Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,860)

Search Parameters:
Keywords = vehicle tracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 61088 KiB  
Article
CMDN: Pre-Trained Visual Representations Boost Adversarial Robustness for UAV Tracking
by Ruilong Yu, Zhewei Wu, Qihe Liu, Shijie Zhou, Min Gou and Bingchen Xiang
Drones 2024, 8(11), 607; https://doi.org/10.3390/drones8110607 - 23 Oct 2024
Abstract
Visual object tracking is widely adopted to unmanned aerial vehicle (UAV)-related applications, which demand reliable tracking precision and real-time performance. However, UAV trackers are highly susceptible to adversarial attacks, while research on developing effective adversarial defense methods for UAV tracking remains limited. To [...] Read more.
Visual object tracking is widely adopted to unmanned aerial vehicle (UAV)-related applications, which demand reliable tracking precision and real-time performance. However, UAV trackers are highly susceptible to adversarial attacks, while research on developing effective adversarial defense methods for UAV tracking remains limited. To tackle these challenges, we propose CMDN, a novel pre-processing defense network that effectively purifies adversarial perturbations by reconstructing video frames. This network learns robust visual representations from video frames, guided by meaningful features from both the search region and the template. Comprehensive experiments on three benchmarks demonstrate that CMDN is capable of enhancing a UAV tracker’s adversarial robustness in both adaptive and non-adaptive attack scenarios. In addition, CMDN maintains stable defense effectiveness when transferred to heterogeneous trackers. Real-world tests on the UAV platform also validate its reliable defense effectiveness and real-time performance, with CMDN achieving 27 FPS on NVIDIA Jetson Orin 16 GB (25 W mode). Full article
Show Figures

Figure 1

24 pages, 5194 KiB  
Article
Decentralized Multi-Agent Search for Moving Targets Using Road Network Gaussian Process Regressions
by Brady Moon, Christine Akagi and Cameron K. Peterson
Drones 2024, 8(11), 606; https://doi.org/10.3390/drones8110606 - 23 Oct 2024
Abstract
Unmanned aerial vehicles (UAVs) can collaborate as teams to accomplish diverse mission objectives, such as target search and tracking. This paper introduces a method that leverages accumulated target-density information over the course of a UAV mission to adapt path-planning rewards, guiding UAVs toward [...] Read more.
Unmanned aerial vehicles (UAVs) can collaborate as teams to accomplish diverse mission objectives, such as target search and tracking. This paper introduces a method that leverages accumulated target-density information over the course of a UAV mission to adapt path-planning rewards, guiding UAVs toward areas with a higher likelihood of target presence. The target density is modeled using a Gaussian process, which is iteratively updated as the UAVs search the environment. Unlike conventional search algorithms that prioritize unexplored regions, this approach incentivizes revisiting target-rich areas. The target-density information is shared across UAVs using decentralized consensus filters, enabling cooperative path selection that balances the exploration of uncertain regions with the exploitation of known high-density areas. The framework presented in this paper provides an adaptive cooperative search method that can quickly develop an understanding of the region’s target-dense areas, helping UAVs refine their search. Through Monte Carlo simulations, we demonstrate this method in both a 2D grid region and road networks, showing up to a 26% improvement in target density estimates. Full article
(This article belongs to the Topic Civil and Public Domain Applications of Unmanned Aviation)
Show Figures

Figure 1

22 pages, 5210 KiB  
Article
A Design Method for Road Vehicles with Autonomous Driving Control
by Chunyu Mao, Yuping He and Martin Agelin-Chaab
Actuators 2024, 13(11), 427; https://doi.org/10.3390/act13110427 - 23 Oct 2024
Abstract
The past three decades have witnessed extensive studies on motion-planning and tracking-control for autonomous vehicles (AVs). There is, however, a lack of studies on effective design methods for AVs, which consist of the subsystems of the mechanical vehicle, tracking-control, motion-planning, etc. To tackle [...] Read more.
The past three decades have witnessed extensive studies on motion-planning and tracking-control for autonomous vehicles (AVs). There is, however, a lack of studies on effective design methods for AVs, which consist of the subsystems of the mechanical vehicle, tracking-control, motion-planning, etc. To tackle this problem, this paper proposes a design approach for AVs. The proposed method features a design framework with two layers: at the upper layer, a particle swarm optimization (PSO) algorithm serves as a solver to a multi-objective optimization problem for desired AV trajectory-tracking performance; at the lower layer, a coupled dynamic analysis is conducted among the three subsystems, i.e., a nonlinear model for the mechanical vehicle, a motion-planning module, and a controller based on nonlinear model predictive control (NLMPC) for direction control. The simulation results demonstrate that the proposed method can effectively determine the desired design variables for the NLMPC controller and the mechanical vehicle to achieve optimal trajectory-tracking performance. The research findings from this work provide guidelines for designing AVs. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

20 pages, 3647 KiB  
Article
Comparative Analysis of AR-HUDs Crash Warning Icon Designs: An Eye-Tracking Study Using 360° Panoramic Driving Simulation
by Zhendong Wu, Ying Liang, Guocui Liu and Xiaoqun Ai
Sustainability 2024, 16(21), 9167; https://doi.org/10.3390/su16219167 - 22 Oct 2024
Abstract
Augmented Reality Head-Up Displays (AR-HUDs) enhance driver perception and safety, yet optimal hazard warning design remains unclear. This study examines three AR-HUD crash warning icon types (BD, BR, BW) across various turning scenarios. Using a 360-degree video-based driving simulation with 36 participants, eye-tracking [...] Read more.
Augmented Reality Head-Up Displays (AR-HUDs) enhance driver perception and safety, yet optimal hazard warning design remains unclear. This study examines three AR-HUD crash warning icon types (BD, BR, BW) across various turning scenarios. Using a 360-degree video-based driving simulation with 36 participants, eye-tracking metrics were collected. Results show BW icons, dynamically linked to hazards, significantly improve drivers’ pedestrian risk awareness and visual attention allocation compared to BD and BR systems. BW consistently demonstrated longer gaze duration, higher fixation counts, and shorter time to first fixation across all turns. BD and BR icons were more susceptible to lane changes, potentially diverting attention from hazards. Findings suggest prioritizing dynamic tracking warning icons over fixed-position alternatives to minimize visual competition and distraction, providing crucial insights for AR-HUD optimization in automated vehicles. Full article
Show Figures

Figure 1

16 pages, 3377 KiB  
Article
Data-Driven Prescribed Performance Platooning Control Under Aperiodic Denial-of- Service Attacks
by Peng Zhang, Zhenling Wang and Weiwei Che
Mathematics 2024, 12(21), 3313; https://doi.org/10.3390/math12213313 - 22 Oct 2024
Abstract
This article studies a data-driven prescribed performance platooning control method for nonlinear connected automated vehicle systems (CAVs) under aperiodic denial-of-service (DoS) attacks. Firstly, the dynamic linearization technique is employed to transform the nonlinear CAV system into an equivalent linearized data model. Secondly, to [...] Read more.
This article studies a data-driven prescribed performance platooning control method for nonlinear connected automated vehicle systems (CAVs) under aperiodic denial-of-service (DoS) attacks. Firstly, the dynamic linearization technique is employed to transform the nonlinear CAV system into an equivalent linearized data model. Secondly, to improve the system’s transient performance, a prescribed performance transformation (PPT) scheme is proposed to transform the constrained output into the unconstrained one. In addition, an attack compensation mechanism is designed to reduce the adverse impact. Combining the PPT scheme and the attack compensation mechanism, the data-driven adaptive platooning control scheme is proposed to achieve the vehicular tracking control task. Lastly, the merits of the developed control method are illustrated by an actual simulation. Full article
Show Figures

Figure 1

25 pages, 5282 KiB  
Article
Driver–Automated Cooperation Driving Authority Optimization Framework for Shared Steering Control
by Shuting Yan, Qingsong Wei, Xianyi Xie, Dingxuan Zhao and Xinyu Liu
Processes 2024, 12(11), 2313; https://doi.org/10.3390/pr12112313 - 22 Oct 2024
Abstract
In this paper, we introduce the preview-follower theory for modeling the trajectory-tracking controller of an automated system using model predictive control (MPC). The primary contribution of this research lies in enhancing tracking accuracy and driving safety when the driver and automated system share [...] Read more.
In this paper, we introduce the preview-follower theory for modeling the trajectory-tracking controller of an automated system using model predictive control (MPC). The primary contribution of this research lies in enhancing tracking accuracy and driving safety when the driver and automated system share similar driving intentions, while also enabling a rapid transfer of driving authority to the human driver in cases of differing intentions. To verify the effectiveness of the proposed driving authority optimization framework, both simulation and driver-in-the-loop experiments were conducted under conditions of consistent and inconsistent driving intentions between the human driver and the autonomous driving system. The results of both experiments demonstrated that the proposed shared steering cooperative control and driving authority optimization framework not only significantly improves vehicle tracking accuracy but also promptly aligns with the driver’s intentions. Full article
(This article belongs to the Special Issue Recent Developments in Automatic Control and Systems Engineering)
Show Figures

Figure 1

16 pages, 2347 KiB  
Article
Research on Status Assessment and Operation and Maintenance of Electric Vehicle DC Charging Stations Based on XGboost
by Hualiang Fang, Jiaqi Liao, Shuo Huang and Maojie Zhang
Smart Cities 2024, 7(6), 3055-3070; https://doi.org/10.3390/smartcities7060119 - 22 Oct 2024
Abstract
With the rapid development of electric vehicles, the infrastructure for charging stations is also expanding quickly, and the failure rate of charging piles is increasing. To address the effective operation and maintenance of charging stations, a method based on the XGBoost algorithm for [...] Read more.
With the rapid development of electric vehicles, the infrastructure for charging stations is also expanding quickly, and the failure rate of charging piles is increasing. To address the effective operation and maintenance of charging stations, a method based on the XGBoost algorithm for electric vehicle DC charging stations is proposed. An operation and maintenance system is constructed based on state analysis, considering the operational status of the charging stations and users’ charging habits. Factors such as driving and charging habits, road traffic, and charging station equipment are taken into account. The training sample data are established using historical data, online monitoring data, and external environmental data, and the charging station status evaluation model is trained using the XGBoost algorithm. Based on the condition assessment results, a risk assessment model is established in combination with fault parameters. Risk tracking of the charging stations is conducted using the energy not charged (ENC), evaluating the risk level of each station and determining the operation and maintenance order. The optimal operation and maintenance model for DC charging stations, aimed at achieving both economic and reliability goals, is constructed to determine the operation and maintenance schedule for each station. The results of the case study demonstrate that the state evaluation and operation and maintenance strategy can significantly improve the reliability of the system and the overall benefits of operation and maintenance while meeting the required standards. Full article
Show Figures

Figure 1

18 pages, 663 KiB  
Article
Distributed Multi-Sensor Fusion for Multi-Group/Extended Target Tracking with Different Limited Fields of View
by Chao Xiong, Moufa Hu, Huanzhang Lu and Fei Zhao
Appl. Sci. 2024, 14(21), 9627; https://doi.org/10.3390/app14219627 - 22 Oct 2024
Abstract
The identification of sensing group targets and extended targets is of paramount importance in the context of vehicle tracking and early warning detection. As the scope of target monitoring and tracking extends, conventional single-sensor-based tracking techniques are proving to be inadequate in meeting [...] Read more.
The identification of sensing group targets and extended targets is of paramount importance in the context of vehicle tracking and early warning detection. As the scope of target monitoring and tracking extends, conventional single-sensor-based tracking techniques are proving to be inadequate in meeting the practical demands of the field. Consequently, multi-sensor fusion tracking technology has emerged as a viable alternative. However, the use of multiple sensors is constrained by their limited fields of view (FOVs), which leads to issues such as the loss of target detection and the introduction of false targets after fusion. Hence, this study proposes a combination of weighted geometric averaging (WGA) and weighted arithmetic averaging (WAA) methods to solve distributed multi-group/extended target tracking with different fields of view. Specifically, a local Poisson multi-Bernoulli mixture (PMBM) filter was first used on individual sensors. Subsequently, we combined a sequential fusion technique and the proposed fusion approach to fuse the PMBM filter densities. The efficacy and superiority of this approach were demonstrated through simulations. Full article
Show Figures

Figure 1

16 pages, 2383 KiB  
Article
Efficient Nonlinear Model Predictive Path Tracking Control for Autonomous Vehicle: Investigating the Effects of Vehicle Dynamics Stiffness
by Guozhu Zhu and Weirong Hong
Machines 2024, 12(10), 742; https://doi.org/10.3390/machines12100742 - 21 Oct 2024
Abstract
Motion control is one of the three core modules of autonomous driving, and nonlinear model predictive control (NMPC) has recently attracted widespread attention in the field of motion control. Vehicle dynamics equations, as a widely used model, have a significant impact on the [...] Read more.
Motion control is one of the three core modules of autonomous driving, and nonlinear model predictive control (NMPC) has recently attracted widespread attention in the field of motion control. Vehicle dynamics equations, as a widely used model, have a significant impact on the solution efficiency of NMPC due to their stiffness. This paper first theoretically analyzes the limitations on the discretized time step caused by the stiffness of the vehicle dynamics model equations when using existing common numerical methods to solve NMPC, thereby revealing the reasons for the low computational efficiency of NMPC. Then, an A-stable controller based on the finite element orthogonal collocation method is proposed, which greatly expands the stable domain range of the numerical solution process of NMPC, thus achieving the purpose of relaxing the discretized time step restrictions and improving the real-time performance of NMPC. Finally, through CarSim 8.0/Simulink 2021a co-simulation, it is verified that the vehicle dynamics model equations are with great stiffness when the vehicle speed is low, and the proposed controller can enhance the real-time performance of NMPC. As the vehicle speed increases, the stiffness of the vehicle dynamics model equation decreases. In addition to the superior capability in addressing the integration stability issues arising from the stiffness nature of the vehicle dynamics equations, the proposed NMPC controller also demonstrates higher accuracy across a broad range of vehicle speeds. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

36 pages, 11788 KiB  
Article
Intelligent Robust Controllers Applied to an Auxiliary Energy System for Electric Vehicles
by Mario Antonio Ruz Canul, Jose A. Ruz-Hernandez, Alma Y. Alanis, Jose-Luis Rullan-Lara, Ramon Garcia-Hernandez and Jaime R. Vior-Franco
World Electr. Veh. J. 2024, 15(10), 479; https://doi.org/10.3390/wevj15100479 - 21 Oct 2024
Abstract
This paper presents two intelligent robust control strategies applied to manage the dynamics of a DC-DC bidirectional buck–boost converter, which is used in conjunction with a supercapacitor as an auxiliary energy system (AES) for regenerative braking in electric vehicles. The Neural Inverse Optimal [...] Read more.
This paper presents two intelligent robust control strategies applied to manage the dynamics of a DC-DC bidirectional buck–boost converter, which is used in conjunction with a supercapacitor as an auxiliary energy system (AES) for regenerative braking in electric vehicles. The Neural Inverse Optimal Controller (NIOC) and the Neural Sliding Mode Controller (NSMC) utilize identifiers based on Recurrent High-Order Neural Networks (RHONNs) trained with the Extended Kalman Filter (EKF) to track voltage and current references from the converter circuit. Additionally, a driving cycle test tailored specifically for typical urban driving in electric vehicles (EVs) is implemented to validate the efficacy of the proposed controller and energy improvement strategy. The proposed NSMC and NIOC are compared with a PI controller; furthermore, an induction motor and its corresponding three-phase inverter are incorporated into the EV control scheme which is implemented in Matlab/Simulink using the “Simscape Electrical” toolbox. The Mean Squared Error (MSE) is computed to validate the performance of the neural controllers. Additionally, the improvement in the State of Charge (SOC) for an electric vehicle battery through the control of buck–boost converter dynamics is addressed. Finally, several robustness tests against parameter changes in the converter are conducted, along with their corresponding performance indices. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

28 pages, 24746 KiB  
Article
Non-Periodic Quantized Model Predictive Control Method for Underwater Dynamic Docking
by Tian Ni, Can Sima, Liang Qi, Minghao Xu, Junlin Wang, Runkang Tang and Lindan Zhang
Symmetry 2024, 16(10), 1392; https://doi.org/10.3390/sym16101392 - 18 Oct 2024
Viewed by 352
Abstract
This study proposed an event-triggered quantized model predictive control (ETQMPC) method for the dynamic docking of unmanned underwater vehicles (UUVs) and human-occupied vehicles (HOVs). The proposed strategy employed a non-periodic control approach that initiated the non-linear model predictive control (NMPC) optimization and state [...] Read more.
This study proposed an event-triggered quantized model predictive control (ETQMPC) method for the dynamic docking of unmanned underwater vehicles (UUVs) and human-occupied vehicles (HOVs). The proposed strategy employed a non-periodic control approach that initiated the non-linear model predictive control (NMPC) optimization and state sampling based on tracking errors and deviations from the predicted optimal state, thereby enhancing computing performance and system efficiency without compromising the control quality. To further conserve communication resources and improve information transfer efficiency, a quantitative feedback mechanism was employed for sampling and state quantification. The simulation experiments were performed to verify the effectiveness of the method, demonstrating excellent docking trajectory tracking performance, robustness against bounded current interference, and significant reductions in computational and communication burdens. The experimental results demonstrated that the method outperformed in the docking trajectory tracking control performance significantly improved the computational and communication performance, and comprehensively improved the system efficiency. Full article
(This article belongs to the Special Issue Symmetry in Control System Theory and Applications)
Show Figures

Figure 1

19 pages, 5686 KiB  
Article
Mathematical Model of Horizontal Track Conflict Prevention Algorithm in Detect-and-Avoid Framework
by Suli Wang, Yunsong Lin and Yuan Zhang
Drones 2024, 8(10), 595; https://doi.org/10.3390/drones8100595 - 18 Oct 2024
Viewed by 288
Abstract
With the proliferation of Unmanned Aerial Vehicle (UAV) technology, the demand for effective collision avoidance technology has intensified. The DAIDALUS algorithm, devised by NASA Langley Research Center under the Detect-and-Avoid (DAA) framework, provides conflict prevention bands for remotely piloted UAVs navigating in intricate [...] Read more.
With the proliferation of Unmanned Aerial Vehicle (UAV) technology, the demand for effective collision avoidance technology has intensified. The DAIDALUS algorithm, devised by NASA Langley Research Center under the Detect-and-Avoid (DAA) framework, provides conflict prevention bands for remotely piloted UAVs navigating in intricate airspace. The algorithm computes the bands in two distinct phases: Conflict and Recovery. The formal model for both phases has been established and implemented through iterative programming approaches. However, the mathematical model remains incomplete. Therefore, based on the model, this paper proposes the mathematical model for the two phases of the horizontal track conflict prevention algorithm. Firstly, Cauchy’s inequality is proposed to formulate the model that addresses trajectory conflicts considering the UAV non-instantaneous maneuvering dynamics model, and then a prudent maneuvering strategy is designed to optimize the model for the recovery phase. Finally, the execution procedure of the algorithm within the two-stage mathematical model is also detailed. The results demonstrate that the proposed model achieves a higher precision in the preventive bands, implements an effective collision avoidance strategy, and consistently aligns with the DAIDALUS model while offering a larger buffer time or distance. This work theoretically validates the formal model of the DAIDLAUS algorithm and provides insights for further refinement. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

25 pages, 25144 KiB  
Article
Evaluating Mobile LiDAR Intensity Data for Inventorying Durable Tape Pavement Markings
by Gregory L. Brinster, Mona Hodaei, Aser M. Eissa, Zach DeLoach, Joseph E. Bruno, Ayman Habib and Darcy M. Bullock
Sensors 2024, 24(20), 6694; https://doi.org/10.3390/s24206694 - 17 Oct 2024
Viewed by 337
Abstract
Good visibility of lane markings is important for all road users, particularly autonomous vehicles. In general, nighttime retroreflectivity is one of the most challenging marking visibility characteristics for agencies to monitor and maintain, particularly in cold weather climates where agency snowplows remove retroreflective [...] Read more.
Good visibility of lane markings is important for all road users, particularly autonomous vehicles. In general, nighttime retroreflectivity is one of the most challenging marking visibility characteristics for agencies to monitor and maintain, particularly in cold weather climates where agency snowplows remove retroreflective material during winter operations. Traditional surface-applied paint and glass beads typically only last one season in cold weather climates with routine snowplow activity. Recently, transportation agencies in cold weather climates have begun deploying improved recessed, durable pavement markings that can last several years and have very high retroreflective properties. Several dozen installations may occur in a state in any calendar year, presenting a challenge for states that need to program annual repainting of traditional waterborne paint lines, but not paint over the much more costly durable markings. This study reports on the utilization of mobile mapping LiDAR systems to classify and evaluate pavement markings along a 73-mile section of westbound I-74 in Indiana. LiDAR intensity data can be used to classify pavement markings as either tape or non-tape and then identify areas of tape markings that need maintenance. RGB images collected during LiDAR intensity data collection were used to validate the LiDAR classification. These techniques can be used by agencies to develop accurate pavement marking inventories to ensure that only painted lines (or segments with missing tape) are repainted during annual maintenance. Repeated tests can also track the marking intensity over time, allowing agencies to better understand material lifecycles. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 27177 KiB  
Article
Bollard Pull and Self-Propulsion Performance of a Waterjet Propelled Tracked Amphibian
by Taehyung Kim, Donghyeon Yoon, Jeongil Seo and Jihyeun Wang
J. Mar. Sci. Eng. 2024, 12(10), 1863; https://doi.org/10.3390/jmse12101863 - 17 Oct 2024
Viewed by 395
Abstract
This paper describes the unique full-scale bollard pull and self-propulsion tests of a large amphibious tracked military vehicle with two waterjet propulsors. To provide a reference for the self-propulsion and cavitation performance, a series of sea trials and bollard pull tests were performed [...] Read more.
This paper describes the unique full-scale bollard pull and self-propulsion tests of a large amphibious tracked military vehicle with two waterjet propulsors. To provide a reference for the self-propulsion and cavitation performance, a series of sea trials and bollard pull tests were performed in a military sea bay and in a large test basin, respectively. Good overall agreement between the sea trial and the computation was observed in the speed–power relationship. The cavitation-induced breakdown phenomenon was further explored via numerical simulations. The results indicated that the uncertainties in the numerical results were dominated by the scales of vapor bubbles. The analysis showed that the selection of the vapor bubble scale factors of 1.0 for growth and 0.05 for collapse were in good agreement with the experimental results. Rapid performance breakdown occurred when sufficient suction side-attached cavities were extended into the blade mid-chord and tip-board regions. Full article
(This article belongs to the Special Issue Ship Performance in Actual Seas)
Show Figures

Figure 1

26 pages, 10600 KiB  
Article
Deep Learning-Based Stopped Vehicle Detection Method Utilizing In-Vehicle Dashcams
by Jinuk Park, Jaeyong Lee, Yongju Park and Yongseok Lim
Electronics 2024, 13(20), 4097; https://doi.org/10.3390/electronics13204097 - 17 Oct 2024
Viewed by 443
Abstract
In complex urban road conditions, stationary or illegally parked vehicles present a considerable risk to the overall traffic system. In safety-critical applications like autonomous driving, the detection of stopped vehicles is of utmost importance. Previous methods for detecting stopped vehicles have been designed [...] Read more.
In complex urban road conditions, stationary or illegally parked vehicles present a considerable risk to the overall traffic system. In safety-critical applications like autonomous driving, the detection of stopped vehicles is of utmost importance. Previous methods for detecting stopped vehicles have been designed for stationary viewpoints, such as security cameras, which consistently monitor fixed locations. However, these methods for detecting stopped vehicles based on stationary views cannot address blind spots and are not applicable from driving vehicles. To address these limitations, we propose a novel deep learning-based framework for detecting stopped vehicles in dynamic environments, particularly those recorded by dashcams. The proposed framework integrates a deep learning-based object detector and tracker, along with movement estimation using the dense optical flow method. We also introduced additional centerline detection and inter-vehicle distance measurement. The experimental results demonstrate that the proposed framework can effectively identify stopped vehicles under real-world road conditions. Full article
(This article belongs to the Special Issue AI Synergy: Vision, Language, and Modality)
Show Figures

Figure 1

Back to TopTop