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Abstract

In this paper we evaluate the out-of-
domain performance of six commonly
used parsers. Our work is situated in a di-
gital humanities project, in which we are
interested in the analysis of various text
types such as literature or academic text,
for which we do not have sufficient train-
ing data available. In our evaluation, we
focus on those dependency labels that are
most relevant to further analysis for re-
search questions in the humanities. The res-
ults show good overall performance with
Mate being the most successful parser.
In general, however, the performance on
some labels of interest to humanist schol-
ars (e. g. non-verbal predicates) is rather
poor.

1 Introduction

Many digital humanities (DH) projects are inter-
ested in the analysis of diverse text types such as
literature, spoken text or academic writing, both
historic and contemporary. They employ linguistic
annotation as pre-processing for further discipline-
specific analyses. A common problem is that for
most NLP tasks, there is not sufficient annotated
training data available for the text types of in-
terest. To annotate such text types automatically,
one has to resort to tools trained on available annot-
ated resources, which mostly consist of newspaper
text. Applying these tools to the texts of interest is
then an out-of-domain application (see also Gildea,
2001).
In this paper, we present an evaluation of out-

of-domain dependency parsing in the context of
an interdisciplinary DH project. We evaluate the
performance of six off-the-shelf dependency pars-
ers trained on the Hamburg Dependency Treebank
(HDT, Foth et al., 2014), a large German resource

based on newscast texts by heise online with a fo-
cus on IT topics. Our test data consist of excerpts
from one historic and one contemporary German
novel as well as one contemporary German aca-
demic text. We aim to estimate the degree of error
potentially introduced to our analyses by the out-
of-domain application.
In addition to the overall evaluation, we focus

on some dependency labels most relevant to fur-
ther analysis for research questions in the human-
ities. For instance, our partners in literary studies
want to learn about literary characters, i. e., the
people acting in a novel. Therefore, explicit attri-
butions are especially relevant, hence the quality of
dependency labels relating character references to
full verbs and also to non-verbal predicates (such
as predicative nouns and adjectives) is of core in-
terest.
Our results show good overall performance for

most parsers with Mate (Bohnet, 2010) being the
most successful one. However, performance on
specific labels of interest to humanist scholars is
rather poor.

2 Related Work

The first CoNLL multilingual shared task on de-
pendency parsing was set up as an in-domain chal-
lenge and included German as one of the test lan-
guages (Buchholz and Marsi, 2006). In contrast to
our work, the German training data was not based
on a manually annotated dependency treebank but
on a conversion of the Tiger treebank (Brants et
al., 2004). The maximum spanning tree (MST)
Parser (McDonald et al., 2006) scored best overall
and also on the German test data, followed by an
integer-linear programming (ILP) parser (Riedel et
al., 2006) and the shift-reduceMalt parser (Nivre et
al., 2006). We acknowledge this by including pars-
ers in our evaluation that employ these three pars-
ing paradigms,Malt parser itself being one of them.
Furthermore, we rely on the following evaluation

121

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 19-21, 2018



metrics that are used in the shared task: attachment
accuracies (UAS, LAS) and exact match.
Works on out-of-domain dependency parsing re-

port mediocre results when parsers are applied to
text types other than their training data. Foster et
al. (2011) train Malt (‘stackeager’ algorithm) on
Wall Street Journal texts and evaluate it on Twitter
data. They find a “drastic” a drop in performance,
which they reduce by domain adaptation.
Bohnet et al. (2012) taking part in the

SANCL 2012 shared task on parsing of web
texts (Petrov and McDonald, 2012) evaluate Mate
(Bohnet, 2010) as a baseline system. They also
train on Wall Street Journal texts but use different
genres of web data as their testing domain. They
report an average drop for LAS of 10.65 percent-
age points (from 90.54% to 79.89%) for baseline
Mate.
For German, Ott and Ziai (2010) use Malt

(‘2-planar’) to evaluate parser performance on a
small data set of learner language. To this end, they
train Malt on German newspaper texts. In particu-
lar, they employ a conversion (Versley, 2005) from
the TüBa-D/Z treebank to the annotation scheme
of theHamburg Dependency Treebank (HDT), the
latter being the very same treebank that we use in
our evaluation. The LAS they achieve on learner
texts is about four percentage points worse than the
results on non-learner data. In their label-specific
evaluation determiners, subjects, objects and aux-
iliaries score best. The detection of non-verbal pre-
dicates as well as the distinction between preposi-
tional phrases as objects or adverbials is more dif-
ficult.
Foth et al. (2014) evaluate three statistical pars-

ers on the original HDT: Malt (‘2-planar’), Mate1
and TurboParser (Martins et al., 2013), all three
of which are also part of our study. They per-
form an in-domain evaluation and test for the im-
pact of the training set size among others (us-
ing splits of 10, 100, 1,000, 10,000, 50,000 and
100,000 sentences respectively for training, and
1999 sentences for testing)2. Their general conclu-
sion is that the more training data available the
better the results. Overall, TurboParser (LAS of
93.57%) and Mate (93.93%) perform best while
Malt ranks third (85.56%). The algorithms of the
first two benefit more from larger amounts of train-
1 Mate is dubbed ‘BohnetParser’ in their paper, term sug-

gested by the CLARIN-D project.
2 We are only looking at their results for treebank part A,

which contains manually corrected annotations.

ing data than Malt’s shift-reduce paradigm. Since
we train on the full 100,000 sentences training set
of HDT, too, we expect Mate and TurboParser to
have an advantage over Malt.
Sohl and Zinsmeister (2018) provide a small pi-

lot study on out-of-domain dependency parsing by
applying Malt, Mate (both trained on HDT) and
JWCDG to textbook texts. They also report best
results for Mate.
To our knowledge, our current work is the first

in-depth evaluation of German dependency pars-
ing in a digital humanities context that covers a
range of area-specific text types and places particu-
lar emphasis on syntactic relationships considered
most important for hermeneutic text interpretation.

3 Parsers

We experimented with six commonly-used, freely-
available dependency parsers, which cover a cer-
tain variety of paradigms. Four of them are
machine-learned, one is rule-based, and one has a
hybrid architecture:
● Malt3 (Nivre, 2003) parses under the paradigm

of shift-reduce parsing: input token sequences
are consumed linearly and along the way de-
pendency relations are established. At each
step, the next parser action is chosen based on
the current parsing history.

● Mate4 (Bohnet, 2010) treats dependency pars-
ing as the construction of a maximum span-
ning tree, extending an algorithm by Carreras
(2007).

● RBGParser5 (Lei et al., 2014) employs tensor
algebra to represent features. Parsing is done by
sampling the space of possible syntax trees.

● TurboParser6 (Martins et al., 2013) searches
for a parse tree as a solution to an integer linear
programming (ILP) problem.

● JWCDG7 (Beuck et al., 2013) uses a gram-
mar consisting of weighted hand-written con-
straints on morpho-syntactic and structural re-
lationships which has been developed on the
basis of the Hamburg Dependency Treebank.

● ParZu8 (Sennrich et al., 2009; Sennrich et al.,
2013) is a hybrid parser combining a hand-

3 http://www.maltparser.org/
4 https://code.google.com/archive/p/mate-tools/
5 https://github.com/taolei87/RBGParser
6 http://www.cs.cmu.edu/~ark/TurboParser/
7 The CDG Team (1997–2015): https://gitlab.com/nats/

jwcdg
8 https://github.com/rsennrich/ParZu
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written rule system with a probabilistic disam-
biguation component.

Apart from JWCDG and ParZu9, whose gram-
mars are hand-written, all parsers were trained
on the first 100,000 sentences of the Hamburg
Dependency Treebank, the same training set as
used by Foth et al. (2014). The training data
comprise 1,831,647 tokens (incl. punctuation) and
the dependency annotation follows Foth (2006)10.
We need training data following that annotation
scheme so that the trained parsers yield parses
comparable with those produced by JWCDG and
ParZu, and the HDT is the largest available re-
source following that scheme. Unless noted oth-
erwise, all parsers were trained with default set-
tings, which means in particular that we did not
use MaltOptimizer to fine-tune Malt’s parsing per-
formance.
Malt offers several algorithmic variants, differ-

ing inter alia in the predictor used to choose the
next parser action. We evaluated all nine options,
but will report only on the three of them that per-
formed best on our data: ‘stackeager’, ‘covnon-
proj’, and ‘stacklazy’.
The RBGParser and TurboParser support train-

ing models of different order. First-order models
only involve information about single potential de-
pendency edges (i. e. nodes and their immediate
parent nodes), whereas higher-order models also
consider features regarding more than a single po-
tential dependency edge (second-order models, for
example, take siblings and grandparents into ac-
count). We trained one model for each of the three
predefined configurations ‘basic’, ‘standard’, and
‘full’, which, in this order, increasingly make use
of higher-order features.

4 Test Data

The test data we use reflect the variety of text types
we encounter in working with our project partners
in the digital humanities project. They comprise ex-
tracts from the following texts:
● Modern literature (Lit2009): novel Corpus De-

licti: Ein Prozess by German author Juli Zeh,
published in Frankfurt/Main in 2009.

● Non-contemporary literature (Lit1850): Eine
Frauenfahrt um die Welt (‘A woman’s journey
around the world’) by Austrian author Ida Pfeif-

9 We did not retrain ParZu’s statistical component.
10 See Foth et al. (2014) for an English summary.

fer (1850).11
● Modern academic writing (Aca2009): Stand,

Möglichkeiten und Grenzen der Telemedizin
in Deutschland (‘Telemedicine in Germany:
status, chances and limits’) byRüdiger Klar and
Ernst Pelikan, published in Bundesgesundheits-
blatt (‘Federal Health Gazette’) in 2009.

● Newscast (HDTtest): the last 1,999 sentences
(i. e. all sentences not used for training) from
part A of the Hamburg Dependency Treebank
(Foth et al., 2014), i. e. in-domain data very sim-
ilar to the training data.

The out-of-domain test texts comprise between
1,500 and 1,800 tokens.12 Table 1 shows the great
variation in sentence length between the text types:
While the sentences in the contemporary literary
text (Lit2009) are shorter on average, the historic
literary text (Lit2850) shows a similar distribution
of sentence lengths as HDTtest. The academic text
(Aca2009) has much longer sentences and also a
considerable amount of intratextual variation. Con-
sequently, we expect the best performance on the
contemporary literary text (Lit2009).
The test data were annotated manually follow-

ing the annotation scheme of the HDT (Foth,
2006). The annotation was done by three annot-
ators who had received some prior training on
HDT data. They annotated independently section
by section and met in between to discuss and
adjudicate mismatches. See table 2 for the inter-
annotator agreements (Fleiss, 1971) as measured
on the annotations before discussion. Note that
these numbers also include typos and errors due
to lack of concentration, so they cannot be con-
sidered an upper bound for parser performance.
The test data are available at https://doi.org/10.
5281/zenodo.1324079.
While JWCDG is able to run directly on token-

ized input (because it obtains the morphological
information from its internal full-form dictionary
and calls a tagger as part of the general disam-
biguation procedure), the other parsers require
prior part-of-speech (POS) and morphological fea-
ture tagging as well as lemmatization. We ex-
periment with two such inputs: manually annot-
ated ‘gold’ POS tags and morphological features,

11 Full text available at Deutsches Textarchiv: http://www.
deutschestextarchiv.de/pfeiffer_frauenfahrt01_1850/6.

12 We have been hinted in the review process that this might
be too little for reliable generalizations. Yet the data can
show tendencies, although for more detailed analyses
more data would be necessary.
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text tokens sentences mean
sentence
length

median
sentence
length

standard
deviation

type-token
ratio

Lit2009 1,518 114 13.32 12.0 8.66 0.46
Lit1850 1,647 82 20.10 18.5 11.56 0.46
Aca2009 1,790 75 24.00 22.0 18.42 0.44
HDTtest 40,975 1999 20.50 19.0 13.38 0.45

Table 1: Descriptive measures for the test texts (tokens including punctuation), TTR for HDTtest was
calculated on the first 100 sentences (2001 tokens)

text head deprel head+deprel
Lit2009 0.930 0.931 0.887
Lit1850 0.938 0.917 0.883
Aca2009 0.923 0.946 0.891
mean 0.931 0.931 0.887

Table 2: Inter-annotator agreement for the manual
annotation of three annotators (Fleiss’ κ)

and POS tags and morphological features com-
puted by the ensemble approach in Adelmann et
al. (2018). For lemmata, in both cases we use
the output by JWCDG to be consistent with our
training data.13 ParZu can either be called with
raw text, a raw tokenization, a POS-tagged token
sequence (without morphology), or fully prepro-
cessed data; however, the required preprocessing
generates richer and more detailed information
than available in our morphological annotation, so
we called ParZu with our tokenization and POS-
tags and had it determine morphological informa-
tion itself.
While one might argue that in practice gold-

standard POS and morphology inputs are a highly
unrealistic setting given that manually annotating
them is nearly as time-consuming as manual de-
pendency annotation, evaluation metrics for parses
based on gold-standard inputs reflect only parser
performance itself and can help distinguish errors
inherent to parsers from errors that stem from im-
perfect prior processing.

5 Results

We examine our parsing results with respect to
three dimensions: parser performance, differences
between text types, and out-of-vocabulary phe-
nomena.
13 HDT’s lemma annotations are extracted from the parser’s

full-form dictionary or in case of out-of-vocabulary words
generated automatically by a simple stemmer.

Furthermore, we are interested in specific phe-
nomena potentially important for further analyses
in a digital humanities setting. Overall perform-
ance measures such as attachment accuracies cap-
turemany phenomena that are frequent, but usually
uninteresting for text interpretation. For instance,
articles are ubiquitous in German texts and there-
fore contribute considerably to the overall accur-
acy. As their correct attachment does not pose a
major problem for modern parsers, they are bene-
ficial to statistical performance measures; yet, art-
icles are of little interest beyond purely linguistic
concerns.
For the overall evaluation, we record the follow-

ing common performance measures:
● Exact match: the fraction of sentences parsed

completely correctly.
● UAS and LAS: the unlabeled and labeled at-

tachment score (accuracy), respectively. They
are the overall fraction of tokens having been
assigned the correct head (UAS), or head as
well as dependency relation (LAS).

● Deprel accuracy: the fraction of tokens having
been assigned the correct dependency relation
to their respective head (regardless of whether
the head itself is correct).
We report the attachment accuracies as whole

percentage numbers as our test data is too small for
decimal places to be meaningful. All measures we
report exclude punctuation14 for similar reasons as
given above regarding articles.
For JWCDG, there is only one result per text;

for the other parsers, there are two (one based on
gold part-of-speech and morphology, one based on
automatically tagged part-of-speech and morpho-
logy). Hence there is one table for JWCDG (5) and
two tables (3, 4) for the other parsers. Recall that

14 The proportion of punctuation in our test texts is as
follows: Lit2009: 16.7%, Lit1850: 13.0%, Aca2009:
11.6%, HDTtest: 12.4%.
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ParZu received only part-of-speech tags from our
annotation, but no morphological information (as
explained in section 4). The tables reside in the ap-
pendix.

5.1 Parser Comparison
If one were to declare a winner, chances are it
would be Mate. As far as the overall attachment
accuracies (both labeled and unlabeled) are con-
cerned, Mate is usually among the highest-rated
parsers, only in one case (Lit2009, gold morpho-
logy) being beaten by RBGParser’s ‘full’ model
and in two other cases (Lit2009 andAca2009, com-
puted morphology) by Malt’s ‘covnonproj’. How-
ever, Mate’s lead over the second best parser (RBG
or Malt usually) is small under all conditions (es-
pecially when labeled accuracies are considered).
For none of the text types do we observe a devi-
ation of more than ten percentage points between
parsers.
When considering exact matches, the picture is

not that clear. Exact match is a sensitive measure,
requiring the whole syntax tree to be correct, and
hence exact match accuracies are generally low.
Mate still notably surpasses the majority of other
parsers (e. g. 53% for Lit2009 with gold morpho-
logy, the other parsers giving 30% to 45%), but
there are more cases of Mate being outperformed.
Systematically, ParZu offers better exact match ac-
curacies for Lit1850 and Aca2009 (for both gold
and computed morphology), being by far (3 to
6 percentage points difference) best for this metric
in those cases.
A comparison between the three Malt al-

gorithms included in this paper identifies ‘covnon-
proj’ as the best, giving higher attachment and
dependency relation accuracies than the two oth-
ers throughout the tables. Yet for HDTtest and
Lit2009, both give higher exact match accuracies.
In general, ‘stacklazy’ performs slightly better
than ‘stackeager’.
The data also show that rule-based parsers are

more robust against out-of-domain texts15. The at-
tachment accuracy of the rule-based JWCDG de-
creases by at most three percentage points between
the in-domain HDTtest and the other texts (in three
cases, they even rise). This is a modest perform-
ance drop compared to the trained parsers where
15 Even for non-trained parsers it makes sense to speak of in-

domain data if they are designed for a particular data set.
JWCDG’s rules, for instance, were manually optimized
for the HDT.

attachment accuracy decreases by up to 16 per-
centage points in some cases (TurboParser for
Aca2009 with gold-morphology input), which con-
firms the results of previous work reported in sec-
tion 2. ParZu is not entirely rule-based, but its per-
formance drop is similar to that of JWCDG. How-
ever, the extent to which the attachment accuracy
actually decreases varies greatly between parsers
and texts, and a performance impact cannot al-
ways be observed. As for exact match though, a
peculiarity of ParZu can be observed: While all
other parsers (including JWCDG) show consider-
able fluctuations across texts, ParZu’s values re-
main relatively constant (this is even clearer for
the computed-morphology input than for the gold-
morphology input). One consequence is the above-
mentioned phenomenon that ParZu, although be-
ing average at best on the other texts, outperforms
the other parsers (including JWCDG) on Lit1850
and Aca2009, where the latter ones fail to produce
large amounts of exact matches.

5.2 Text Comparison
For both gold morphology and computed morpho-
logy as input, we see a notable performance drop
for the 19th-century literary text (Lit1850) and
themodern academicwriting (Aca2009) compared
with the other texts (exact match: up to 38 per-
centage points; UAS/LAS: up to 16 percentage
points). For gold morphology, Aca2009 gives even
worse results than Lit1850; for computed morpho-
logy, both score approximately equal. Both texts
have some characteristics that deviate from the
training data and can potentially explain this dif-
ference: The 19th-century text has some specific
syntactic structures, e. g. relative pronouns rather
uncommon in written language today:

(1) ein Priester, welchem zur Seite ein Chinese
mit einer zwei Fuß hohen Laterne ging, …

‘a priest, at whose side walked a Chinese with
a two-foot-high lantern, …’

The modern academic text exhibits a notable
amount of complex nested prepositional and co-
ordinated noun phrases (fig. 1), which are often
inherently ambiguous and thus hard to attach cor-
rectly. Dependency relation accuracy did not vary
much though, i. e. the parsers assigned relation la-
bels almost equally well for all texts. Sometimes,
dependency relation accuracies were even slightly
higher for the ‘problematic’ texts discussed above.
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(b) Excerpt from the syntax tree, with translation, worm’s-eye view.

Figure 1: A highly complex example sentence with nested coordinated phrases from Aca2009.

Interestingly, some parsers performed better on
the contemporary literature (Lit2009) than the in-
domain HDT test data (HDTtest). Although this
is hardly surprising given the (on average) shorter
sentence length, it is still noteworthy. With gold
POS and morphology, exact match increases by 1
to 3 percentage points for all threeMalt algorithms.
With computed POS and morphology, we see an
exact match increase for all parsers (up to 19 per-
centage points, for RBGParser’s ‘standard’ and
‘full’ models) as well as an attachment accuracy
increase, again for all parsers (UAS: up to 4 per-
centage points, for RBGParser’s and TurboParser’s
‘basic’ models as well as ParZu; LAS: up to 3 per-
centage points, for ParZu). To some extent this phe-
nomenon can also be observed for the rule-based
JWCDG, where Lit2009’s UAS is five percentage
points higher than HDTtest’s. This can again be
explained by text characteristics: Lit2009 contains
numerous elliptic sentences, as reflected in the low
sentence length (table 1). In example (2) one short
complete sentence is followed by two elliptical ex-
pressions:

(2) Das verstehe ich. Aber trotzdem. Das eigene
Kind!
‘I understand that. But still. One’s own child!’

Elliptical sentences are rare in the newscast texts
of HDT, but easier to assign a correct syntax tree.

This is consistent with the observation of a higher
increase in the exact match score than in the attach-
ment accuracy, which measures local assignment
decisions and is therefore independent of sentence
length and complexity.

5.3 Out-of-Vocabulary Phenomena

It is normal for test data in language processing
to contain a number of out-of-vocabulary (OOV)
tokens, i. e. tokens whose word form or lemma (de-
pending on the task to solve) never occurred in the
training data. One has to expect this situation to be
even more common when the training data (news-
cast, in our case) are from a substantially different
domain than the test data, as it is often the case in
digital humanities projects.
We count tokens as OOV if their lemma16 does

not occur in the HDT training data, and observe
an interesting phenomenon. When computing at-
tachment accuracies17 only for those tokens as ba-
sic population, one would expect these values to
decrease since lexical information as a feature is
rendered useless. However, in our case, we unex-
pectedly observe increases in several cases, espe-
cially where gold POS and morphology input is

16 Recall that all lemma information we use is from
JWCDG’s full-form lexicon.

17 Note that we cannot compute an ‘exact match’ measure
here as we do not have whole sentences.
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used: While dependency relation accuracy usually
decreases, attachment scores for HDTtest increase
for all parsers (most notably for Malt’s ‘stack-
eager’: UAS from 88% to 93% and LAS from
87% to 90%). For the out-of-domain texts, the
situation is more mixed, but dependency relation
accuracy usually deteriorates here, too. The parsers
whose UAS and LAS increase differ from text to
text, but among those whose UAS deteriorates we
always find RBGParser and among those whose
UAS does not deteriorate we always find Turbo-
Parser. For example, when looking at Lit2009,
TurboParser’s ‘basic’ and ‘standard’ models are
the only cases without decreasing UAS, and when
looking at Aca2009, RBGParser is the only parser
without increasing UAS (cf. table 7 in the ap-
pendix).
Where computed POS and morphology input is

used, attachment accuracy increases are less com-
mon (see table 8 in the appendix), but considerable
amounts can be observed for TurboParser (LAS
increase from 76% to 84% for ‘basic’ Aca2009).
These facts suggest to us that
● RBGParser is not good at generalizing to un-

known words, while TurboParser is;
● at least for the models used by the parsers we

tested, lexical information (i. e. the lemma) has
considerably less impact than other features
like POS and morphology;18

● lexical information seems to be even able to im-
pair parsing performance, at least when POS
and morphology quality is high.

One should note, though, that possible attachments
of a token are never assessed with respect to
only that token, but to at least the potential head
tokens as well. The case that both a token and
its (correct) head are out-of-vocabulary occurs al-
most never in our test data (and is presumably
rare in other texts, too). The morphological fea-
tures of a token, the lexical and morphological fea-
tures of a potential head, and possibly, in case of
higher-order features, even broader syntactic struc-
tures can provide a parser with enough informa-
tion needed to compensate for missing lexical in-
formation of a single token and thus to be robust
against out-of-vocabulary words; parsers differ in
how well they use that information.
OOV rates range from 1.86% (HDTtest,

764 tokens OOV) to 5.46% (Lit1850, 75 tokens

18 Recall that for both gold-standard and computed POS and
morphology input we used the same lemmatization.

OOV). A closer look at the OOV tokens in the
individual texts reveals no notable differences
in the dependency labels the OOV tokens are
labeled with, but their POS tags show different
distributions, which can partially be related to
text characteristics. While NN (normal noun),
NE (named entity) and other tags of open word
classes constitute the vast majority in all texts,
there are more NE OOV tokens in HDTtest, where
also FM (foreign-language material) OOV tokens
are prominent (the only other test text with FM
OOV tokens, and much less of them, is Aca2009).
This is not surprising as there are many IT-related
technical terms (predominantly in English) in the
HDT. The amount of OOV verbs is surprisingly
low in Lit2009 and Aca2009. In HDTtest there is
a notable amount of OOV infinitives and past par-
ticiples, while in Lit1850 the OOV verbs mainly
comprise finite forms. This might be related to
some kind of text characteristic, but we do not
know which. In Lit1850, only 3 out of 18 OOV
finite verb forms are obsolete spellings and two
others are irregular inflections not used anymore
today (bekömmt, modern bekommt ‘receives’, and
gebeut, modern gebietet, ‘demand’, ‘command’,
‘require’).

5.4 Label-Specific Evaluation

Our special focus is on those labels that are import-
ant for further analysis in a digital humanities pro-
ject. For instance, literary scholars are interested
in the automatic generation of character profiles19
for a novel. This can be achieved in various ways,
for example by looking at character traits explicitly
attributed to a character or by listing all the full
verbs that cooccur with a character in subject po-
sition. Consequently, it is important to us that the
verbal structure and its main arguments are iden-
tified correctly. This section will consider the res-
ults for the out-of-domain texts and the automat-
ically generated ensemble part-of-speech tags and
morphology as input only, as this is a realistic set-
ting for a digital humanities project. We report F1
scores as the harmonic mean of precision and re-
call of individual labels.
Explicit attribution of character traits can be

found in non-verbal predicates such as in (3), in
which the property of being a nice boy is syntactic-
ally encoded in a nominal predicate.

19 Here, again, we refer to the literary concept of a character
as a person in a text.
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(3) Rosentreter ist ein netter Junge
‘Rosentreter is a nice boy’

However, the results for non-verbal predicates (la-
bel PRED) are rather mediocre (see also Ott and
Ziai, 2010). Non-verbal predicates are frequently
confused with subjects as they are also in nomin-
ative case and can be fronted in German. Addi-
tionally, confusions with adverbials are common
as this distinction is based on the semantic proper-
ties of the verb. Malt with the ‘covnonproj’ model
achieves the best scores for this task (F1 scores
between 0.71 and 0.79), while for TurboParser,
RBG and Mate all F1 scores are 0.32 or lower.
Note that due to the small test data sets of 75–114
sentences, the absolute numbers of non-verbal pre-
dicates in the three out-of-domain texts are 14, 14,
and 23 only, so we can only report tentative results.
In contrast to identifying the correct label, choos-
ing the correct attachment point for non-verbal pre-
dicates is not a problem.
Explicit characterization can also take the

form of appositions, e. g. die sorgliche Hausfrau,
Mad. Behn (‘the caring house wife, Mad. Behn’).
The same label (APP) is used to connect parts
of proper names20. Here, too, Malt (‘covnonproj’)
scores best (F1: 0.78–0.80). Again, the absolute
number of instances in the test texts is low (9, 9,
29).
A more indirect way of characterization can be

obtained by looking at the verbal structures that
a specific character occurs in. The relevant labels
are much more frequent in the texts than the non-
verbal predicates and the parsing results are better.
The core verbal structure comprises the correct de-
tection of the root of the sentence with the label S
and, in the case of subordinate clauses, REL for re-
lative clauses and NEB for adverbial clauses21.
For the label S, the F1 scores are high, between

0.66 and 0.93. In contrast to the other labels,
TurboParser and Mate achieve the best scores (F1
between 0.89 and 0.93 for both). The correspond-
ing attachment scores are even higher than the F1
scores in almost all cases.
The results are slightly worse for subordinate

clauses, but here too Mate achieves by far the best
results (between 0.86 and 0.96). The other parsers
20 The label is also used for phrases like Raum 20/09

(‘room 20/09’) or den Buchstaben F (‘the letter F’), see
Foth (2006).

21 Subject and object clauses (SUBJC and OBJC) fall into
the same category, but occur too rarely in our test data for
a meaningful evaluation.

drop as low as 0.55 (JWCDG on the 19th-century
text Lit1950). While the F1 scores are somewhat
better for relative clauses, the attachment scores
are poor. Where the label REL has been attributed
correctly, the attachment scores are between 0.43
and 0.92, again with Mate in first place, followed
by ParZu and JWCDG, all on the 19th-century text.
The scores are clearly worst for the academic text,
which is easily explained by the many complex
noun phrases with several possibilities for attach-
ment (cf. section 5.2).
For the detection of complex verbs (such as com-

pound tenses), the label AUX is important. The
scores for this core label are very good, no parser
dropping below 0.80. TurboParser, Mate, Malt
(covnonproj), ParZu and RBGParser perform sim-
ilarly. The clearer difference is in text type: The
19th-century text (Lit1850) does not achieve any
better score than 0.86, possibly due to cases like
example (4), which features a complex verb phrase
and outdated spelling of the main verb residieren
‘reside’.

(4) …, wo noch vor wenig Tagen solch ein Unge-
heuer residirt haben sollte.
‘…, where only a few days ago such amonster
should have resided.’

In addition to the verbal complex itself, let us fi-
nally have a look at the most important arguments:
subject (SUBJ) and direct object (OBJA). The res-
ults for subject detection are slightly worse than
the results of the evaluation across all labels, with
ParZu performing best this time (0.87 to 0.93). The
scores for direct objects are lower. In particular, all
three Malt models achieve rather low F1 scores,
which is mostly due to a low precision. The best
parser is again ParZu (0.77 to 0.86).
In summary, we have seen that the parsers show

individual strengths that should be taken into con-
sideration when using a parser for a specific pur-
pose.

6 Conclusion

We have demonstrated that Mate achieves the best
overall result on out-of-domain texts in our study.
As expected, the performance of the parsers de-
pends greatly on the syntactic complexity (meas-
ured in sentence length) of the text. Therefore,
the contemporary literary (Lit2009) text with short
sentences sometimes scores even better than the
in-domain text. The 19th-century text (Lit1850)
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and the academic text (Aca2009) have longer sen-
tences and achieve much lower scores.
When looking at labels that are of special in-

terest to a scholar in the humanities, we are left
with partly low scores, for example, for the de-
tection of non-verbal predicates and appositions.
For these tasks, Malt with the model ‘covnon-
proj’ yields considerably better (though still not
great) results. Detection of the main verbal struc-
ture and its core arguments works much better for
all parsers. As far as the analysis in our DH project
is concerned, we conclude that even though non-
verbal predicates promise direct access to character
traits, their automatic detection and attribution is
unreliable and should be double-checked; we also
have to expect to miss a considerable amount of
them. It might be worth using the Malt model for
this specific task, or employing a parser ensemble
(e. g. Sagae and Tsujii, 2007). Surdeanu and Man-
ning (2010) show that even simple majority-vote
ensembles are usually sufficient to improve pars-
ing quality. How much of an improvement can be
achieved with respect to non-verbal predicates has
yet to be investigated.
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Text Parser model type exact UAS LAS deprel
(resp. order) match accuracy

HDTtest Malt stackeager 0.38 88% 87% 0.93
covnonproj 0.35 92% 90% 0.94
stacklazy 0.38 90% 89% 0.94

Mate – 0.56 96% 96% 0.98
RBG basic 0.49 95% 94% 0.98

standard 0.53 96% 95% 0.98
full 0.54 96% 95% 0.98

Turbo basic 0.44 94% 92% 0.97
standard 0.47 95% 93% 0.97
full 0.47 95% 94% 0.97

ParZu – 0.31 90% 87% 0.93
Lit2009 Malt stackeager 0.41 85% 82% 0.89

covnonproj 0.36 90% 85% 0.90
stacklazy 0.41 88% 84% 0.90

Mate – 0.53 91% 89% 0.93
RBG basic 0.39 89% 86% 0.90

standard 0.44 91% 88% 0.91
full 0.45 92% 88% 0.92

Turbo basic 0.30 85% 80% 0.87
standard 0.35 88% 84% 0.90
full 0.36 89% 84% 0.90

ParZu – 0.40 88% 85% 0.90
Lit1850 Malt stackeager 0.16 82% 78% 0.87

covnonproj 0.20 88% 82% 0.89
stacklazy 0.17 86% 80% 0.87

Mate – 0.29 91% 87% 0.93
RBG basic 0.13 86% 82% 0.89

standard 0.15 89% 84% 0.90
full 0.20 90% 85% 0.91

Turbo basic 0.15 82% 77% 0.85
standard 0.21 87% 82% 0.88
full 0.22 88% 82% 0.88

ParZu – 0.33 89% 85% 0.90
Aca2009 Malt stackeager 0.17 84% 81% 0.90

covnonproj 0.17 88% 85% 0.92
stacklazy 0.17 86% 83% 0.91

Mate – 0.18 89% 85% 0.93
RBG basic 0.11 83% 79% 0.89

standard 0.18 86% 83% 0.91
full 0.17 88% 84% 0.91

Turbo basic 0.11 80% 76% 0.86
standard 0.11 83% 79% 0.88
full 0.11 84% 80% 0.89

ParZu – 0.22 87% 84% 0.92

Table 3: Performance measures for the parsers (excluding JWCDG) on our test texts, with gold-standard
part-of-speech and (except for ParZu) morphological features as input.
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Text Parser model type exact UAS LAS deprel
(resp. order) match accuracy

HDTtest Malt stackeager 0.26 84% 80% 0.87
covnonproj 0.23 88% 84% 0.89
stacklazy 0.26 86% 82% 0.88

Mate – 0.24 88% 84% 0.89
RBG basic 0.15 82% 78% 0.84

standard 0.18 86% 81% 0.86
full 0.19 87% 81% 0.87

Turbo basic 0.13 81% 76% 0.82
standard 0.20 86% 80% 0.85
full 0.16 86% 80% 0.85

ParZu – 0.21 85% 81% 0.87
Lit2009 Malt stackeager 0.38 87% 82% 0.89

covnonproj 0.33 90% 84% 0.88
stacklazy 0.37 88% 83% 0.88

Mate – 0.41 89% 84% 0.89
RBG basic 0.31 86% 80% 0.85

standard 0.37 89% 83% 0.87
full 0.38 89% 83% 0.87

Turbo basic 0.27 85% 78% 0.83
standard 0.29 88% 80% 0.86
full 0.31 89% 81% 0.86

ParZu – 0.35 89% 84% 0.89
Lit1850 Malt stackeager 0.15 78% 73% 0.84

covnonproj 0.16 84% 79% 0.86
stacklazy 0.17 82% 76% 0.84

Mate – 0.24 87% 82% 0.88
RBG basic 0.11 82% 76% 0.84

standard 0.11 85% 79% 0.85
full 0.15 86% 80% 0.85

Turbo basic 0.09 80% 72% 0.81
standard 0.12 84% 76% 0.83
full 0.11 84% 76% 0.83

ParZu – 0.27 85% 80% 0.85
Aca2009 Malt stackeager 0.17 82% 79% 0.89

covnonproj 0.15 85% 82% 0.90
stacklazy 0.15 85% 81% 0.90

Mate – 0.15 85% 81% 0.89
RBG basic 0.09 80% 77% 0.86

standard 0.15 84% 80% 0.88
full 0.17 84% 80% 0.88

Turbo basic 0.09 77% 73% 0.84
standard 0.11 81% 76% 0.86
full 0.11 82% 77% 0.86

ParZu – 0.23 84% 81% 0.89

Table 4: Performance measures for the parsers (excluding JWCDG) on our test texts, with automatically
annotated part-of-speech and (except for ParZu) morphological features as input.
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Text exact UAS LAS deprel
match accuracy

HDTtest 0.24 82% 79% 0.87
Lit2009 0.41 87% 82% 0.87
Lit1850 0.18 82% 77% 0.85
Aca2009 0.08 79% 76% 0.88

Table 5: Performance measures for JWCDG on our test texts.

Text Parser APP AUX NEB OBJA OBJC OBJD OBJI PRED REL S SUBJ
HDTtest Mate 0.87 0.93 0.71 0.74 0.67 0.51 0.70 0.44 0.74 0.87 0.84

ParZu 0.85 0.91 0.60 0.83 0.67 0.67 0.65 0.72 0.76 0.69 0.87
JWCDG 0.75 0.89 0.70 0.76 0.51 0.56 0.71 0.62 0.77 0.80 0.83
Malt, covnonproj 0.88 0.93 0.69 0.76 0.62 0.28 0.67 0.75 0.75 0.88 0.82
Malt, stackeager 0.84 0.85 0.55 0.72 0.46 0.33 0.53 0.67 0.58 0.82 0.81
Malt, stacklazy 0.86 0.88 0.62 0.77 0.52 0.32 0.56 0.77 0.61 0.79 0.83
RBGParser, full 0.82 0.92 0.61 0.70 0.60 0.44 0.72 0.31 0.67 0.85 0.80
TurboParser, full 0.81 0.92 0.52 0.68 0.63 0.32 0.64 0.32 0.62 0.89 0.76

Lit2009 Mate 0.60 0.94 0.96 0.82 0.86 0.52 0.88 0.31 0.77 0.91 0.88
ParZu 0.67 0.95 0.86 0.86 0.57 0.80 0.93 0.67 0.88 0.80 0.93
JWCDG 0.52 0.92 0.69 0.86 0.57 0.76 0.55 0.64 0.73 0.83 0.85
Malt, covnonproj 0.80 0.94 0.89 0.75 0.57 0.40 0.86 0.79 0.77 0.83 0.87
Malt, stackeager 0.69 0.85 0.86 0.77 0.40 0.40 0.75 0.73 0.71 0.90 0.86
Malt, stacklazy 0.67 0.86 0.74 0.75 0.29 0.40 0.80 0.71 0.78 0.89 0.87
RBGParser, full 0.58 0.94 0.73 0.75 0.75 0.45 0.93 0.22 0.64 0.87 0.86
TurboParser, full 0.67 0.94 0.81 0.78 0.75 0.50 0.80 0.17 0.77 0.89 0.81

Lit1850 Mate 0.56 0.86 0.89 0.76 0.73 0.72 0.89 0.32 0.82 0.93 0.89
ParZu 0.63 0.86 0.72 0.85 0.62 0.74 0.76 0.70 0.64 0.66 0.88
JWCDG 0.48 0.82 0.55 0.78 0.44 0.61 0.78 0.60 0.86 0.83 0.87
Malt, covnonproj 0.78 0.86 0.80 0.71 0.40 0.51 0.74 0.71 0.81 0.92 0.84
Malt, stackeager 0.67 0.83 0.67 0.69 0.22 0.52 0.70 0.62 0.71 0.84 0.78
Malt, stacklazy 0.57 0.80 0.67 0.69 0.46 0.36 0.74 0.70 0.72 0.84 0.83
RBGParser, full 0.67 0.83 0.57 0.79 0.36 0.74 0.80 0.19 0.76 0.89 0.86
TurboParser, full 0.43 0.82 0.58 0.71 0.57 0.55 0.73 0.11 0.67 0.93 0.82

Aca2009 Mate 0.76 0.95 0.86 0.65 0.80 0.50 0.67 0.25 0.86 0.89 0.80
ParZu 0.79 0.89 0.64 0.77 0.67 0.22 0.82 0.77 0.80 0.73 0.87
JWCDG 0.54 0.87 0.76 0.62 0.80 0.57 0.63 0.61 0.93 0.85 0.86
Malt, covnonproj 0.78 0.96 0.67 0.72 0.80 0.33 0.75 0.76 0.88 0.91 0.77
Malt, stackeager 0.68 0.86 0.60 0.51 0.80 0.15 0.57 0.67 0.78 0.88 0.75
Malt, stacklazy 0.68 0.91 0.78 0.75 0.33 0.33 0.57 0.71 0.61 0.84 0.80
RBGParser, full 0.75 0.94 0.84 0.60 0.67 0.33 0.67 0.14 0.88 0.86 0.76
TurboParser, full 0.80 0.98 0.74 0.59 0.57 0.36 0.63 0.11 0.80 0.92 0.65

Table 6: Label-specific performances (F1 scores): Weak results with F1 score < 0.5 are marked in bold.
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Text Parser model type UAS UAS LAS LAS deprel deprel
(resp. order) OOV OOV OOV

HDTtest Malt stackeager 88% → 93% 87% → 90% 0.93 → 0.92
covnonproj 92% → 94% 90% → 90% 0.94 → 0.91
stacklazy 90% → 93% 89% → 90% 0.94 → 0.91

Mate – 96% → 98% 96% → 98% 0.98 → 0.98
RBG basic 95% → 98% 94% → 96% 0.98 → 0.97

standard 96% → 98% 95% → 96% 0.98 → 0.97
full 96% → 98% 95% → 96% 0.98 → 0.97

Turbo basic 94% → 97% 92% → 96% 0.97 → 0.97
standard 95% → 97% 93% → 95% 0.97 → 0.97
full 95% → 97% 94% → 96% 0.97 → 0.97

Lit2009 Malt stackeager 85% → 83% 82% → 80% 0.89 → 0.84
covnonproj 90% → 88% 85% → 87% 0.90 → 0.89
stacklazy 88% → 83% 84% → 79% 0.90 → 0.84

Mate – 91% → 89% 89% → 84% 0.93 → 0.87
RBG basic 89% → 87% 86% → 81% 0.90 → 0.84

standard 91% → 87% 88% → 81% 0.91 → 0.84
full 92% → 89% 88% → 84% 0.92 → 0.87

Turbo basic 85% → 84% 80% → 73% 0.87 → 0.80
standard 88% → 88% 84% → 77% 0.90 → 0.84
full 89% → 84% 84% → 75% 0.90 → 0.81

Lit1850 Malt stackeager 82% → 82% 78% → 78% 0.87 → 0.81
covnonproj 88% → 88% 82% → 83% 0.89 → 0.86
stacklazy 86% → 83% 80% → 78% 0.87 → 0.79

Mate – 91% → 92% 87% → 87% 0.93 → 0.89
RBG basic 86% → 81% 82% → 73% 0.89 → 0.76

standard 89% → 87% 84% → 77% 0.90 → 0.79
full 90% → 90% 85% → 80% 0.91 → 0.82

Turbo basic 82% → 78% 77% → 67% 0.85 → 0.69
standard 87% → 88% 82% → 78% 0.88 → 0.81
full 88% → 90% 82% → 80% 0.88 → 0.82

Aca2009 Malt stackeager 84% → 86% 81% → 84% 0.90 → 0.95
covnonproj 88% → 90% 85% → 90% 0.92 → 1.00
stacklazy 86% → 90% 83% → 86% 0.91 → 0.95

Mate – 89% → 92% 85% → 89% 0.93 → 0.95
RBG basic 83% → 83% 79% → 81% 0.89 → 0.89

standard 86% → 79% 83% → 78% 0.91 → 0.89
full 88% → 86% 84% → 84% 0.91 → 0.92

Turbo basic 80% → 84% 76% → 84% 0.86 → 0.90
standard 83% → 87% 79% → 86% 0.88 → 0.92
full 84% → 89% 80% → 87% 0.89 → 0.94

Table 7: Comparison between overall attachment measures and attachment measures with only OOV
tokens as basic population, for parser outputs based on gold-standard part-of-speech and morphological
features as input. Arrows indicate the direction of change from overall to OOV.
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Text Parser model type UAS UAS LAS LAS deprel deprel
(resp. order) OOV OOV OOV

HDTtest Malt stackeager 84% → 82% 80% → 78% 0.87 → 0.82
covnonproj 88% → 84% 84% → 80% 0.89 → 0.82
stacklazy 86% → 83% 82% → 78% 0.88 → 0.82

Mate – 88% → 85% 84% → 79% 0.89 → 0.80
RBG basic 82% → 80% 78% → 73% 0.84 → 0.75

standard 86% → 82% 81% → 74% 0.86 → 0.76
full 87% → 84% 81% → 76% 0.87 → 0.77

Turbo basic 81% → 78% 76% → 69% 0.82 → 0.71
standard 86% → 83% 80% → 74% 0.85 → 0.75
full 86% → 83% 80% → 74% 0.85 → 0.75

Lit2009 Malt stackeager 87% → 87% 82% → 76% 0.89 → 0.79
covnonproj 90% → 91% 84% → 83% 0.88 → 0.84
stacklazy 88% → 85% 83% → 75% 0.88 → 0.79

Mate – 89% → 92% 84% → 81% 0.89 → 0.83
RBG basic 86% → 81% 80% → 71% 0.85 → 0.73

standard 89% → 85% 83% → 73% 0.87 → 0.76
full 89% → 87% 83% → 75% 0.87 → 0.79

Turbo basic 85% → 91% 78% → 71% 0.83 → 0.73
standard 88% → 89% 80% → 72% 0.86 → 0.75
full 89% → 91% 81% → 72% 0.86 → 0.75

Lit1850 Malt stackeager 78% → 77% 73% → 69% 0.84 → 0.76
covnonproj 84% → 79% 79% → 73% 0.86 → 0.76
stacklazy 82% → 77% 76% → 68% 0.84 → 0.70

Mate – 87% → 83% 82% → 76% 0.88 → 0.77
RBG basic 82% → 77% 76% → 67% 0.84 → 0.69

standard 85% → 82% 79% → 70% 0.85 → 0.73
full 86% → 82% 80% → 72% 0.85 → 0.74

Turbo basic 80% → 76% 72% → 61% 0.81 → 0.63
standard 84% → 86% 76% → 71% 0.83 → 0.73
full 84% → 87% 76% → 71% 0.83 → 0.73

Aca2009 Malt stackeager 82% → 86% 79% → 83% 0.89 → 0.92
covnonproj 85% → 89% 82% → 87% 0.90 → 0.97
stacklazy 85% → 89% 81% → 84% 0.90 → 0.92

Mate – 85% → 89% 81% → 84% 0.89 → 0.94
RBG basic 80% → 75% 77% → 73% 0.86 → 0.83

standard 84% → 75% 80% → 73% 0.88 → 0.86
full 84% → 76% 80% → 75% 0.88 → 0.86

Turbo basic 77% → 81% 73% → 79% 0.84 → 0.90
standard 81% → 87% 76% → 84% 0.86 → 0.92
full 82% → 87% 77% → 84% 0.86 → 0.94

Table 8: Comparison between overall attachment measures and attachment measures with only OOV
tokens as basic population, for parser outputs based on computed part-of-speech and morphological fea-
tures as input. Arrows indicate the direction of change from overall to OOV.
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