Making Corpus Querying Ready for the Future:
Challenges and Concepts

Markus Gértner and Jonas Kuhn
Institute for Natural Language Processing
University of Stuttgart
Germany
{markus.gaertner, jonas.kuhn}@ims.uni-stuttgart.de

Abstract

This paper presents work in progress on
a project to improve usability of corpus
query systems, and in particular their query
languages, for user groups that are easily
intimidated by overly complex tools. Hav-
ing evaluated a series of existing corpus
query systems, we expand the existing cat-
alog of (informal) requirements for such
query systems with new findings. We hint
at several conceptual shortcomings of mod-
ern corpus query languages and proceed by
introducing the first design draft of our own
hybrid approach. While doing so we also
present two assumptions for future trends
in the design and user interaction of corpus
query systems.

1 Introduction

Ever since corpora! started to play a role in natural
language processing or other disciplines, the need
for corpus query systems (CQS) and their assorted
corpus query languages (CQL?) also arose. These
kind of systems are there to play a very straightfor-
ward, yet extremely important role. That is, they
are meant to answer questions (queries) concerning
a corpus that a researcher is interested in. Such
queries can come in vastly different levels of com-
plexity. Consider for example the following (made
up) kinds of information a researcher might want
from a corpus:

(D Sentences with the word “elephant”.

t3]

2) Sentences that contain the word “elephant
regardless of inflection or capitalization.

IFor reasons of simplicity we apply the definition of cor-
pora being collections of utterances without any special re-
quirements regarding their modality or physical form.

ZNot to be confused with the commonly used abbreviations
for Cassandra Query Language or Contextual Query Language

158

3) Sentences where “elephant” is the logical
subject and not preceded by an adjective.

4 Instances of a mention of a person, which
is discourse-new, appearing adjacent to a
preceding tonally prominent adjective and
having not been marked tonally prominent
itself. Include only persons that are not
mentioned again in the same sentence but
at least twice but no more than five times in
the remainder of the same chapter.

Example (1) is a trivial string matching task, while
(2) and (3) can be answered by directly accessing
lemmatized, tagged or parsed content. Those are
the kinds of questions typical corpus query systems
are able to answer these days. Some systems add a
bit of expressive power to combine different anno-
tations layers or even provide rudimentary support
for querying information from different modalities.
But usually their coverage ends well before ques-
tions such as (4) can be properly answered.

The last example (4) is however slightly exag-
gerated in terms of complexity. This is done in-
tentionally to emphasize the importance of CQS
implementations as one of the enablers of corpus-
based research, with a focus on future trends and
upcoming (potential) questions. Especially on the
points of contact between modalities there is still a
lot of room for questions that for example take into
account the rich multitude of phonetic annotations
in combination with classic textual data.

The context of this paper is a project where we
are faced with providing query access to a diverse
set of richly annotated corpus resources of vary-
ing modality and vastly different annotation lay-
ers. Our user group comprises to a large extent re-
searchers with only a minor technical background,
making ease of use a top priority. In the remain-
der of this paper we discuss potential solutions and
refine existing requirements for successful CQL
designs. Finally we also introduce the first draft of

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

our own hybrid CQL approach that aims at com-
bining favorable concepts from different (corpus)
query systems.

2 Motivation for Dedicated CQS

Today a plethora of industry grade solutions for
data management and subsequent querying of its
content exist. They include technologies such as
relational databases with the query flagship Struc-
tured Query Language (SQL)?, graph databases
such as Neo4j*, systems for indexing, e.g. Apache
Lucene’ and the OWL2 Web Ontology Language®
for describing content in the Semantic Web and its
associated query language SPARQL’ .

Having this catalog of readily available solutions
begs the question of why they are not adopted as
the main technologies for composing, managing
and querying corpora. Jarke and Vassiliou (1985)
already emphasized the division of query language
evaluation criteria into two main categories: those
of usability and functionality. While functionality
is a purely technical aspect where features such as
expressiveness (cf. (Lai and Bird, 2010) for a col-
lection of requirements for treebank query tools),
efficiency and others can be universally verified
(e.g. in the work by Frick et al. (2012) for compar-
ing several CQL implementations), the matter is
much more complicated for usability. The question
of usability is highly subjective and relies heavily
on the target group of users for which it is to be
answered.

The question of “Who would use a CQS?” can
be answered very pragmatically with the statement
“Everybody with interest in a corpus’ content”,
which typically includes people from the fields
of (computational) linguistics as well as (digital)
humanities. This means that there is a certain dis-
parity to be expected in the technical background
knowledge and skills of this user group and the
users of above systems, which usually are trained
software engineers. This is in line with the usabil-
ity considerations stated in Mueller (2010) when
taking the perspective of a scholarly environment.

While integrations with those technologies have
been done (for instance Burchardt et al. (2008) for

3Standardized under ISO/IEC 9075:2016 “Information
technology — Database languages — SQL”

‘https://neody.com/

Shttps://lucene.apache.org/

Shttps://www.w3.org/TR/owl2-overview/

Thttps://waw.w3.org/TR/
sparglll-overview/

159

OWL), there exist no widespread adaptations of
them for use as a CQL front-end. From this the still
existing need for CQS implementations tailored to
the above mentioned user groups concludes.

3 Related Work

Two of the existing implementations we are aware
of come closest to fulfilling above needs®:

ANNIS (Krause and Zeldes, 2014) is a web-
based CQS that combines a relational database
(SQL) as storage with the graph-based modeling
toolkit SALT (Zipser, 2009). It provides a very
flexible visual front-end that features several visual-
izations optimized to display certain linguistic phe-
nomena. Its query language AQL uses a syntax of
individual terms that express constraints for distinct
elements or relations between the elements defined
in other terms. Terms are then joined via the logi-
cal operators of either conjunction or disjunction.
This allows it a high degree of expressiveness, but
also makes complex (structural) queries very diffi-
cult to read. Relying on a relational database also
poses certain disadvantages, since especially struc-
tural queries with closures are traditionally time
consuming for those databases, hampering scalabil-
ity severely. The recently developed graphANNIS
(Krause et al., 2016) however provides an alterna-
tive to the previous database solution by serving
as a graph database and eliminating some of the
issues.

ICARUS? (Girtner et al., 2013; Girtner et al.,
2015) on the other hand is a CQS implementation
for local desktop use. Its storage is memory-based
and as such introduces a bottleneck when operat-
ing with very large corpora. The number of dif-
ferent visualization modes is lower compared to
ANNIS, but customizability of individual visualiza-
tions by the user is much higher. Unlike ANNIS it
uses a hybrid syntax with brackets to express struc-
tural properties (nesting indicates dominance) and
comma-separated term lists for local constraints
inside individual nodes.

The following examples (5) and (6) illustrate
the comparison between a simple structural query
expressed in ANNIS and ICARUS syntax. Both
queries match a node whose part-of-speech tag is

8We did not include KoralQuery (Bingel and Diewald,
2015) as an implementation of CQLF (Banski et al., 2016) in
this section, as it is meant as interchange protocol between
CQL dialects and not for manual query construction by users.

9Interactive platform for Corpus Analysis and Research
tools, University of Stuttgart

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

#vp: [cat="VP"] & #v: [pos="V"] & #np:[cat="NP"] & #pp:[cat="PP"]
& #vp >x #v & #vp >* #np & #vp >+ #pp & #v >Q@r #vr & #np >Q@1l #npl
& #vr .1 #npl & pp >Q@1l ppl & npl .1 ppl

Figure 1: TigerSearch (Lezius, 2002) query to find verb phrases that contain a verb immediately followed
by a noun phrase that is immediately followed by a prepositional phrase. Example by Lai and Bird (2010)

FIND sentence WITH vp,np,pp AS phrase AND v AS token WHERE
cat=VP [v: pos=V] [np: cat=NP] [pp: cat=PP]]

[vp:
AND adjacent (v, np, pp)

Figure 2: Mock-up of a possible hybrid-style query equivalent in content to the one in Figure 1.

categorized as NP that dominates a PP node: TORYA (Steiner and Kallmeyer, 2002),

5) cat="NP” & cat="PP” & #1 > #2

(6) [pos="NP” [pos="PP”]]

Both systems allow the construction of queries tex-
tually as well as graphically (see Figure 3) with
elaborate editors. Their overall designs however
are not amendable to a degree that would make
them usable for answering queries such as the one
in Example (4) on huge corpora.

~ ™
Pos =NP | | Pos = PP

Figure 3: Graphical version of the example query
(6) with a NP node dominating a PP node, taken
from the ICARUS query editor.

4 Required Query Concepts

In earlier work several requirement lists for cor-
pus query tools have been compiled. Lai and Bird
(2010) defined functional features needed to query
treebanks (and as an extension any tree-like struc-
ture), such as hierarchy, constituency, temporal or-
ganization, boolean operations, closures and non-
navigational requirements. On the matter of us-
ability Mueller (2010) provided conditions such as,
among others, answer time, maintenance cost and
the management of search results. Purely technical
(external) factors such as scalability, computational
complexity, platform-independence, extensibility
and interoperability also play a major role (Lai and
Bird, 2004; Kepser, 2003).

Besides the systems mentioned in Section 3 we
looked at several other CQL/CQS instances:

CWB (Evert and Hardie, 2011), VIQ-

160

FSQ (Kepser, 2003), COSMAS II (Bodmer,
2005), MonaSearch (Maryns and Kepser, 2009),
TigerSearch (Lezius, 2002), MATE (Heid and
Mengel, 1999), Fangorn (Ghodke and Bird,
2012), Poliqarp (Janus and Przepidrkowski,
2007), LPath (Lai and Bird, 2005), TGrep2 (Ro-
hde, 2001), Emu (Cassidy and Harrington,
2001), PML-TQ (Pajas and §tépének, 2009),
KoralQuery (Bingel and Diewald, 2015), Em-
dros (Petersen, 2004), NetGraph (Mirovsky, 2006),
SETS (Luotolahti et al., 2015)

While evaluating those query tools, we also en-
countered some patterns that demanded the addi-
tion of certain new requirements to above lists. A
selection of those newly added requirements is de-
scribed in detail in the remainder of this section:

Readability. The majority of CQL instances
make heavy use of special characters as operators
or delimiters in their syntax. While this clearly
allows for a more compact definition of a query
in textual form, it also reduces the readability to
a degree where it is almost impossible to under-
stand a query at first sight (e.g Figure 1). This issue
becomes even more pronounced when taking into
account researchers as users who are quite capable
of explaining the phenomena of interest, but are
unfamiliar with those kinds of syntax styles.

Model Limitations. When evaluating the effec-
tive expressiveness of a particular CQL, there are
essentially three interrelated domains involved:

target as the universe for which the query is to be
defined or which the CQS is meant to address.
Fundamentally this comprises the entire vari-
ability of linguistic structures and annotations,
regardless of modality or theory. In addition
this domain defines the upper bound of what
can be directly queried by any system.

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

model as the intermediary part of the target do-
main which is covered by the CQL’s under-
lying data model. This domain plays a cru-
cial role as data models for CQSs tend to be
geared towards a specific resource or a pre-
defined set of phenomena. As such we often
see query languages emerge that allow users
to only extract very little of what the original
target domain has to offer.

query as the resulting part of the model domain
that can be addressed when defining a query.
Limiting factors for this domain are often tech-
nical in nature (for example tractability con-
cerns based on the desired query engine) or
directly imposed by the model domain.

In set theory this leads to the expression
querydomain C modeldomain C targetdomain. If
we assume that modeling approaches like SALT
or our recently proposed modeling framework
(Gértner and Kuhn, 2018) offer enough flexibility
to maximize the modeled part of the target domain,
then there should be no reason to limit a CQL up
front to only a small subset of what can be modeled
in a way that would later impact extensibility.

Flexible Scope. Query languages for database
systems usually feature some sort of scope declara-
tion that defines what part of the database a query is
interested in, structurally and content wise (e.g. the
obligatory FROM section in an SQL query). CQLs
on the other hand lack this concept completely and
often are bound to a fixed corpus structure, such as
a treebank. But from a technical perspective there
is no structural difference between things like a
dependency or coreference tree:

As long as the user can specify which of the avail-
able structures he wishes to address, the QL should
allow the same constraints to work on all struc-
tures or phenomena that share a common type. Our
recently proposed approach to modeling corpora
(Girtner and Kuhn, 2018) introduced the concept
of combining general-purpose data structures sim-
ilar to graph models with linguistically motivated
metadata that describes the composition, content
and dependencies of a corpus. We believe this to
be a promising step towards implementing CQLs
of increased flexibility as it streamlines access to
very diverse corpus resources.

Postprocessing Directives. The average CQL to-
day does not contain any options to influence how
results should be processed. Exceptions are the

161

ability in several CQL implementations to limit the
overall number of result instances to be returned.
Besides that only PML-TQ (Pajas and St&panek,
2009) provides a truly rich functionality for post-
processing of search results.

Already Mueller (2010) named the handling of
search results as the “Achilles heel of corpus query
tools”. Even simple directives could already yield
a great increase in usability, for example customiz-
able sorting of results or returning the n-best results
according to a user-defined criterion instead of the
usual first n.

Learning Curve. An often overlooked aspect of
a CQS is the initial training required to properly
use it. Obstacles on the road to mastering a CQS
(or its CQL alone) are for example the complexity
of the query language, translation of ones question
into a valid query expression or even purely user
interface related issues. And even after having
overcome those initial challenges, users can still be
faced with recurring problems related to individual
corpora that they want to query with a given CQS:
“How is phenomenon X expressed in the resource?”
“What tag is used to encode category Y?”

While there are parts of a CQS (such as learn-
ing a formal language in order to exploit the full
capabilities of the system) that will likely remain
tedious for the user forever, the concept of example-
based search can ease the associated learning curve
into a more friendly shape.

Different approaches to this concept, where users
don’t need a deeper understanding of technical de-
tails or the query language involved to get started,
have been implemented in existing CQS:

GrETEL '°(Augustinus et al., 2012) allows to
query a treebank by providing (parts of) an example
sentence containing the syntactic structure one is
interested in. It then internally parses the text and
creates a query based on what the user declared to
be relevant in the sentence snippet, to run against
the treebank data. This effectively shields users
from the query language overload and provides
rapid results with minimal learning effort.

In ICARUS we integrated a parser pipeline
(which is customizable via provision of fully
trained models) that the user can employ to cre-
ate “query templates” from the parser output based
again on example input containing the phenomenon
in question. Subsequent relaxation of the query
(that is, deleting irrelevant parts of the query or

19Greedy Extraction of Trees for Empirical Linguistics

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

making them less strict) will then eventually yield a
query that is general enough to find other instances
of the same phenomenon. Since the treebank visu-
alization and graphical query editor share many of
their visual features, it is relatively easy to produce
even complex queries from this process.

S Syntax Design

In this section we introduce the current draft of
our CQL design. To fulfill the added requirements
from Section 4, we decided to partly move away
from the classic CQL syntax style variants, one of
which is shown in Figure 1. We base our design
on two assumptions that seem reasonable to us, but
which still need actual user studies for testing:

Prevalence of graphical query construction.
With the ever increasing richness of annotated cor-
pora, the user will require elaborate visualizations
to comprehend their content. This becomes even
more pronounced when taking into account multi-
modal corpora or multiple concurrent structural an-
notations, such as syntax trees. It seems likely that
the user will then be more inclined to use graphical
means of constructing queries, assuming their vi-
sual appearance is very similar to the way in which
the respective phenomena were presented.

Feedback from researchers using our ICARUS
tool indicated a strong preference towards the
graphical part of the query editor once they became
familiar with the system. However, this indication
might be biased due to the graphical editor provid-
ing more contextual help (such as listing possible
operators and in some cases attributes that can be
extracted for querying) and requires further investi-
gation.

Preference for Readability. This is in some way
a follow-up to the first assumption above. If we
assume the complexity of questions posed by re-
searchers to increase further, then the resulting
queries are bound to increase in size and complex-
ity accordingly. Since even simple queries in many
CQL implementations are already difficult to deci-
pher, overly confusing query constructs that result
from more complex questions will make the use
of those systems prohibitive for a large portion of
the target group. The essence of our assumption
here is that a CQL that is more verbose, but also
closer resembling the formulation of a question in
natural language, will be preferred over the more
artificial ones, even if the total length of the query

162

increases. The added effort for constructing such a
longer query can be mitigated in large parts when
users truly focus on creating queries graphically. In
that case boilerplate code in the query (comparable
to the recurring SQL pattern “FROM x SELECT y
WHERE z”) can be handled by the application logic
that drives the user interface.

As a result we envision a hybrid solution that
incorporates aspects from both SQL and some suc-
cessful existing CQL implementation. At its core
is a division of queries into parts with different
responsibilities, such as a scope preamble, struc-
tural sub-queries with local constraints (following
the popular bracketing style), global constraints be-
tween those sub-queries and directives for pre- or
postprocessing. Following the SQL concept, op-
erators and delimiters between those parts appear
in a more intuitive form as shown in a preliminary
mock-up in Figure 2. We chose the bracketing style
as opposed to logical terms to express structure and
grouping of local constraints, as it is equally suit-
able for structural queries and those only targeting
variable word sequences.

6 Conclusion

In this paper we discussed and conceptually evalu-
ated existing CQL approaches, with a strong focus
on basic usability. This was done in an ongoing
project where CQS and CQL solutions are needed
for accessing richly annotated and very diverse
multi-modal corpora. As a first result we found
current CQL instances to be unfit to meet the needs
of our target group of technically less skilled users
that might shy away from many existing complex
CQL options. We then proceeded to compile addi-
tional requirements for such CQL implementations
besides the previously established lists of require-
ments. Finally we proposed our draft of a hybrid
approach to combine elements of increased usabil-
ity with traditional CQL concepts. As a next step
we plan to conduct user studies in order to verify
some of the assumptions our design idea is based
on and to refine the specification so we can imple-
ment a prototype system for further testing.

Acknowledgments

This work was funded by the German Federal
Ministry of Education and Research (BMBF) via
CLARIN-D, No. 01UG1120F and the German Re-
search Foundation (DFG) via the SFB 732, project
INF.

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

References

Liesbeth Augustinus, Vincent Vandeghinste, and
Frank Van Eynde. 2012. Example-based tree-
bank querying. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Ugur Dogan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and
Stelios Piperidis, editors, Proceedings of the Eighth
International Conference on Language Resources
and Evaluation (LREC-2012), pages 3161-3167, Is-
tanbul, Turkey, May. European Language Resources
Association (ELRA). ACL Anthology Identifier:
L12-1442.

Piotr Banski, Elena Frick, and Andreas Witt. 2016.
Corpus query lingua franca (cqlf). In Nicoletta Cal-
zolari (Conference Chair), Khalid Choukri, Thierry
Declerck, Sara Goggi, Marko Grobelnik, Bente
Maegaard, Joseph Mariani, Helene Mazo, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), Paris, France, may. European Language Re-
sources Association (ELRA).

Joachim Bingel and Nils Diewald, 2015. KoralQuery
— A General Corpus Query Protocol, volume 111,
pages 1-5. Linkdping University Electronic Press.

Franck Bodmer. 2005. Cosmas ii - recherchieren in
den korpora des ids. Sprachreport : Informationen
und Meinungen zur deutschen Sprache, 21(3):2 — 5.

Aljoscha Burchardt, Sebastian Padd, Dennis Spobhr,
Anette Frank, and Ulrich Heid. 2008. Construct-
ing integrated corpus and lexicon models for multi-
layer annotations in OWL DL. Linguistic Issues in
Language Technology, 1:1-33.

S. Cassidy and J. Harrington. 2001. Multilevel anno-
tation in the EMU speech database management sys-
tem. Speech communication, 33(1-2):61-78.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century Corpus Workbench: Updating a query archi-
tecture for the new millennium. In Proceedings of
the Corpus Linguistics 2011 conference, Birming-
ham.

Elena Frick, Carsten Schnober, and Piotr Banski. 2012.
Evaluating query languages for a corpus processing
system. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Mehmet Ugur
Dogan, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis, ed-
itors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation
(LREC’12), Istanbul, Turkey, may. European Lan-
guage Resources Association (ELRA).

Markus Giértner, Gregor Thiele, Wolfgang Seeker, An-
ders Bjorkelund, and Jonas Kuhn. 2013. ICARUS
— an extensible graphical search tool for dependency
treebanks. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics:

163

System Demonstrations, pages 55-60, Sofia, Bul-
garia, August. Association for Computational Lin-
guistics.

Markus Girtner, Katrin Schweitzer, Kerstin Eckart,
and Jonas Kuhn. 2015. Multi-modal visualization
and search for text and prosody annotations. In Pro-
ceedings of ACL-IJCNLP 2015 System Demonstra-
tions, pages 25-30, Beijing, China, July. Associa-
tion for Computational Linguistics and The Asian
Federation of Natural Language Processing.

Sumukh Ghodke and Steven Bird. 2012. Fangorn: A
system for querying very large treebanks. In COL-
ING 2012: Demonstration Papers, pages 175-182,
Mumbai, India, December.

Markus Giértner and Jonas Kuhn. 2018. A
lightweight modeling middleware for corpus pro-
cessing. In Nicoletta Calzolari (Conference chair),
Khalid Choukri, Christopher Cieri, Thierry De-
clerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélene Mazo,
Asuncion Moreno, Jan Odijk, Stelios Piperidis, and
Takenobu Tokunaga, editors, Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Paris, France,
may. European Language Resources Association
(ELRA).

Ulrich Heid and Andreas Mengel. 1999. Query lan-
guage for research in phonetics. In International
Congress of Phonetic Sciences (ICPhS 99), pages
1225-1228, San Francisco, August.

Daniel Janus and Adam Przepiérkowski. 2007.
Poligarp: An open source corpus indexer and search
engine with syntactic extensions. In Proceedings of
the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, ACL *07, pages
85-88, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Matthias Jarke and Yannis Vassiliou. 1985. A frame-
work for choosing a database query language. ACM
Comput. Surv., 17(3):313-340, September.

Stephan Kepser. 2003. Finite structure query: A
tool for querying syntactically annotated corpora.
In Proceedings of the Tenth Conference on Euro-
pean Chapter of the Association for Computational
Linguistics - Volume 1, EACL 03, pages 179-186,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Thomas Krause and Amir Zeldes. 2014. Annis3: A
new architecture for generic corpus query and visu-
alization. Digital Scholarship in the Humanities.

Thomas Krause, Ulf Leser, and Anke Liideling. 2016.
graphANNIS: A Fast Query Engine for Deeply An-
notated Linguistic Corpora. JLCL, 31(1):1ii-25.

Catherine Lai and Steven Bird. 2004. Querying and up-
dating treebanks: A critical survey and requirements
analysis. In In Proceedings of the Australasian Lan-
guage Technology Workshop, pages 139—146.

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

Catherine Lai and Steven Bird, 2005. LPath+: A First-
Order Complete Language for Linguistic Tree Query.
ACL Anthology, 12.

Catherine Lai and Steven Bird. 2010. Querying lin-
guistic trees. J. of Logic, Lang. and Inf., 19(1):53—
73, January.

Wolfgang Lezius. 2002. Ein Suchwerkzeug fiir syn-
taktisch annotierte Textkorpora. Ph.D. thesis, IMS,
University of Stuttgart. Arbeitspapiere des Instituts
fiir Maschinelle Sprachverarbeitung (AIMS), vol-
ume 8, number 4.

Juhani Luotolahti, Jenna Kanerva, Sampo Pyysalo, and
Filip Ginter. 2015. Sets: Scalable and efficient
tree search in dependency graphs. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Demonstrations, pages 51-55, Denver, Col-
orado, June. Association for Computational Linguis-
tics.

Hendrik Maryns and Stephan Kepser. 2009.
Monasearch: Querying linguistic treebanks with
monadic second-order logic. In The 7th Interna-
tional Workshop on Treebanks and Linguistic The-
ories.

Jiff Mirovsky. 2006. Netgraph: A tool for searching
in prague dependency treebank 2.0. In Jan Haji¢
and Joakim Nivre, editors, Proceedings of TLT 2006,
pages 211-222, Praha, Czechia. UFAL MFF UK.

Martin Mueller. 2010. Towards a digital carrel: A re-
port about corpus query tools.

Petr Pajas and Jan §tépének. 2009. System for
Querying Syntactically Annotated Corpora. In ACL-
IJCNLP: Software Demonstrations, pages 33-36,
Suntec, Singapore.

Ulrik Petersen. 2004. Emdros: A text database en-
gine for analyzed or annotated text. In Proceedings
of the 20th International Conference on Computa-
tional Linguistics, COLING ’04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Douglas L.T. Rohde. 2001. TGrep2 the
next-generation search engine for parse trees.
http://tedlab.mit.edu/ dr/Tgrep2/.

Ilona Steiner and Laura Kallmeyer. 2002. Vigtorya - a
visual query tool for syntactically annotated corpora.

Florian Zipser. 2009. Entwicklung eines Konverter-
frameworks fiir linguistisch annotierte Daten auf Ba-
sis eines gemeinsamen (Meta-)modells, November.
In this diploma thesis I present a framework to con-
vert linguistic data coming from a specific linguistic
format to other linguistic formats. This approach is
based on a common meta-model, which is used as
an intermediate step to decrease the number of nec-
essary mappings.

164

Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria — September 19-21, 2018

