location to enhance the weak signal and protect the transmitted data. The methodology of localization and clusterization of the UAVs is represented by a swarm intelligence localization (SIL) optimization algorithm. At the same time, the information sent by UAV is protected by blockchain technology as a decentralization database. According to realistic studies and analyses of UAVs localization and clusterization, the proposed idea can improve the amplitude of the wireless signals in far regions. In comparison, this database technique is difficult to attack. The research ultimately supports emergency transport networks, blockchain, and IoT services. Full article
(This article belongs to the Special Issue Micro Air Vehicles)
Show Figures

Figure 1

17 pages, 6561 KiB  
Article
Infrared-Fused Vision-Based Thermoregulation Performance Estimation for Personal Thermal Comfort-Driven HVAC System Controls
by Ali Ghahramani, Qian Xu, Syung Min, Andy Wang, Hui Zhang, Yingdong He, Alexander Merritt and Ronnen Levinson
Buildings 2022, 12(8), 1241; https://doi.org/10.3390/buildings12081241 - 15 Aug 2022
Cited by 17 | Viewed by 2467
Abstract
Thermal comfort is one of the primary factors influencing occupant health, well-being, and productivity in buildings. Existing thermal comfort systems require occupants to frequently communicate their comfort vote via a survey which is impractical as a long-term solution. Here, we present a novel [...] Read more.
Thermal comfort is one of the primary factors influencing occupant health, well-being, and productivity in buildings. Existing thermal comfort systems require occupants to frequently communicate their comfort vote via a survey which is impractical as a long-term solution. Here, we present a novel thermal infrared-fused computer vision sensing method to capture thermoregulation performance in a non-intrusive and non-invasive manner. In this method, we align thermal and visible images, detect facial segments (i.e., nose, eyes, face boundary), and accordingly read the temperatures from the appropriate coordinates in the thermal image. We focus on the human face since it is often clearly visible to cameras and is not merged into a hot background (unlike hands). We use a regularized Gaussian Mixture model to track the thermoregulation changes over time and apply a heuristic algorithm to extract hot and cold indices. We present a personalized and a generalized comfort modeling method, selected based on the availability of the occupant historical indices measurements in a neutral environment, and use the time-series of the hot and cold indices to define corrections to HVAC system operations in the form of setpoint constraints. To evaluate the efficacy of our proposed approach in responding to thermal stimuli, we designed a series of controlled experiments to simulate exposure to cold and hot environments. While applying personalized modeling showed an acceptable average accuracy of 91.3%, the generalized model’s average accuracy was only 65.2%. This shows the importance of having access to physiological records in modeling and assessing comfort. We also found that individual differences should be considered in selecting the cooling and heating rates when some knowledge of the occupant’s overall thermal preference is available. Full article
(This article belongs to the Special Issue Thermal Comfort in Built Environment)
Show Figures

Figure 1

17 pages, 6679 KiB  
Article
A Robotic Platform for Aircraft Composite Structure Inspection Using Thermography
by Amalka Indupama Samarathunga, Neelanjana Piyasundara, Anuka Iroshan Wanigasooriya, Buddhika Sampath Kumara, Vimukkthi Priyadarshana Vithanage and Damith Suresh Chathuranga
Robotics 2022, 11(3), 62; https://doi.org/10.3390/robotics11030062 - 15 May 2022
Cited by 2 | Viewed by 3154
Abstract
Water ingression is a critical issue in honeycomb composite structures, which could result in catastrophic structural failure. In the aviation industry, they are widely used to manufacture critical aircraft structural components including fuselage, wings, and flight control surfaces. Catastrophic failure of these structures [...] Read more.
Water ingression is a critical issue in honeycomb composite structures, which could result in catastrophic structural failure. In the aviation industry, they are widely used to manufacture critical aircraft structural components including fuselage, wings, and flight control surfaces. Catastrophic failure of these structures would be disastrous, thus identifying water accumulation in earlier stages of the defect is necessary. The conventional non-destructive testing method is thermography which is performed using handheld thermography cameras by manually accessing the specific areas. This method of inspection has been identified to be a risky, costly, time-consuming, and inspector-dependent technique. This paper describes using a wall-climbing robotic platform that can be controlled remotely to access and perform the inspection on a targeted structural area replacing the manual process. The designed wall-climbing inspection robot onboard a heat pump to stimulate the composite surface to an adequate temperature and, an infrared sensor to feed the real-time temperature data via Bluetooth serial communication to a remote computer system to be processed into a thermal image and evaluated to determine the presence of water. The results obtained from the thermographic sensor are validated with the comparison of the Fluke thermography camera. Full article
(This article belongs to the Topic Industrial Robotics)
Show Figures

Figure 1

21 pages, 1039 KiB  
Review
Skin Cancer Detection Using Infrared Thermography: Measurement Setup, Procedure and Equipment
by Jan Verstockt, Simon Verspeek, Filip Thiessen, Wiebren A. Tjalma, Lieve Brochez and Gunther Steenackers
Sensors 2022, 22(9), 3327; https://doi.org/10.3390/s22093327 - 26 Apr 2022
Cited by 33 | Viewed by 6417
Abstract
Infrared thermography technology has improved dramatically in recent years and is gaining renewed interest in the medical community for applications in skin tissue identification applications. However, there is still a need for an optimized measurement setup and protocol to obtain the most appropriate [...] Read more.
Infrared thermography technology has improved dramatically in recent years and is gaining renewed interest in the medical community for applications in skin tissue identification applications. However, there is still a need for an optimized measurement setup and protocol to obtain the most appropriate images for decision making and further processing. Nowadays, various cooling methods, measurement setups and cameras are used, but a general optimized cooling and measurement protocol has not been defined yet. In this literature review, an overview of different measurement setups, thermal excitation techniques and infrared camera equipment is given. It is possible to improve thermal images of skin lesions by choosing an appropriate cooling method, infrared camera and optimized measurement setup. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

23 pages, 4923 KiB  
Article
PlumeTraP: A New MATLAB-Based Algorithm to Detect and Parametrize Volcanic Plumes from Visible-Wavelength Images
by Riccardo Simionato, Paul A. Jarvis, Eduardo Rossi and Costanza Bonadonna
Remote Sens. 2022, 14(7), 1766; https://doi.org/10.3390/rs14071766 - 6 Apr 2022
Cited by 5 | Viewed by 2843
Abstract
Tephra plumes from explosive volcanic eruptions can be hazardous for the lives and livelihoods of people living in the proximity of volcanoes. Monitoring and forecasting tephra plumes play essential roles in the detection, characterization and hazard assessment of explosive volcanic events. However, advanced [...] Read more.
Tephra plumes from explosive volcanic eruptions can be hazardous for the lives and livelihoods of people living in the proximity of volcanoes. Monitoring and forecasting tephra plumes play essential roles in the detection, characterization and hazard assessment of explosive volcanic events. However, advanced monitoring instruments, e.g., thermal cameras, can be expensive and are not always available in monitoring networks. Conversely, visible-wavelength cameras are significantly cheaper and much more widely available. This paper proposes an innovative approach to the detection and parametrization of tephra plumes, utilizing videos recorded in the visible wavelengths. Specifically, we have developed an algorithm with the objectives of: (i) identifying and isolating plume-containing pixels through image processing techniques; (ii) extracting the main geometrical parameters of the eruptive column, such as the height and width, as functions of time; and (iii) determining quantitative information related to the plume motion (e.g., the rise velocity and acceleration) using the physical quantities obtained through the first-order analysis. The resulting MATLAB-based software, named Plume Tracking and Parametrization (PlumeTraP), semi-automatically tracks the plume and is also capable of automatically calculating the associated geometric parameters. Through application of the algorithm to the case study of Vulcanian explosions from Sabancaya volcano (Peru), we verify that the eruptive column boundaries are well recognized, and that the calculated parameters are reliable. The developed software can be of significant use to the wider volcanological community, enabling research into the dynamics of explosive volcanic eruptions, as well as potentially improving the use of visible-wavelength cameras as part of the monitoring networks of active volcanoes. Furthermore, PlumeTraP could potentially find a broader application for the analysis of any other plume-shaped natural or anthropogenic phenomena in visible wavelengths. Full article
Show Figures

Figure 1

10 pages, 1420 KiB  
Communication
@thermogramer: Thermal Imaging as a Tool for Science Communication and E-Learning in Social Media
by Juan Manuel Bermudez-Garcia
Sustainability 2022, 14(5), 3096; https://doi.org/10.3390/su14053096 - 7 Mar 2022
Viewed by 2232
Abstract
The COVID-19 pandemic boosted the presence of thermal cameras in our society. These devices are becoming cheaper and smaller and can even be plugged in our smartphones. Therefore, soon enough everybody will have access to these instruments. Thermal cameras have been widely used [...] Read more.
The COVID-19 pandemic boosted the presence of thermal cameras in our society. These devices are becoming cheaper and smaller and can even be plugged in our smartphones. Therefore, soon enough everybody will have access to these instruments. Thermal cameras have been widely used for industrial, research and/or academic purposes. Now, in the rise of the online era, this work proposes and assesses a new application for such devices as visual engaging tools for science communication and e-learning in social media. Here, we introduce @thermogramer as a science communication channel that shows multispectral (optical and thermal) images of daily life objects to explain the science behind different topics of social interest (climate change, emerging technologies, health, and popular traditions). This young project is already present in social media, press, TV and museum’s exhibitions, and its designed content have been already useful for new inexperienced users, science educators and communicators. Full article
Show Figures

Figure 1

22 pages, 5875 KiB  
Article
Modifying Hata-Davidson Propagation Model for Remote Sensing in Complex Environments Using a Multifactional Drone
by Faris A. Almalki and Ben Othman Soufiene
Sensors 2022, 22(5), 1786; https://doi.org/10.3390/s22051786 - 24 Feb 2022
Cited by 14 | Viewed by 2977
Abstract
The coupling of drones and IoT is a major topics in academia and industry since it significantly contributes towards making human life safer and smarter. Using drones is seen as a robust approach for mobile remote sensing operations, such as search-and-rescue missions, due [...] Read more.
The coupling of drones and IoT is a major topics in academia and industry since it significantly contributes towards making human life safer and smarter. Using drones is seen as a robust approach for mobile remote sensing operations, such as search-and-rescue missions, due to their speed and efficiency, which could seriously affect victims’ chances of survival. This paper aims to modify the Hata-Davidson empirical propagation model based on RF drone measurement to conduct searches for missing persons in complex environments with rugged areas after manmade or natural disasters. A drone was coupled with a thermal FLIR lepton camera, a microcontroller, GPS, and weather station sensors. The proposed modified model utilized the least squares tuning algorithm to fit the data measured from the drone communication system. This enhanced the RF connectivity between the drone and the local authority, as well as leading to increased coverage footprint and, thus, the performance of wider search-and-rescue operations in a timely fashion using strip search patterns. The development of the proposed model considered both software simulation and hardware implementations. Since empirical propagation models are the most adjustable models, this study concludes with a comparison between the modified Hata-Davidson algorithm against other well-known modified empirical models for validation using root mean square error (RMSE). The experimental results show that the modified Hata-Davidson model outperforms the other empirical models, which in turn helps to identify missing persons and their locations using thermal imaging and a GPS sensor. Full article
(This article belongs to the Special Issue UAV Control and Communications in 5G and beyond Networks)
Show Figures

Figure 1

18 pages, 2168 KiB  
Review
Visible-Infrared Person Re-Identification: A Comprehensive Survey and a New Setting
by Huantao Zheng, Xian Zhong, Wenxin Huang, Kui Jiang, Wenxuan Liu and Zheng Wang
Electronics 2022, 11(3), 454; https://doi.org/10.3390/electronics11030454 - 3 Feb 2022
Cited by 11 | Viewed by 3933
Abstract
Person re-identification (ReID) plays a crucial role in video surveillance with the aim to search a specific person across disjoint cameras, and it has progressed notably in recent years. However, visible cameras may not be able to record enough information about the pedestrian’s [...] Read more.
Person re-identification (ReID) plays a crucial role in video surveillance with the aim to search a specific person across disjoint cameras, and it has progressed notably in recent years. However, visible cameras may not be able to record enough information about the pedestrian’s appearance under the condition of low illumination. On the contrary, thermal infrared images can significantly mitigate this issue. To this end, combining visible images with infrared images is a natural trend, and are considerably heterogeneous modalities. Some attempts have recently been contributed to visible-infrared person re-identification (VI-ReID). This paper provides a complete overview of current VI-ReID approaches that employ deep learning algorithms. To align with the practical application scenarios, we first propose a new testing setting and systematically evaluate state-of-the-art methods based on our new setting. Then, we compare ReID with VI-ReID in three aspects, including data composition, challenges, and performance. According to the summary of previous work, we classify the existing methods into two categories. Additionally, we elaborate on frequently used datasets and metrics for performance evaluation. We give insights on the historical development and conclude the limitations of off-the-shelf methods. We finally discuss the future directions of VI-ReID that the community should further address. Full article
Show Figures

Figure 1

Back to TopTop