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Abstract

The aim of this work is to get the best se-
mantic representation of words, using sen-
tence completion as a benchmark for its
evaluation. We develop a semantic lan-
guage model integrating a tensor to rep-
resent word co-occurrence statistics, an al-
gorithm to transform dependency and skip-
gram word-word relations into a sentence
relevance vector and we finally apply ma-
chine learning classification to improve the
accuracy of the model.

This model clearly highlights the difference
of performances between statistical seman-
tic models of the litterature, including those
using hyperparameters inspired by neural
network models. It shows the complemen-
tarity of dependency and linear context re-
lations and gives a precise measurement of
their respective contribution.

A fully explicit model yields a performance
of 77% of correct word in the sentence,
enhanced up to 78.6% by machine learn-
ing classification, to be compared with
a chance level of 20% (one out of five).
Moreover we observe the presence of a
bias in a well known sentence completion
test set, and we propose a new set of 6000
sentences to the research community for
further studies.

1 Introduction

Semantic representation of words based on the
statistics of their context is widely used for many
linguistic applications. The purpose of this work
is to develop an optimized word representation by
testing it on a sentence completion task, which has
been used as a benchmark to test semantic natural
language models for the last years (Zweig et al.,
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2012; Mikolov et al., 2013; Gubbins and Vlachos,
2013; Mirowski and Vlachos, 2015; Zhang et al.,
2016; Woods, 2016).

We create two new integrated models exploiting
dependency relations, skip-grams, 3D tensor repre-
sentation of statistical data, algorithms to compute
sentence relevance vectors, and machine learning
classifiers. We apply them with several statistical
semantic models to compare their efficiency.

After extracting statistics of dependency and
skip-gram relations (section 3) from a limited cor-
pus, we apply several models to transform these
statistics into association tensors (section 4), we
design two sets of relevance features and their asso-
ciated algorithms to compute a sentence relevance
vector (section 6), and we try several machine learn-
ing classifiers in this special situation where we
have to classify sentences in a local subset of 5 sen-
tences, instead of a global multiclass classification.

In a first approach we develop an algorithm until
reaching the state-of-the-art accuracy on the Mi-
crosoft Research Sentence Completion Challenge
(MR challenge). Suspecting that the results are in-
fuenced by the n-grams statistics used to generate
the test sentences, we create a new set of sentences.
We work on a second, simpler algorithm, and we
confirm the bias of the former set.

On this new set of sentences we proceed to a
detailed comparison of word-word relations based
on linear context, dependency context, and their
combination, and of the size of the context window.
It shows quite different results concerning the effi-
ciency of statistical semantic models.

Our main contributions are :

e a systematic use of labeled oriented depen-

dency relations,

e a new approach of skip-grams enabling to im-
prove their efficiency, and to measure the in-
fluence of their window width,

e two algorithms to compute and compare sen-
tence relevance vectors,
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e the application of machine learning classifiers
in this particular classification situation,

e a detailed comparative analysis of perfor-
mance of several association models, and of
skip-gram vs dependency context.

2 Context

When developing natural language computer mod-
els, we need benchmarks to measure their effi-
ciency. The most current tests rely on word sim-
ilarity or word analogy, which have rather loose
definitions and metrics. Sentence completion based
on real sentences extracted from controlled corpora
provide a very different and probably more power-
full semantic benchmark. The most used sentence
completion set is the MR challenge (Zweig and
Burges, 2012), in which a sentence with a missing
word is proposed with five candidate words, the
answer and four “impostors”.

The semantic models used to solve sentence com-
pletion can be divided into two main categories.
The first one represents words by vectors computed
by neural networks, the second represents word
frequency or word association by matrices or ten-
sors. Both gather statistical data from a corpus, the
former by machine learning, the latter by counting
occurrences. Each word of the corpus is related to
its neighbouring words, either through linear prox-
imity or syntactic relation. The linear context may
be any type of n-gram, skip-gram or bag-of-words.
The syntactic context generally consists in depen-
dency relations extracted by a parser. The words
can be inflected words, or lemmas, after part-of-
speech tagging, possibly limited to content words.

Using only linear contexts, Zweig et al. (2012)
applied skip-grams, RNN, LSA methods and a lin-
ear combination of all three, to reach a success
ratio of 52% on the MR challenge. Mikolov 2013
obtained 58.4% with a combination of RNN and
skip-grams.

Dependency models appeared more recently,
with the development of fast dependency parsers.
Gubbins and Vlachos (2013) reached 50.0% with
labeled dependency, Mirowski and Vlachos (2015)
53.5% with dependency RNN, Zhang et al. (2016)
60.7% with dependency context and a Long Short-
Term Memory neural network, and Woods (2016)
61.4 % with a combination of dependency and n-
gram contexts.

As far as we know, no intensive work has been
done to compare the accuracy of linear and syntac-
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tic contexts and of their combination in the same
conditions, and to measure the effect of the width
of the window used to link a target word with its
context, or the path length in the dependency tree
of the sentence.

In the case of counting methods, used since the
first LSA applications, the raw statistical data are
generally transformed by smoothing or weighting
into an association matrix or tensor, in order to
solve biases towards rare words (Dunning (1993),
Lowe (2001)). Applied to sentence completion
they allow to compute and compare the likelihood
of the five candidate words in relation with the
rest of the sentence. It seems that machine learn-
ing has not yet been applied in combination with
counting-based methods, contrary to neural net-
works which are inherently learning algorithms.
Levy et al. (2015) have shown some convergence
between these conceptually different methods, and
particularly between the "hyperparameters” used
to optimize neural networks and different types of
frequency matrix weighting or smoothing.

As for the test sentences, we first tried the MR
challenge set which provides a reference corpus of
litterature and a set of 1040 sentences. It suggests
to use half of the sentences for development, and
the second half for test. Published results on the
subject are not very detailed on this point, with the
exception of Mirowski and Vlachos (2015), who
explicitly followed the proposed protocol, and of
Zhang et al. (2016) who mention the use of a com-
plementary set of 4000 sentences as a development
set to keep all the 1040 sentences as the test set.
Machine learning classification methods generally
apply more complex methods such as k-fold vali-
dation to secure the results (Hastie et al., 2008).

3 Dependency and skip-gram frequency
tensor

To start building the model we gathered word-word
dependency and skip-gram relations along the cor-
pus. We represented any word as a pair (lemma,
word class), and kept content words (nouns, verbs,
adjectives, adverbs) and pronouns !.

The dependency relations were provided by a
dependency parser (Stanford CoreNLP !, Manning

etal. (2014)) which provides 3 types of dependency

because several pronouns are proposed as candidate
words in the MR challenge

"https://stanfordnlp.github.io/
CoreNLP/

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018



relations between content words: subject, object
and modifier.

From a semantic point of view we were more
interested in agent and patient relations than in
subject and object. As the parser indicates passive
auxiliaries, we considered the subject of a passive
verb as its deep object or patient (pat), and its object
as its deep subject or agent (agt). The modifier
(mod) relation has a wide scope as it includes all
the other relations between the word classes that
we have selected, including for instance the indirect
object relation. By using the word class of the two
related words we are able to differentiate several
cases.

We introduced another type of dependency re-
lation, the coordination (cor) between two words
connected by any coordinating conjunction, which
can be extracted easily from the parser’s output. So
we finally get four dependency relations agt, pat,
mod, cor.

For linear context we did not base our model on
n-grams, as they do not allow to model precisely
linear distances in a sentence, but word-word “’skip-
grams”, by skipping over one or several words
(Guthrie et al., 2006). We looked for unigrams,
more precisely 0-skip-grams to 7-skip-grams (in
our model a n-skip-gram is a relation between two
words separated by n words in a sentence). We call
them sg0, sgl... sg7.

In addition to direct dependencies we can also
consider more distant dependencies along the de-
pendency tree of the sentence, following for in-
stance Pado and Lapata (2007). Direct dependen-
cies having a path length of one in the tree, we
took into account distances of 2 and 3 edges, and
called 1-skip-dep (sdl) and 2-skip-dep (sd2) these
indirect relations.

Example of one question of the MR Challenge.

We shall just be in time to have a little break-
fast with him.

answer word aw = breakfast

candidate words cw’s = {elegance, garment,
breakfast, basket, dog}

set of direct relations =
(ewlittle,mod),  (cw,he,mod),  (little,cw,sg0),
(cw,he,sg0), (have,cw,sgl), (time,cw,sg2),
(be,cw,sg3), (just,cw,sg4), (we,cw, sg5) }

{ (have,cw,pat),

We finally gathered 14 types of dependency or
skip-gram relations r; between a predecessor word
w; and a successor word w; which we represent by
a triplet (w;,w,ry) with:
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Figure 1: Example of sentence relations

wi, w; € V, 'V =[list of lemmas]

. €Rel, ke {013}

Rel = {agt, pat, mod, cor, sdl, sd2, sgo, ..., sg7}
And we stored the number of occurrences of all
these triplets gathered from the corpus in a fre-
quency tensor Fjjy.

4 Association models

4.1 Maximum likelihood estimation

If we apply directly the frequency tensor without
any further transformation, we get the maximum
likelihood estimation (MLE), which we will keep
as a reference to compare more sophisticated mod-
els. We evaluate directly the conditional probability
plew|w,r).

If cw = w; is a predecessor of w = w; :
MLE;j; = p(cw|w,r) = Fiji/ ¥ Fiji
and if it is a successor:
MLE;j =p(cw|w,r) = Fjir/ ¥ Fji

4.2 Log-likelihood ratio

Dunning (1993) proposed the log-likelihood model
to bypass the non-normality of text statistics, fol-
lowed by Pado and Lapata (2007). The formulas
are:
qar = Fijk Ik = X Fijr — gk my = YiFije — qx
me = Yij Fije — (q + Ik +my)
and with: g(x) =xx/log(x)
LLR; i = 2% (g(qr) + g(I) + g(my) + g(ng)

—8(qk + k) — g(qr +my))

=8+ nye) — g(myc+ ng)

+8(qi + e+ my +ny))

4.3 PPMI

One of the most current models, which gives good
results on several semantic tasks is the Pointwise
Mutual Information, introduced by Church and
Hanks (1990) for matrices, which has inspired a lot
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of variations. Applying it to every matrix F..; we
compute successively for each k:

Y, Fijk LiFiji
ST = Zi»j Ejk STixk = STk ST jk = fs'rk
Fijk mriji
J Ly
mrijk = PMI[jk = log(i
ST, SFixk * S"*jk

Generally negative values are replaced by zero to
give the Positive PMI (PPMI). From this definition
we will compare three PPMI variants which gave
the best results in previous works.

4.4 Discounted PPMI

In word-document models, the PPMI is known to
introduce a bias for rare words. Following Turney
and Pantel (2010), Fyshe et al. (2015) and Woods
(2016), we will apply the discounting factor pro-
posed by Pantel and Lin (2002) :

Imije =min(Y Fpii, Y Fipk)
P P

Fijr Jmijk
Fijp+1 fm+1

Ojjk =

To get the discounted ppmi:
PPMID;ji = &;ji - PPMI; jx

4.5 Shifted PPMI

Levy et al. (2015) proposed to extend the PPMI
model to a “shifted” PMI with a parameter a in-
spired by RNN models, which we will call here
PPMIS:

PPMIS;jx = max(pmijjx — log(a),0)
which gave them interesting results on several se-
mantic tests of word similarity and analogy.

4.6 Smoothed PPMI

Levy et al. (2015) tried the context distribution
smoothing, inspired by RNN works (Mikolov et al.
(2013), Pennington et al. (2014)). They apply an
exponent o to the columns j of the context matrix
Fjji, replacing the formulas of section 4.3:

YiFjk _ (XiFEp)”
STk STGxjk = Y (X Fiji)®

STy jk = by:

In our case, the rows and the columns of the
F.x matrix play a symetric role, so we must
apply the same alpha exponentiation to the rows
(experimentally confirmed), to get:

o (X Fij)”*
STisk = ¥y Fj®

mrjk
sra,-*kuv]ra*jk)’ )

PPMIA; jx = max(log (

103
4

5 Experimental data

5.1 Question sets

The MR challenge provides a set of 1040 ques-
tions, one question being a set of one sentence and
five candidate words, the answer and four impostor
words. For the generation of the set, an n-gram lan-
guage model has been used to select the impostors,
in two steps using bigram statistics, firstly to elim-
inate the 150 best candidates, secondly to select
the 30 best remainders before a final hand-made
selection (Zweig and Burges, 2012).

To make sure that the sentence generating pro-
cess does not introduce any bias for the evaluation
of the semantic models, we generated a new set of
6000 questions from 7 books of the same period of
the 19th century, which are not in the training cor-
pus. We have kept frequency constraints as the MR
challenge, by eliminating words with frequency
higher than 103 (one occurrence out of 1000) and
with frequency lower than 2 10~7, which corre-
spond roughly to the 100 most frequent and the 5
less frequent words, and we shuffled and divided
the set into two subsets A and B to get two statisti-
cally equivalent sets.

5.2 Corpus and frequency tensor

After having processed the 2.2 M sentences of the
521 books of the training corpus with the Stanford
CoreNLP tools (Manning et al., 2014), including
lemmatizing, dependency parsing, coreference res-
olution, we did the same for all sentences of the
question sets, completed with our specific treat-
ments to get agent, patient and coordination de-
pendencies, skip-deps and skip-grams. We get a
vocabulary of 211 K words, represented as pairs
(lemma, word class). We kept as basis words the
wn = 6909 lemmas appearing in the questions (MR
+ A and B new sets of questions), count all the
corpus relations containing two basis words, and
get 106 M occurrences to build the tensor F;j;, of
dimension (wn, wn, rn), with rn = 14.

6 Relevance features and question
solving

6.1 Relevance features

For each candidate sentence s of each question q
we list all oriented relations or triplets (w1, w2, ry)
involving the candidate word cw (cw being either
wl or w2).
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i features f;

0 agt agent

1 pat patient

2 mod modifier

3 cor coordination

4.5 sd1, sd2 1 and 2-skip-deps
6 sdp set of direct deps
7 srdp set of reverse deps
8-15 sgOtosg7 O to 7-skip-grams

Table 1: Relevance features of model S

In a first approach we designed a large list of 33
relevance features and a rather complex algorithm
to tackle the MR challenge, which we will call
model H (for heuristic). When switching to our
question sets A and B, we tried to simplify it, and
we came down to 16 relevance features (listed in
table 1) and a straightforward algorithm, which we
call S (for simple). We will here describe first the
model S, and further the model H as an extension
of the former.

As the occurrences of direct dependencies are
rather rare, we try to enlarge their scope. In the
model S we have kept two extensions. For each
dependency triplet (w1, w2, ry), k € {0...3}, of the
sentence we consider also the set of the other direct
dependencies sdp = {(wl,w2,r;),i € {0...3},i #
k}, and the set of the reverse dependencies srdp =
{(w2,wl,r}),j € {0...3}}. For each of these two
sets we sum the association values of the 3 or 4
relations of the set.

6.2 Relevance score vector (model S)

For each sentence we have a set of triplets
{(wl,w2,r;)}. The association value of each
triplet is added to the corresponding features f;
according to the algorithm 1 described below to
compute the relevance vector R of the sentence.

For an efficient use of classifiers, the input values
have to be scaled or normalized. For that we have
divided the components of the relevance vector R
of each sentence to comply with the following prin-
ciple : if each relation would have an association
value of 1, the sum of the vector components would
be 1.

Algorithm 1 to compute the relevance vector R

for (wl,w2,r;)in set of triplets{ (w1,w2,r;)} do
Ry <+ Ry +A(W1,W2, rk)
if k € {0,..,3} then
for m € {0,..,3} do
if m # k then
Rg < Rg +A(wl,w2,ry)
Ry <+ R7+AW2,wl,ry)
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6.3 Relevance score vector (model H)

In this more detailed model, we firstly use more
relevance features. We split the 5 previous depen-
dency features into 11 features to take into account
the influence of the word-class of the two related
words. To do that we analyze the frequency of the
triplets (word-class 1, word-class 2, relation), and
take the most frequent ones. We also add for each
skip-gram (w1, w2, sg;) the corresponding reverse
relation (w2,w1,sg;). This leads us to a list of 33
relevance features.

In a second phase we try to compact these data
without impacting the accuracy of the model,
driven by the experimental results. So we got down
to 20 features and 8 relation types, by forgetting
the skip-grams sg 5 to sg7, by simply adding the
frequencies of sg3 and sg4 to sg2, and the same
for the reverse skip-grams. So we keep only 3
skip-gram relations sg0 to sg2, and the reverse
relations rsg0 to rsg2. Finally the best accuracy
was obtained by replacing every skip-gram
relevance score A(wl,w2,sg;) in algorithm 1 by
the sum: Yie 0,12y A(W1,w2,58;).

6.4 Question solving

Having computed a relevance vector for each sen-
tence of a question, a direct solution consists in
simply adding the components for each sentence
and compare the results of the five sentences.

We can also apply supervised machine learn-
ing classifiers to these vectors. To do so, for each
question, from the five sentence vectors of fn com-
ponents (16 for model S and 20 for model H), we
first sort the 5 sentences by decreasing order of
direct score (sum of the components of the vector).
We select the n best sentences (n between 2 and
5), concatenate their n vectors to get a unique “flat”
vector of n x fn components to represent the ques-
tion. We have to choose the value of the "flattening”
parameter n to obtain the best tradeoff between un-
derfitting, if the number of features is too small
compared to the size of the development set, and
overfitting if we introduce too many features. In
our case, both for the 1040 MR questions and 3000
A or B questions, our best value was n = 3.

During the training or development phase of the
learning process, we know the rank of the answer
score (right sentence). The question can be used
for learning only if this rank is inferior or equal
to n. During the testing phase, from the flat or
concatenated vector of the question the classifier
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predicts the rank of the answer.

We proceed to a 5-fold cross-validation which
consists in dividing the question set into 5 equal
subsets, and to run the classifiers 5 times with 4/5
of the questions for the development and the last
1/5 for testing. So that any question is used four
times for development and one for testing.

We have tested 10 different classifiers provided
by scikit-learn.org !. The best one for this applica-
tion in most cases is the multilayer perceptron clas-
sifier (MLPC), using backpropagation to minimize
a cross-entropy function, with an alpha regulariza-
tion parameter which can be adjusted. The support
vector machine classifier using a radial basis func-
tion (SVM RBF) gives also good results, generally
about 0.5% lower that the former. Both are able to
process multiclass data as in our application which
has n classes (our flattening parameter).

7 Experimental results

7.1 Success ratio per relevance feature

With the relevance vector of each sentence of a
question, we can already compute the success ra-
tio of any relevance feature f;, i.e. the number
of questions for which this feature attributes the
best score to the good answer. We do it in two
steps. First we compute the contribution ratio of
the feature, i.e. the percentage of sentences where
the corresponding relation exists for the candidate
word with an association value different from zero.
Then for these sentences where the feature is con-
tributing we compute its success ratio which we
call its intrinsic efficiency. And we define its global
efficiency as the product of the contribution ratio by
the intrinsic efficiency. This allows us to compare
the efficiency of every feature for every association
model.

Figure 2 shows the results for 3 association mod-
els on A+B or MR questions. The intrinsic effi-
ciency of the four basic dependency relations stays
between 70 and 80%, but as their contribution ratio
is much lower than for the skip-grams, their global
efficiency is lower.

7.2 Direct summation

By just adding the components of the feature scores
of the sentences, we already get with model S on

'From : http://scikit-learn.org/
The other classifiers tested are: AdaBoost, K Nearest Neigh-
bors, Linear SVC, Gaussian Process, Decision Tree, Random
Forest, Gaussian Naive Bayes and Quadratic Discriminant
Analysis.
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model H model S
direct clIf direct clf
PPMIA | 754 77.0 | 76.9  78.6
PPMID | 70.5 71.7 | 66.7  70.0
LLR 67.5 69.6 | 68.7 69.5
PPMIS | 60.8 63.0 | 63.2 66.5
MLE 47.0 539|442 545

Table 2: % accuracy on A+B questions

model H model S
direct clf direct clf
PPMID | 58.1 60.0 | 539 554
PPMIA | 542 54.6 | 523 54.1
PPMIS | 56.6 584|523 536
LLR 364 37.7]393 402
MLE 375 37.6 | 355 36.1

Table 3: % accuracy on MR questions

A+B questions scores between 76.9% for PPMIA
and 44.2% for MLE as detailed in table 2.

As the MR questions have been intentionnally
generated to be difficult to solve, it is not surprising
to observe lower scores from 53.9% for PPMID to
35.5% for MLE (table 3).

With model H we get comparable results on A+B
sets, and better results on MR set, up to 58.1% for
PPMID.

7.3 Machine learning classification

With the multilayer perceptron classifier MLPC we
gain between 1 and 10 % accuracy over the direct
summation. Figure 4 shows the detailed results of
PPMIA, LLR and PPMID association models in
the 5-fold cross-validation, with the dispersion over
the 5 folds, and the resulting means.

Figure 5 and table 3 show that the model H
improves substantially the efficiency of the PPMID
association model, approaching the state-of-the-art
accuracy on MR questions at 60% despite the
constraint of the k-fold cross validation averaging
the test results on the whole set, but with an
important dispersion : the maximum value on the
highest k-fold reaches 64.9% illustrating the risk
not to use k-fold validation.

Levy and Goldberg (2014) highlighted the corre-
spondance between hyperparameters used by neu-
ral network models and association count-based
models. The PPMIA model with the hyperparam-
eter alpha = 0.55 gives the best result instead of
0.75 recommended by several authors. The PPMIS

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018



2

g /\./' —e— AB PPMIA
2mn
gss
£ a
[7)
!55
Z o //\
EAS
[
4
mod pat cor agt sdl sd2 sdp srd sg0 sgl sg2 sg3 sgd4  sgS  sgb  sgl
c\';]OO -y
5 i L] [ ] H i = ABPPMIA
E 50 - L] . » -
E =
S o " L] - " n
© mod pat cor agt sdl sd2 sdp srd sg0 sgl sg2 sg3 sgd4  sg5 sgb sg7
0
—e— AB PPMIA
&0 -=- ABLLR
2 e AB PPMID
>
o ‘ --+- MR PPMID
gdu [ 25
£ i
T 3
©
2
on g
U} ~
n ‘“-7.-"'*::-__' *
.
o T T
mod pat cor agt sdl sd2 sdp srd sg0 sgl sg2 sg3 sgd4 sgb sgb6  sg7

Figure 2: Feature success and contribution ratios

Top figure shows the intrinsic efficiency of every feature (i.e when contributing) for PPMIA (alpha = 0.55)
Middle : contribution ratio of every feature on AB sentences and PPMIA (alpha = 0.55)
Bottom : overall efficiency of every feature in four cases (product of intrinsic efficiency by contribution ratio). Lower curve

shows an abnormally low sg0 value for MR sentences
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Figure 4: k-fold results for model S on A & B sets
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Figure 5: k-fold results on MR set
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model in our case has its optimum at k = 1.5, but
with a much lower performance than the former.

8 Discussion

8.1 Question sets

Several previous works on sentence completion
have tackled the MR challenge. The first result
approaching 60% was by Mikolov et al, 2013 with
a combination of three neural network models at
58.4%, without syntactic context. Zhang et al.
(2016) applied neural network LSTM to model
the dependency tree of the sentence and reached
an accuracy of 60.7%. Their model includes im-
plicitly right and left linear word proximity so it is
actually a combination of dependency and linear
contexts. They use a set of 4000 sentences of the
training corpus as a validation set to train the model
before applying it to the 1040 sentences of the test.
Woods, 2016 combined dependency context and
n-grams and claims a performance of 61.4%. Our
approach is comparable to her’s, and we agree on
the optimal efficiency of PPMID on the MR set.
If we rely on the results on the MR question set
we should conclude that the best association model
is the PPMID as it overpasses others both with
models H and S, and that model H is more efficient
than model S. But the bias introduced in it gives
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Figure 6: Efficiency of association models
on MR and AB sentences (Model S)

an effect which is visible on figure 2, on which we
see that the performance of skip-gram sg0, which
is the relation used to increase the difficulty of
the questions, is abnormally low compared to its
values on questions sets A+B. As the questions
sets A and B are generated without any influence
of the relevance features, and as they give results
clearly different from the MR question set, we must
follow the former to evaluate our semantic models.
For that purpose we provide open access to these
question sets A and B for the use of the research
community 2, with a detailed description of the
generating process.

8.2 Relevance features and association
models

On figure 6 we compare the efficiency of the as-
sociation models on MR and AB sentences. It is
not surprising to observe a higher efficiency on
AB than on MR sentences as the latter have been
generated with constraints on bigram frequencies
(corresponding to our sg0) to make the challenge
harder. But the relative efficiency of the models
being very different, we must rely on AB sentence
to evaluate them.

The PPMIA model gives the best result, with the
parameter ¢ = 0.55, rather different from the value
0.75 generally used. The PPMIS model gives its
best result with the parameter @ = 1.5 on sentence
completion, where Levy et al. (2015) found values
from 1 to 5 depending on the type of task, word
similarity or analogy.

The model H was developed and finetuned for
the MR sentences and it shows a better efficiency
on the MR set. Its efficiency on A+B questions
is not far from model S. It has the advantage of

Zhttp://www.unicog.org/biblio/Category/misc.html
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Figure 7: Efficiency with increasing number of
features (bottom figure = zoomed view of top figure).
Bottom curves : beginning by dependency context.

Top curves : beginning by skip-grams.

needing much smaller frequency and association
tensors (8 relations instead of 14). But its relevance
computing is the rather opaque result of a long
heuristic path. Taking into account the reverse
skip-grams for instance seems to increase the
efficiency, but it is difficult to understand why. On
the contrary the model S is very straigthforward.
And by using sparse matrix tools, the memory
size of the association tensors which store all the
information necessary for solving all the questions
(MR+A+B) remains reasonable (about 50 Mo in
our case for the association tensors).

8.3 Dependency vs linear context

To study the contribution of every feature to the
global result, we have computed the efficiency of
the model when cumulating the features one after
the other, first by starting with the skip-grams then
by the dependency relations, giving the results of
figure 7.

We have applied our model S with PPMIA (o =
0.55) to the question set AB (6000 questions) by
adding successively the features and measuring the
evolution of the success ratio.The 4 dependency
relations together reach a level of 58%, and 61%
with sd1,sd2, sdp and srdp. The efficiency jumps
up to 73% with sg0 and then reaches almost its
asymptote at sg5 at 78.5%, close to the best result
78.6 % with all the features . Skip-gram context
alone reaches a maximum of 76.5% at sg5.

Finally the dependency context brings an im-
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provement of about 2% over the linear context,
which is not negligible, as it is higher than the im-
provement of the classifier over direct computing
(about 1.5%).

The best compromise would be to keep the 6
first skip-grams and the 4 first dependency features
giving a result of 78.5%. The features sdp and
srd (sum of dependencies and sum of reverse de-
pendencies) seem to be redundant with skip-grams.
Moreover, as sd1 and specially sd2 (skip-deps 1
and 2) contribute very little to the final result, they
can be given up to reduce the volume of comput-
ing and of memory without significant decrease of
accuracy.

8.4 Content words vs function words

We explored also the contribution of function words
in addition to content words. When taking into
account all the function words we get about the
same performance. As it multiplies by about 2.4
the number of relations in the corpus there is no
real interest in doing so.

9 Conclusion

We have confirmed that sentence completion is a
good benchmark for testing and comparing seman-
tic features and models.

A straightforward algorithm with explicit com-
putings, consisting in just adding association val-
ues of the relations in the sentences, already pro-
vides interesting performances of 77%, compared
with chance level of 20%. With the contribution
of a machine learning classifier the performance
reaches 78.6% in this particular multiclass situa-
tion. We have been able to rank the association
models of the litterature. The PPMIA model re-
using the al pha parameter of most neural network
models, re-adjusted to a value of 0.55 instead of
0.75, proved to be the best. In this application with
a small corpus of 20 M words, the optimal con-
text to take into account to gather statistics about
words includes skip-grams in a window of 6 con-
tent words before and after the target word and the
4 syntactic relations: modifier, patient, coordina-
tion, agent.

This new model combining multi-relation seman-
tic tensor representation and relevance computing
could be used for several other semantic tasks such
as word sense desambiguation, translation, depen-
dency parsing, question answering, or information
retrieval.
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