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Abstract

Word embeddings have gained a lot of trac-
tion in recent years since their multidimen-
sional representation of words exhibits use-
ful semantic properties while the process
of obtaining them requires little to no man-
ual interaction. At the same time, linguistic
theories of lexical semantics have been un-
der active research for many decades and
have rich and well-established foundations.
Have such theories now become obsolete
with the advent of sophisticated statistical
methods based on machine learning?

This paper investigates the relationship be-
tween a number of widely used variants
of word embeddings and one specific the-
ory of lexical semantics, viz. frame seman-
tics. Based on the lexical units available
in the FRAMENET corpus, we study some
commonalities and differences in the way
these are represented in each formalism.
We comment on possible future directions
that allow both worlds to learn from each
other and thus may help improve practi-
cal aspects of word embeddings as well as
frame semantics.

1 Introduction

Frame semantics is a semantic theory based on
the idea that in communication, words perceived
by a listener! evoke in their minds a mental im-
age of a scene or situation together with the rele-
vant constituents of and participants in that scene,
and the roles they play (Fillmore, 1982; Petruck,
1996). For instance, in the sentence “Bob paid

IThroughout the paper, we will refer to speakers and lis-
teners as producer and consumer of linguistic material, even
though our arguments are not restricted to spoken language
but apply to other media as well.

60

15 dollars for a simple sandwich.”, the word paid
evokes a COMMERCIAL_TRANSACTION frame
which draws on the listener’s everyday experience
of the exchange of goods for money at a certain
price.

With the FRAMENET corpus?, a manually anno-
tated resource is available for English? that defines
over 1200 frames, lists over 13,000 words and the
frames they evoke, and contains over 200,000 ex-
ample annotations based on material mainly taken
from the British National Corpus®.

However, in recent years, a different kind of seman-
tic word representation has become widely used.
Word embeddings map words to multi-dimensional
vectors with the idea that words that are closely
related in meaning should be mapped to vectors
that are near each other in the underlying vector
space. Such embeddings are typically derived us-
ing machine learning techniques on large textual
corpora, a process that eliminates most of the man-
ual efforts required for a hand-crafted resource like
FRAMENET.

Considering these two opposing approaches, the
question arises in how far linguistic insights ex-
pressed in Frame Semantics can be recovered in
the geometric properties of word embeddings. We
are interested in questions such as:

o Is the lexical material encapsulated in a se-
mantic frame as a whole reflected in the vector
space locations of the words belonging to that
frame?

e How are words that evoke multiple frames
treated by embedding methods?

o Can statistical methods underlying word em-

’https://framenet.icsi.berkeley.edu

3FrameNets in other languages are also available but only
English is considered in this paper.

4http://www.natcorp.ox.ac.uk/
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bedding approaches aid in the development of
a resource like FRAMENET, thus far created
mostly by hand?

We present below four experiments that serve as a
starting point to answer these and similar questions.

2 Background and Related Work

2.1 Word Embeddings

Word embeddings map each word in a given dictio-
nary to a vector in a high-dimensional vector space
where the specific vector chosen for a word de-
pends on its distributional properties in comparison
with other words. The often-cited rationale for this,
as formulated by Harris (1968), states that similar
distributional patterns tend to indicate similar word
meanings.

Since the seminal work of Bengio and colleagues
(Bengio et al., 2003), dense neural-network-based
vector representations of words have become ubiq-
uitous with the number of different approaches too
large to address all of them in this work. The basic
tenet is that of distributional semantics: a word’s
representation is sought to be highly predictable
from the representation of the surrounding context
words found in a corpus. The specific methods that
we consider are given in Sec. 3.

2.2 Frame Semantics

Frame semantics is a theory of lexical semantics
proposed by Fillmore (Fillmore, 1976; Fillmore,
1982) as an advancement of his earlier theory of
case grammar. Its central posit is that the under-
standing of the meaning of words is intimately re-
lated to real-life experiences of the listener. In
understanding, words are said to evoke in the mind
of the listener a mental structure called a frame,
a cognitive schematization of a situation or scene.
The participants that contribute to such a scene
are called frame elements. For instance, the previ-
ously mentioned COMMERCIAL_TRANSACTION
frame alludes to a situation consisting of a BUYER,
SELLER, GOODS, and MONEY. When a frame
is evoked by a word, all of its frame elements be-
come simultaneously available. Because of this, it
is not possible to understand the meaning of the
term goods without also knowing about the mean-
ing of such terms as buy, price, etc. (Petruck, 1996).
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The pairing of a word and its meaning (expressed
as a frame) is called lexical unit (LU). This study
focuses on words and the frames they evoke and
leaves other aspects of frame semantics for future
work.

The FRAMENET project (Baker et al., 1998) pro-
vides an online resource consisting of a lexical
database defining frames and listing frame-evoking
lexical units with the aim of documenting the range
of valences of each lexical unit through example an-
notations (Ruppenhofer et al., 2016). FRAMENET
has been used as a key resource in a number of
natural language processing tasks, including e.g.
semantic parsing (Shi and Mihalcea, 2005), opin-
ion and topic extraction (Kim and Hovy, 2006), and
question answering (Shen and Lapata, 2007).

2.3 Relating Embeddings and Frames

One aspect of Mikolov et al.’s word2vec system
that drew interest to the use of embeddings for
lexical semantics is the fact that the learned rep-
resentations of words and phrases allowed certain
semantic properties to be expressed in terms of
simple algebraic operations, e.g., vector addition
(Mikolov et al., 2013). This motivated related re-
search on consolidating such algebraic relation-
ships, e.g. by Pennington et al. (2014), as well as
on incorporating external resources in addition to
textual corpora and on representing more abstract
linguistic notions as embeddings. For instance,
Tacobacci et al. (2015) learn continuous represen-
tations of word senses, based on the BABELNET?
resource, a large network of synsets and semantic
relations (Navigli and Ponzetto, 2012). Similarly,
Bollegala et al. (2016) combine a text corpus and
WORDNET (Fellbaum, 1998) to yield word rep-
resentations that outperform previous methods in
a semantic similarity prediction task and a word
analogy detection task. They claim that other re-
sources, such as e.g. FRAMENET, could be used
with their method instead of WORDNET but do not
report any results on this. Flekova and Gurevych
(2016) recount that WORDNET senses have been
criticized for being too fine-grained and thus ex-
periment with coarser supersenses of words. They
train a joint word+supersense embedding model
and apply it to a number of text classification tasks.

At this point, it is worth mentioning that some ef-

Shttp://babelnet.org
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forts have been made at integrating WORDNET and
FRAMENET, e.g. by Ferrdndez et al. (2010), to
leverage complementary information encoded in
both. Similarly, techniques to leverage WORDNET
and FRAMENET in order to improve the quality of
word embeddings have been proposed, e.g. where
relational information is derived from semantic
lexicons to retrofit embedding vectors in a post-
processing step (Faruqui et al., 2015) .

Automatic methods for predicting the frame evoked
by a word and its frame elements have become a
research topic in its own right, see, e.g., (Gildea
and Jurafsky, 2002; Erk and Padé, 2006). The fact
that the performance of the best semantic role la-
beler software at the time, SEMAFOR, could be
further improved through the integration of word
embeddings (Hermann et al., 2014), is an addi-
tional motivation to study the relation between
frames and embeddings more closely. There is,
however, little prior research in that area. One ex-
ception is the work by Botschen et al. (2017) who
use frame embeddings trained in a fashion compa-
rable to Hermann et al.’s approach to study whether
the FRAMENET relations naturally arise from text
in similar algebraic notions as in Mikolov et al.’s
work. However, they find no such evidence.

Perhaps most similar to our own efforts is the work
by Pennacchiotti et al. (2008) and by Roth (2008)
who define embeddings for frames themselves to
help discover new frame evoking words. However,
our own interest is less task-driven: we focus on
studying the general question in how far indepen-
dently derived word embeddings exhibit features
predicted by a non-distributional semantic theory.

3 Experiments

Prima facie, a conceptual difference between the
two approaches is that the meaning representation
of a word in the context of word embeddings is a
singular point (i.e. a vector in a high-dimensional
space), while in frame semantics, it is a rich struc-
ture: the frame. By “rich” we refer to the fact that
a frame is a “system of concepts related in such a
way that to understand any one concept it is neces-
sary to understand the entire system; introducing
any one concept results in all of them becoming
available” (Petruck, 1996). At the same time, the
vectors for the words under any embedding scheme
are not assigned randomly, the mapping is designed

62

Table 1: The datasets used in this paper. See the
text for more information on the column headers.

dataset D C T corpus

FT 300 96.7% Wikipedia
G50 50 963% 6G  Wikipedia &
G100 100 96.3% Gigaword 5
G200 200 96.3%

G300 300 96.3%

G42 300 989% 42G Common Crawl
G840 300 99.3% 840G Common Crawl
GT25 25 902% 27G Twitter
GT50 50 90.2%

GT100 100 90.2%

GT200 200 90.2%

w2v 300 96.1% 3G  Google News

such that the distance between two vectors gives
an indication about the semantic similarity of the
underlying words. But despite this geometric prop-
erty, does the arrangement of word vectors give rise
to the same, or at least similar, structures as can be
found in frame semantics?

In order to get an overview in this matter, we first
consider the question whether the lexical unit struc-
ture of FRAMENET can in any way be found in
typical embedding spaces. For that we look at
some statistics of a variety of embedding datasets
for English words. Specifically, we consider neigh-
borhood relations and geometric properties of em-
beddings and how they relate to frame membership.

A list of the datasets we use with some of their
key properties can be found in Table 1. For easier
referencing, each of them is given a short identi-
fier (FT, G50, ...). The embeddings are reference
datasets for the respective method and were pre-
trained on the given generic corpora by the devel-
opers: W2v°® with Word2Vec (Mikolov et al., 2013),
FT/ with fastText (Bojanowski et al., 2016), and all
others with GloVe® (Pennington et al., 2014). All
datasets can freely be downloaded from the web-
sites given in the footnotes where also additional
information can be found. Further important differ-

Shttps://code.google.com/archive/p/
word2vec/

Thttps://fasttext.cc/docs/en/
pretrained-vectors.html

8https://nlp.stanford.edu/projects/
glove/
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Table 2: Statistics for the different embedding datasets. See the text for details.

dataset n ny ns3 il Oy Ol dy d J4

FT 047 035 029 063 90+5 80+10 55407 5.0+08 35£04
G50 0.37 027 023 052 90£12 75+16 6.2+£09 53£1.1 3.740.6
G100 042 032 027 058 90+9 78+13 6.8+09 6.0+1.1 43+£05
G200 043 032 027 059 90£7 80+11 8.1£09 74+£1.1 52407
G300 044 033 027 060 90+6 81410 88+09 8.1+12 56+£0.9
G42 049 037 031 0.65 90+£6 80+10 8.7£09 8.0£1.1 564+0.7
G840 0.17 0.13 0.10 024 90+5 8747 10.5+1.8 10.34+2.1 7.7+£3.3
GT25 0.17 0.14 0.12 028 90+17 7720 49+1.0 44+1.1 3.1+£0.5
GT50 023 0.18 0.15 036 90£13 79+16 6.0£09 54+1.1 3.840.5
GT100 0.27 020 0.17 040 90£9 81%12 7.14£09 6.6+1.0 4.6+£0.6
GT200 029 021 0.17 042 90£7 83+10 83£09 7.8£1.0 5540.6
W2V 051 038 032 066 90£5 80+10 434+05 3.8+06 2.6+£0.2

ences between the embeddings lie in the number of
components D per vector and the vocabulary that
is covered. The latter loosely depends on the the
number of tokens 7T in the corpus. For the com-
parison with FRAMENET we are only interested in
those embedding vectors that correspond to one of
the 8579 lexemes” that form the basis of the lexical
units. The value C in Table 1 is the percentage of
FRAMENET lexemes that is represented in the re-
spective corpus. This means that we extract about
8000 embedding vectors out of each dataset for our
analysis, depending on the specific dataset. We use
the lexemes from FRAMENET and the datasets as
they are and without altering the case. Depending
on the dataset, case variants may or may not be
treated differently, so that mixing them might lead
to inconsistencies, which we want to avoid. As
a consequence, typical FRAMENET lexemes that
do not exist in the embedding sets are capitalized
words, uncommon words, and in particular cer-
tain spellings of compounds like photoelectricity
or medium-build. Ambiguous frame memberships
of lexemes do not play a role in our experiments
because for the statistics we are interested in, it
only matters whether lexemes share a frame but not
which one.

As all experiments that are described in this section
rely on geometric notions, we have to choose some
kind of metric on the embedding spaces. First tests
revealed that the overall results do not essentially
depend on specific choices in this respect (while
specific details do). With that in mind, we opt
for the intuitive and well-known Euclidean met-

9For FRAMENET 1.7.
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ric. Compared to the often-used cosine similarity,
the Euclidean distance is an actual metric and is
thus better suited for discussing the interplay of
distances and angles. Additional benefits of this
choice are discussed in (Trost and Klakow, 2017).

3.1 Nearest Neighbor Relation

First, we consider the relation between the
FRAMENET frame structure and the nearest neigh-
bor (NN) relation in embeddings. For all datasets,
we compute the three nearest neighbors in terms of
the Euclidean distance for all words. Some statis-
tics are given in Table 2. n; gives the probability of
finding the lexemes of two embeddings that are con-
nected by the NN relation within the same frame of
FRAMENET. n; is the same quantity for the second
nearest neighbor and so forth. i is the probability
for finding any of the first three NNs in the same
frame.

The values for n; vary from a low 0.17 for G840
and GT25 to a better-than-chance value of 0.51
for w2V. In general, n; increases with D and also
with 7', with the exception of G840, which shows
a deviating behavior in general (see below). The
regular behavior makes sense if we expect a higher
dimensionality to yield more flexibility in aligning
the words and if more training data is expected to
lead to better results. The values of n, and n3 are
consistently lower than n;, while 72 must be higher
(or equal) by definition. The ratio between these
values is surprisingly similar across all datasets.

In order to get a better feeling for how these num-
bers come about, we can have a look at specific ex-
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Table 3: Example of NNs from FT. Neighbors that
share a frame with the word are underlined.

word NN 1 N N2 NN3
ablaze alight conflagration fire
able unable could would
ablution prayer ritual pray
advance advanced proceed push

amples of NN relations (Table 3). The table shows
examples where all, some, and no NNs share some
frame. The general observation is that the NN rela-
tions confirm some kind of connection between the
words as predicted by the distributional hypothesis.
However, the type of these connections varies a lot
and might be due to any syntactical or semantical
structure in the data. The examples show, however,
that the simple NN search already yields interesting
candidates for enriching frames with new words
and for further connections between lexemes.

3.2 Angles and Distances

Next we examine how the vectors within a frame
are related to each other geometrically. As there are
only about 8000 vectors in our datasets (see above)
we can consider all possible pairs of embeddings x,
x" and calculate the angle

QL = arccos (W) (1
[[x —x][[|x" —x]|
and the distance
d=+/(x—x)-(x—x/) (2)

between the two for each of them. We choose the
mean X of the overall dataset as the point of refer-
ence for calculating the angles in order to eliminate
misleading and irrelevant effects that stem from
non-centered data.

For both the angles and the distances we divide our
samples in two groups, depending on whether there
exists a frame that contains both of the correspond-
ing lexemes or not. Quantities with the same-frame
relation get the subscript s. Quantities for unlinked
lexemes get the subscript u.

In order to get a first understanding of what the
distributions of ¢ and d look like, we use Gaussian
kernel density estimation with Scott’s rule (Scott,
2015) for getting a sketch of the probability density
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functions. Two examples are given in Fig. 1 and
Fig. 2. For these and also for the other datasets we
observe bell-shaped curves that are close enough
to Gaussians for giving their mean values and stan-
dard deviations a proper interpretation.

The means of & and d with the respective standard
deviations are shown in Table 2. Due to the suf-
ficiently large amount of data, the hypothesis that
the means are the same can clearly be rejected on
the basis of Welch’s ¢-test with a p-value that is
orders of magnitude below 0.01 and a statistical
power that is close to 1. For G840 the difference is
still significant but not as obvious as for the other
datasets. It is striking that both for o and for d the
same-frame value is about one standard deviation
smaller than its counterpart (with the exception of
G840). The standard deviation of the same-frame
values are typically slightly larger than the others.
This can be interpreted on the same basis as the
figures: The maximum value is similar for both
populations but the minimum and the mean are
shifted towards smaller values for the same-frame
pairs. This means that the same-frame pairs are
on average closer to each other, but there are still
many samples that do not reflect the FRAMENET
structure, so that the overall variance is higher.

The distribution of the angle o, is centered at 90°
with a standard deviation that decreases with the
dimensionality of the vectors. Embeddings spaces
appear to be isotropic (Trost and Klakow, 2017) and
high-dimensional random vectors are more likely
to be orthogonal, so this behavior is expected. Con-
versely, this means that the lower values of ¢ indi-
cate that the lexemes of a frame tend to be clustered
in a specific region of the embedding space.

The main message from these statistical experi-
ments is that there is clear evidence for a con-
nection between the embedding structure and the
frame structure but that it is difficult to exploit
without further investigations because in general,
specific samples may be completely unrelated to
their FRAMENET role. However, for very small
values of o or d a same-frame relation is almost
certain (cf. Fig. 1 and Fig. 2). G840 behaves dif-
ferently from the other datasets in all experiments.
The reason for that might lie in the extremely large
corpus on which these embeddings were trained
and might be due to technical intricacies that occur
for such large training sets only.
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Figure 2: Inter-vector angle distributions for G50.

3.3 Center of Mass of Frames

In a third experiment, we investigate how word vec-
tors are positioned relative to the centers of mass
of the words in the frames to which they belong. In
particular, we consider all lexemes that are part of
more than one frame. For each of these lexemes,
we calculate the Euclidean distance ¢ between its
vector and the mean of all the embedding vectors
of the other lexemes in these frames. The mean
and the standard deviation of ¢ are listed in Table 2.
A comparison with the values of distances d be-
tween embeddings reveals that £ is typically around
two standard deviations smaller than d and thus
smaller than the vast majority of inter-embeddings
distances. This means that lexemes that are part of
different frames are positioned in such a way that
their distance to all the involved lexemes is very
small. This is further evidence for the relevance of
frame semantical relations in embedding spaces.

3.4 Implicit Properties

Some aspects of a frame may be so self-evident
that they literally “go without saying”, i.e., they are
such a matter of course that speakers will rarely
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Table 4: The five color terms nearest to the term
banana across the different datasets.

dataset NN NN, NNj NNy NNj
FT black orange indigo  pink green
G50 orange indigo ebony red yellow
G100 orange indigo pink puce ebony
G200 orange puce pink green mauve
G300 orange violet green brown  purple
G42 orange purple brown  violet yellow
G840 beige maroon  blue purple  green
GT25 orange purple green yellow  pink
GT50 green orange  red purple  yellow
GT100 orange green red yellow  pink
GT200 orange green yellow purple red
wW2v orange brown red pink white

find the need to verbalize them explicitly. Such
cases may not align well with the distributional hy-
pothesis because the embedding might fail to map
terms close to each other if the semantic connection
is rarely made explicit in language. For instance,
consider a sentence such as the following, referring
to a new dress worn for the first time:

William said I look like a banana.

The image evoked by the word banana allows the
listener to deduce that the dress in question is yel-
low in color. However, it is not true that bananas
are always yellow—for instance, in Central Amer-
ica, a red variety is very common—and even the
yellow specimen’s peel is green before the fruit
has fully ripened and will turn dark brown as it
decays. Yet, there is hardly any need to refer to a
banana explicitly as “a yellow banana” since this is
prototypically assumed to be its default color.

We would thus expect that word embeddings, be-
ing based mostly on term co-occurrence, will give
greater (Euclidean and thus semantic) proximity to
the color terms green, brown, and even red with
respect to banana than yellow. In that case, un-
derstanding the implication of a sentence like the
example above correctly would be more difficult
using word embedding semantics than with frame
semantics.

Here, we look at the distance between all color
terms that are present in our data and the word ba-
nana and check the five closest color terms across
all datasets. As predicted, the word yellow is never
the nearest in distance (Table 4): for fastText, the
five nearest color terms are pitchblack, orange, in-
digo pink, green, while for W2V, the terms are or-
ange, brown, red, pink, white. For the various
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GloVe datasets, orange is consistently the nearest
color term, except for G840, where it is beige, and
for GT50, where it is green. For orange, it is worth
pointing out that this word can also refer to the fruit
(as a noun) which may explain its prominence in
the ranking. Embedding algorithms do not distin-
guish between different lexical units with the same
surface form, and since proximity of embeddings is
a result of similar contexts, fruit terms are expected
to exhibit high similarity to each other. Further, it
is remarkable that in almost all cases where yel-
low does appear among the five nearest color terms,
brown or green are found to be even closer, with the
exception of GT50. At the same time, though, we
also observe a number of exotic color terms where
the proximity to banana is difficult to explain.

To demonstrate the validity of this singular experi-
ment, we also tested terms other than banana that
are typically associated with a specific color. For
example, and in contrast to the above findings, the
term ocean has blue or turquoise as the nearest
color term across all datasets. One possible expla-
nation is that people are more likely to talk about
the color of the ocean, for instance when describing
a holiday location, than the color of a banana, and
thus the connection can be captured in a corpus-
based approach. Similarly, for the word grass, we
find green to be the nearest color term in almost
all cases, except for G840 (beige, again hinting
at a possible idiosyncrasy of that dataset), GT50
(vellow), and W2V (brown).

4 Discussion and Future Work

In this paper, we looked at four selected compar-
isons between frame semantics and distributional
semantics in order to investigate in how far a lin-
guistically motivated theory shares properties with
a word representation based purely on statistical
information of word distributions. To this end, we
first performed three experiments concerning the
relative location of term vectors in the embedding
space and whether words that belong to the same
frame in FRAMENET map to vectors that show
locational coherence. We investigated three mea-
sures: the nearest neighbors of all words in the con-
sidered embedding space, the Euclidean distance,
and the angles between pairs of word vectors.

The nearest neighbor experiment suggests an inter-
esting application for this type of research, namely
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the use of embedding representations to discover
new words that were previously not associated as
lexical units with a given frame. However, further
research is required to better determine what kind
of relationship exactly is expressed by the neigh-
boring relation.

Both the Euclidean distance and angle experiments
show that frame semantics and embedding repre-
sentations agree to a certain extent on which words
should be grouped together semantically. However,
the distinction is not clear-cut in the embedding
space as some frame-external word vector pairs do
show smaller distances than some frame-internal
word vectors. As we only look at the aggregated
statistics over all word samples considered, we pro-
pose a more fine-grained analysis as a worthwhile
direction for future work.

So far, we explored further similarities between
frame semantics and distributional semantics by
investigating the special case of words that evoke
more than one frame. Here, we show that this frame
semantic property can be found in the embedding
space as well.

In a fourth experiment, we also observe some po-
tential differences as far as frame-related informa-
tion is concerned that is not typically verbalized.
Although being a central part of the underlying ex-
perience or scene, such cases provide a challenge
for methods that derive the embeddings via corpus
statistics and co-occurrence measures only.

There is quite a rich body of prior work related to
our own which provides broad shoulders to stand
on. However, to our knowledge, this is the first
attempt at comparing commonalities between these
two very different approaches to lexical semantics.

In this work, we have only looked at the target
words that evoke frames, but FRAMENET offers
additional information, for instance on frame ele-
ments or on various relationships between frames,
that lend themselves for additional studies along
similar lines to the presented work. Similarly, the
relationships of different words belonging to the
same frame deserve further, more detailed exami-
nation in the future.

Deriving a good understanding of the semantic
properties of embedding spaces may help improv-
ing existing approaches for the discovery of new
lexical units for a given frame. In the long run, it
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might even become a useful resource for creating
new FrameNets for other languages.

Likewise, the rich structures present in frame se-
mantic treatments might offer useful additional in-
formation not currently present in embedding ap-
proaches, especially as far as semantic information
is concerned that cannot easily be derived from
corpora.
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