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Switzerland

∗Research supported in part by the Swiss National Science Foundation under Grant
No. 200021-120290/1



Sparse Tensor Discretization of elliptic sPDEs ∗

Marcel Bieri, Roman Andreev, Christoph Schwab†
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Abstract

We propose and analyze sparse deterministic-stochastic tensor Galerkin
finite element methods (sparse sGFEMs) for the numerical solution of elliptic
partial differential equations (PDEs) with random coefficients in a bounded
physical domain D ⊂ R

d. The sparse sGFEMs are based on a separation of
stochastic and deterministic input variables by Karhunen-Loève expansion of
the random diffusion coefficient. In tensor product sGFEM, the variational so-
lution to the boundary value problem is approximated in tensor product finite
element spaces V Γ

⊗V D, where V Γ and V D denote suitable finite dimensional
subspaces of the stochastic and deterministic function spaces, respectively.

These approaches lead to sGFEM algorithms of complexity O(NΓND),
where NΓ and ND denote the number of stochastic and deterministic Degrees
of Freedom (DoFs), respectively. Stochastic collocation algorithms proposed
e.g. in [39] exhibit the same complexity (with smaller constant).

In this work, we use tensor products of hierarchic sequences V Γ
1 ⊂ V Γ

2 ⊂ ...,
V D

1 ⊂ V D
2 ⊂ ... of finite dimensional spaces to approximate the law of the

random solution. The hierarchies of approximation spaces allows to define
sparse tensor product spaces V Γ

! ⊗̂V D
! , ! = 1, 2, ... yielding an algorithm of

O(NΓ log ND + ND log NΓ) work and memory.
We estimate the convergence rate of sGFEM for algebraic decay of the in-

put random field’s KL coefficients. We give a algorithm for an input adapted
selection of deterministic and stochastic discretization spaces. The conver-
gence rate (in terms of the total number of degrees of freedom) of the proposed
method is superior to Monte-Carlo approximations.

Numerical examples illustrate the theoretical results and indicate superi-
ority of the sparse tensor product discretization proposed here versus the full
tensor product approach with Smolyak type subspaces V Γ proposed elsewhere.

Key words. Stochastic partial differential equations, uncertainty quan-
tification, stochastic finite element methods, multilevel approximations, sparse
tensor products

AMS subject classifications. 35R60, 60H15, 65C20, 65N12, 65N15,
65N30

1 Introduction

1.1 Random field inputs to PDEs in engineering

Efficient numerical solution of partial differential equations (PDEs) with random
field inputs is a key ingredient in Uncertainty Quantification (UQ) in engineering.

∗Research supported in part by the Swiss National Science Foundation under Grant No. 200021-
120290/1

†Seminar for Applied Mathematics, ETH Zentrum, Zürich, Switzerland
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Random field inputs are spatially inhomogeneous, in general non-stationary and
non-ergodic, input data of partial differential equations, such as coefficients (e.g., in
subsurface flow models) and loadings (e.g., in seismic analysis); however, also the
problem domain of definition can be subject to uncertainty due to, e.g., inaccurate
manufacturing processes or incomplete knowledge about the computational domain.

Development of efficient numerical solvers of PDEs with random field input
requires advances in several areas of applied mathematics and numerical analysis:

• first, the mathematical description of uncertain, spatially inhomogeneous in-
puts as random fields is required. This is, in principle, well-known, see, e.g.
[2, 35]; of particular interest are parametric, deterministic representations of
random field input data: there, as in parametric statistics, one is interested in
parsimonious parametric descriptions of these inputs. This is, however, not
always possible and in certain cases (as, e.g., spatially inhomogeneous input
data with small correlation length) a possibly countable number of parameters
must be admitted to allow for descriptions of realistic input fields,

• second, the mathematical formulation of PDEs with random field input leads
to stochastic partial differential equations (sPDEs),

• third, development of efficient, deterministic numerical solvers of PDEs with
random field input and, more generally, the

• efficient numerical sensitivity analysis of parametrized deterministic PDEs on
possibly high-dimensional parameter spaces.

A key requirement in e.g. risk-analysis for engineering systems modelled by
PDEs with random field input data is the knowledge of the joint probability den-
sity functions (joint pdf’s) of the solution (which is, in turn, also a random field).
Note carefully that, contrary to the belief of some, incomplete knowledge of input
data does not imply sufficiency of low solver accuracy of the “forward” numerical
solver. To the contrary, in our view highly accurate numerical solution of PDEs
with random field input is required for the quantification of uncertainty. Consider,
for example, predictions of so-called extremal events: here, sensitivity of the “tail-
behavior” of the random solution’s joint pdf’s in terms of input data needs to be
quantified. This, in turn, requires highly accurate computations of the parametric
dependence of the tails of solution pdf’s on the random field input data which is
parametrized on a possibly high-dimensional parametric domain.

Numerical solution strategies for PDEs in a physical domain D with random
field inputs can be grouped into two broad classes.

First, so-called nonintrusive solvers: here, existing deterministic solvers of the
PDE of interest are used without any modification as a building block in an outer
“UQ-loop” where some form of sampling of the random parameter space is used
to generate a set of particular input realizations to be processed by the determin-
istic forward PDE solver, leading to corresponding outputs of the random solution
from which the joint pdf’s are recovered. In this class, we find the Monte-Carlo
(MC) and quasi-Monte-Carlo (QMC) sampling strategies of the random inputs as
well as certain high-order “polynomial chaos” methods which are based on spec-
tral representations of the random fields’ in- and outputs. Due to the generally
slow convergence of MC and QMC sampling strategies and the generally high com-
putational cost of each “sample” (amounting to one deterministic PDE solve in,
possibly, spatial dimension 3), the computational efficiency of these approaches is
low. Throughout the paper, NΓ denotes the number of “samples” from the proba-
bility domain and ND denotes the number of deterministic degrees of freedom used
in the physical domain D by the deterministic ‘forward’ solver.
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Higher than MC accuracy per “sample” was achieved recently by stochastic col-
location (see [40, 38, 37, 4, 24, 23] and the references there); in both MC/QMC and
stochastic collocation, however, the random solutions’ approximate law is paramet-
rically represented by NΓ times ND degrees of freedom (DoFs). Due to the high
cost of one deterministic PDE solve, attention has been focused in recent years on
minimizing the number NΓ of deterministic solves by judicious choice of collocation
points; see, e.g. [5, 15, 20, 21, 38, 37, 40] and the references there. In [24, 23],
nonuniformly distributed sets of collocation points of low cardinality NΓ obtained
by a Smolyak-style tensorization of univariate sequences of interpolation points were
proposed and found superior to straightforward tensorization as in [40, 38, 37, 4].

For complex engineering systems where the smallest ND necessary for resolution
of all spatial length scales of interest is close to the limit of available computing
ressources, nonintrusive computational approaches to UQ with a large number NΩ

of “samples” are today beyond reach.
In the present paper, we consider therefore a novel, intrusive class of solvers: we

show how (by now well established) adaptive multilevel or multiresolution solvers of
deterministic elliptic PDE’s can be intertwined with adaptive hierarchic parametric
representations of the solution random fields. We demonstrate that in this fashion
UQ algorithms of complexity O(NΩ log ND + ND log NΩ) can be obtained.

The UQ algorithms proposed and analyzed here have several characteristic fea-
tures: first, they are data-compressive at all stages of the algorithm. Specifically,
uncertainty in the numerical solution’s contributions from different scales of dis-
cretization (i.e., from different levels of its multilevel representation) is resolved
only to the extent necessary to maintain overall accuracy.

Second, a spectral analysis (i.e. Karhunen-Loève expansion) of the input ran-
dom fields sharp a-priori estimates are used to determine, by an algorithm inspired
by number theoretic results [9] on integer factorizations, a-priori the essential com-
ponents of the unknown random solution to be computed to achieve a prescribed
error threshold ε > 0 with minimal work.

1.2 Model Problem

As in [4, 5, 17, 7, 15, 20, 38, 37, 40], our model problem is an elliptic diffusion
problem with stochastic diffusion coefficient a(ω,x). We assume that the physical
domain D ⊂ Rd is a known, bounded open set with Lipschitz boundary ∂D where
d is a positive integer.

Denote by (Ω,B, P ) a probability space where Ω denotes the outcomes, B ⊂ 2Ω

the sigma algebra of possible events and P : B → [0, 1] a probability measure.
In order to guarantee existence, uniqueness and well-posedness of the model

problem introduced below, we have to make the following assumption on the diffu-
sion coefficient a(ω,x), following [5].

Assumption 1.1. Let a ∈ L∞(D × Ω) be strictly positive, with lower and upper
bound

P

{

ω ∈ Ω : amin ≤ ess inf
x∈D

a(ω,x) ∧ ess sup
x∈D

a(ω,x) ≤ amax

}

= 1 (1.1)

where the essential infimum and supremum are taken with respect to the Lebesgue
measure in D ⊂ Rd.

The model problem under consideration here can then be written as follows:
given f ∈ L2(D) and a ∈ L∞(D × Ω) satisfying Assumption 1.1, find u such that

{

−div(a(ω,x)∇u(ω,x)) = f(x) in D,
u(ω,x)|x∈∂D = 0,

(1.2)
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for P−a.e. ω ∈ Ω, where the diffusion coefficient a(ω,x) and the solution u(ω,x)
are random fields in the spatial domain D.

Given a deterministic source term f(x) ∈ L2(D), one is often interested in
deterministic statistics of u(ω,x) rather than in the random solution itself.

In order to compute statistical moments of the random solution u(x, ω) as well
as, e.g., probabilities of interest in UQ, MC and QMC approaches have been pro-
posed for the numerical solution of (1.2), see, e.g., [36] for a convergence analysis.

MC and QMC methods, however, suffer from the need to restart the (expensive)
sampling process for essentially every statistical quantity to be computed.

To remedy this, in recent years several authors have proposed the computation of
parametric representations of the joint pdf’s of the random solution u(ω,x) of (1.2).
Here, a parsimonious representation of these joint pdf’s is desirable. There are,
roughly speaking, two main classes of methods to achieve this: first, perturbation
methods [27, 28] where the random solution’s fluctuations about the (unknown)
mean field are approximated by sparse tensor product approximations, and, second,
representations of the unknown random solution in terms of V D-valued polynomials
of the (independent) sources of randomness of the input data, where V D denotes a
Banach space in which the deterministic version of (1.2) is well-posed.

In this paper, we shall focus on the latter approach and analyze the convergence
rates of projections of random solution’s joint pdf’s onto sparse tensor products of
spaces spanned by polynomials of the (independent) sources of randomness of the in-
put data and hierarchic multilevel subspaces of V D. The projection is mean-square
in probability and the V D-projection in physical space; we term this projection
accordingly “sparse tensor product stochastic Galerkin FEM”.

In [7] we presented an efficient numerical sGFEM algorithm to solve (1.2) by a
stochastic Galerkin FEM based on a sparse polynomial chaos (SPC) expansion of
the solution. The work [7] revealed that SPC is a very effective and accurate tool to
parametrically approximate the solution’s random behavior while using considerably
less degrees of freedom than e.g. generalized polynomial chaos (gPC) [20, 40] or
multi-element gPC (ME-gPC) [38, 37] approximations. In the present paper, we will
follow a best N-term PC approach and derive, in addition, a sparse tensor product
construction between stochastic and deterministic variables. This will allow us to
treat the case of algebraically decaying Karhunen-Loève coefficients, see Section 2.3
ahead, in an efficient fashion.

1.3 Outline

The paper is structured as follows. In Section 2 we will formulate the stochastic
Galerkin FEM and introduce the main notations used throughout this paper. We
also derive the sparse tensor product formulation of the sGFEM and present a first
theoretical result related to the complexity of the sparse tensor product space.

In Section 3 we present hierarchic sequences of stochastic and deterministic
approximation spaces and prove algebraic convergence rates for the sparse tensor
discretizations in terms of the total number of degrees of freedom under the as-
sumption of algebraically decaying Karhunen-Loève coefficients.

An algorithm to find suitable stochastic discretization spaces will then be pre-
sented in Section 4. Issues related to the implementation and complexity of this
algorithm are discussed.

In Section 5 we will present numerical examples comparing sparse sGFEM to
‘full’ sGFEM and give some concluding remarks.

The Appendix A finally contains the proofs of the results stated in Section 3.
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2 Galerkin Formulation

We recapitulate a variational formulation of the model problem (1.2) which will be
the basis for the sparse tensor Galerkin discretization.

2.1 Variational formulation

The computational stochastic Galerkin FEM is based on a variational formulation
of (1.2) in both, physical as well as in probability space. Specifically, denote by V D

a Banach space in which the deterministic problems in (1.2) are well-posed. For
example, for the Dirichlet problem for the diffusion equation, V D = H1

0 (D). By
L2

P (Ω; V D) we denote the Bochner space of mappings Ω * ω → u(ω, ·) ∈ V D. Note
that L2

P (Ω; V D) + L2
P (Ω)⊗ V D where L2

P (Ω) :=
{

ξ(ω)|
∫

Ω ξ2(ω) dP (ω) < ∞
}

.
To derive the variational formulation, we multiply (1.2) with a test function v,

integrate by parts over the physical domain D and take expectations on both sides.
This yields the variational formulation of (1.2): find u ∈ L2

P (Ω; V D) such that for
all v ∈ L2

P (Ω; V D)

b(u, v) := E

[∫

D
a(ω,x)∇u(ω,x) ·∇v(ω,x) dx

]

= E

[∫

D
f(x)v(ω,x) dx

]

. (2.1)

From Assumption 1.1 it follows that the bilinear form b(·, ·) is coercive and con-
tinuous, i.e. there exists a constant γ > 0 such that for all u, v ∈ L2

P (Ω; H1
0 (D))

holds

b(v, v) ≥ γ‖v‖L2
P (Ω,H1

0 (D)) and |b(u, v)| ≤ γ−1‖u‖L2
P (Ω,H1

0 (D))‖v‖L2
P (Ω,H1

0 (D)).
(2.2)

For every f ∈ H−1(D) = (V D)∗, the unique solvability of (2.1) follows from the
Lax-Milgram Lemma.

2.2 Continuous Dependence on Data

A main requirement for the stable numerical approximation of (1.2) is continu-
ous dependence of the solution u on the random input data a(ω,x): let a(ω,x)
and ã(ω,x) be two random diffusion coefficients satisfying (1.1), and denote by
u, ũ ∈ L2

P (Ω; H1
0 (D)) the corresponding unique weak solutions. By a Strang-type

perturbation argument, it holds

‖u− ũ‖L2
P (Ω,H1

0 (D)) ≤ C‖a− ã‖L∞

P (Ω,L∞(D))‖f‖H−1(D). (2.3)

2.3 Separation of stochastic and deterministic variables

To formulate the stochastic finite element method we separate stochastic and de-
terministic variables in the diffusion coefficient a(ω, x). One way to achieve this is
the so-called Karhunen-Loève expansion defined below. We assume that the known
information about the diffusion coefficient includes its mean field

Ea(x) =

∫

Ω
a(ω,x) dP (ω), x ∈ D, (2.4)

and covariance

Ca(x,x′) =

∫

Ω
(a(ω,x) − Ea(x))(a(ω,x′)− Ea(x′)) dP (ω), x,x′ ∈ D. (2.5)
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Definition 2.1. A covariance function Ca(x,x′) ∈ L2(D×D) given by (2.5) is said
to be admissible if it is symmetric and positive definite in the sense that

0 ≤
n
∑

k=1

n
∑

j=1

akCa(xk,xj)āj ∀xk,xj ∈ D, ak, aj ∈ C (2.6)

We refer to [26] for basic results on positive definite functions and examples.
The covariance operator of a random permeability a(ω,x) ∈ L2(Ω×D) is

Ca : L2(D) −→ L2(D), (Cau)(x) :=

∫

D
Ca(x,x′)u(x′) dx′. (2.7)

Given an admissible covariance function Va(x,x′) in the sense of Definition 2.1,
the associated covariance operator Ca is a symmetric, non-negative and compact
integral operator from L2(D) to L2(D).

It therefore has a countable sequence of eigenpairs (λm, ϕm)m≥1

Caϕm = λmϕm m = 1, 2, ... (2.8)

where the sequence (real and positive) of KL-eigenvalues λm is enumerated with
decreasing magnitude and is either finite or tends to zero as m →∞, i.e.

λ1 ≥ λ2 ≥ . . . ≥ 0 ( with multiplicity counted ), λm → 0 as m →∞.
(2.9)

The KL eigenfunctions ϕm(x) are assumed to be L2(D)-orthonormal, i.e.
∫

D
ϕm(x)ϕn(x)dx = δmn, m, n = 1, 2, ... (2.10)

Definition 2.2 (Karhunen-Loève expansion). The Karhunen-Loève (KL) ex-
pansion of a random field a(ω,x) with finite mean (2.4) and covariance (2.5) which
is admissible in the sense of Definition 2.1 is given by

a(ω,x) = Ea(x) +
∑

m≥1

√

λmϕm(x)Ym(ω). (2.11)

The family of random variables (Ym)m≥1 is given by

Ym(ω) =
1√
λm

∫

D
(a(ω,x)− Ea(x))ϕm(x) dx : Ω → R. (2.12)

One immediately verifies that

E[Ym] = 0, E[Ym · Yn] = δmn, ∀ m, n ≥ 1, (2.13)

i.e. the Ym(ω) are centered with unit variance and pairwise uncorrelated.
The following Proposition provides a bound on the eigenvalues and eigenfunc-

tions of (2.8) related to the regularity of the covariance operator Ca(x,x′).

Proposition 2.3. Assume Ca ∈ Ht,t(D×D) := Ht(D)⊗L2(D)∩L2(D)⊗Ht(D)
with t > d/2. Then the eigenvalues of (2.8) admit the bound

λm ≤ Cm−t/d m ≥ 1 (2.14)

with a constant C > 0 independent of m. Moreover, ϕm ∈ Ht(D) and for every
ε ∈ (0, t− d/2] there exists a constant C > 0, depending on ε, d but not on m, such
that

‖ϕm‖L∞(D) ≤ Cλ−(d/2+ε)/t
m , m = 1, 2, 3, ... (2.15)
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Proof. The estimate on the eigenvalues follows directly from [29], Proposition 2.21.
It was also shown in [29], Proposition A.2 that ϕm ∈ Ht(D).

The Sobolev embedding theorem [1] for all t∗ ∈ (d/2, t] yields

‖ϕm‖C0(D) ≤ C‖ϕm‖Ht∗ (D) ∀m ≥ 1 (2.16)

with a positive constant C depending on t∗, d. It remains to bound the norm on
the right hand side of the inequality. It is well-known that fractional order Sobolev
spaces Ht∗(D) can be obtained by complex interpolation [34] between L2(D) and
Ht(D) for any t∗ < t and we therefore have the Riesz-Thorin-type inequality (see
[34] Paragraph 1.9.3)

‖u‖Ht∗ (D) ≤ ‖u‖
t∗/t
Ht(D)‖u‖

1−t∗/t
L2(D) (2.17)

for any function u ∈ Ht(D). Choosing now u = ϕm we have, due to the L2-
normalization that

‖ϕm‖Ht∗ (D) ≤ ‖ϕm‖t∗/t
Ht(D) (2.18)

From the eigenvalue equation

ϕm(x) =
1

λm

∫

D
Ca(x,x′)ϕm(x′) dx′

it follows by differentiating and using the Cauchy-Schwartz inequality

‖∂αϕm‖L∞(D) ≤ C(α)λ−1
m (2.19)

Combining now (2.19), (2.18) and (2.16) yields

‖ϕm‖L∞(D) ≤ Cλ−t∗/t
m (2.20)

which completes the proof.

Remark 2.4. In the case where the Karhunen-Loève eigenvalues decay exponentially,

i.e. like λm ! e−cm1/d

, we have from Theorem 2.24 that

‖ϕm‖L∞(D) ≤ Cλ−δ
m (2.21)

for any δ > 0. This coincides with Proposition 2.3, since the Karhunen-Loève
eigenvalues tend to zero fast the algebraic decay (2.14). Hence we can choose t as
large as possible in (2.15) which implies (2.20).

2.4 Parametric Deterministic Problem

To parametrize the stochastic input, we make the following assumption on the
random variables Ym in the KL-representation (2.11) of a.

Assumption 2.5. a) The family (Ym)m≥1 : Ω → R is independent,

b) the KL-expansion (2.11) of the input data is finite, i.e. there exists M̄ < ∞
such that Ym ≡ 0 for all m > M̄ ,

c) with each Ym(ω) in (2.11), (2.12) is associated a complete probability space
(Ωm, Σm, Pm), m ∈ N with the following properties:

(i) the range of Ym, Γm := Ran(Ym) ⊆ R, is compact and, after scaling,
equal to [−1, 1] for all m, and

(ii) the probability measure Pm admits a probability density function ρm :
Γm −→ [0,∞) such that dPm(ω) = ρm(ym)dym, m ∈ N, ym ∈ Γm, and
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(iii) the sigma algebras Σm are subsets of the Borel sets of the interval Γm,
i.e. Σm ⊆ B(Γm).

In order to numerically treat the KL-expansion (2.2), it is truncated after M <
M̄ terms (with M to be determined as part of the discretization). We define

aM (ω,x) := Ea(x) +
M
∑

m=1

√

λmϕm(x)Ym(ω). (2.22)

With the finite expansion (2.22), we replace in (1.2) the random input a(ω,x) by its
M -term truncated Karhunen-Loève expansion aM (ω,x) in (2.22). We obtain an M -
dimensional parametric, deterministic variational formulation which is equivalent to
the stochastic problem (1.2) with input that is approximated by the truncated Kar-
hunen-Loève expansion (2.22).

To state this formulation as well as for the stochastic Galerkin FEM (sGFEM)
discretization below, we introduce the following function spaces: For

Γ := Γ1 × Γ2 × . . . , y = (y1, y2, . . .) ∈ Γ

we denote by L2
ρ(Γ) the space of all mappings v : Γ→ R which are square integrable

with respect to the measure ρ(dy) = ρ(y)dy.
We shall assume that ρ(dy) is a probability measure on Γ. If H denotes any

separable Hilbert space with norm ‖ ·‖H , by L2
ρ(Γ;H) we denote the Bochner space

of functions v : Γ → H for which ‖v(y, ·)‖H : y→ R belongs to L2
ρ(Γ).

We shall require in particular the space

L2
ρ(H

1
0 ) := L2

ρ(Γ;H1
0 (D)) + L2

ρ(Γ)⊗H1
0 (D) (2.23)

where ⊗ denotes the tensor product between separable Hilbert spaces.
By the independence assumption 2.5 a), the probability density ρ(y) is separable,

i.e.
ρ(y) =

∏

m≥1

ρm(ym)

with ρm(ym) as in Assumption 2.5 c) i).
The parametric, deterministic formulation of (1.2), (2.11) reads, in variational

form: find

uM ∈ L2
ρ(H

1
0 ) : bM (uM , v) = l(v) ∀ v ∈ L2

ρ(H
1
0 ) (2.24)

with

bM (uM , v) = E

[∫

D
aM (y,x)∇uM (y,x) ·∇v(y,x) dx

]

=

∫

Γ

∫

D
aM (y,x)∇uM (y,x) ·∇v(y,x)ρ(y) dxdy

(2.25)

and

l(v) = E

[∫

D
f(x)v(y,x) dx

]

=

∫

Γ

∫

D
f(x)v(y,x)ρ(y) dxdy. (2.26)

Here, based on (2.22),

aM (y,x) = a0(x) +
M
∑

m=1

ymψm(x), a0 = Ea, ψm(x) := λ1/2
m ϕm(x). (2.27)
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Remark 2.6. In what follows, the functions ψm, or more precisely L∞-estimates on
those, will play a crucial role in the motivation of the algorithm presented in Section
4 to find a representation of the random solution uM with as few terms as possible.
Combining (2.14) and (2.15) we obtain

∀m ∈ N : bm := ||ψm||L∞(D) =
√

λm||ϕm||L∞(D) ≤ c1m
−s (2.28)

where

s =
1

2d
(t− d− ε) (2.29)

for an arbitrary ε ∈ (0, t− d/2] and where the constant c1 in (2.28) depends on ε, d.

Remark 2.7. The unique solvability of (2.24) uniformly in the number M of terms re-
tained in the truncated Karhunen-Loève -expansion follows from Assumption 1.1 on
the coefficient a(ω,x) and from Proposition 2.3, i.e. from (2.14), (2.15). Specifically,
under Assumption 1.1 and Proposition 2.3 (see also Remark 2.6) with sufficiently
small C > 0 in (2.14), there exists M0 > 0 and γ > 0 (depending on amin, amax in
(1.1), but independent of M) such that

∀M ≥M0 ∀v ∈ L2
ρ(Γ;H1

0 (D)) : bM (v, v) ≥ γ‖v‖2L2
ρ(Γ;H1

0 (D)), (2.30)

∀v, w ∈ L2
ρ(Γ;H1

0 (D)) : |bM (v, w)| ≤ γ−1‖v‖L2
ρ(Γ;H1

0 (D))‖w‖L2
ρ(Γ;H1

0 (D)) (2.31)

by the Lax-Milgram Lemma.
For M ≥ M0, aM satisfies (1.1) and the corresponding random solution uM ∈

L2
P (Ω, V D) exists, is unique and, by (2.3), there exists C > 0 independent of M

such that

‖u− uM‖L2
ρ(Γ,H1

0 (D)) ≤ C‖a− aM‖L∞

ρ (Γ,L∞(D))‖f‖H−1(D). (2.32)

3 Sparse Tensor Discretization

3.1 Hierarchic subspace sequences

In sGFEM, we discretize the variational formulation (2.24) by Galerkin projection
onto a hierarchic sequence of finite dimensional subspaces of L2

ρ(Γ;H1
0 (D)) in (2.23).

Specifically, we choose two hierarchic families of finite dimensional subspaces,

V Γ
0 ⊂ V Γ

1 ⊂ . . . ⊂ V Γ
l1 ⊂ V Γ

l1+1 ⊂ . . . ⊂ L2
ρ(Γ) (3.1)

and
V D

0 ⊂ V D
1 ⊂ . . . ⊂ V D

l2 ⊂ V D
l2+1 ⊂ . . . ⊂ H1

0 (D) (3.2)

with l1, l2 being the levels of refinement. We introduce detail spaces WΓ
l1

and WD
l2

such that
WΓ

0 := V Γ
0 and V Γ

l1 = V Γ
l1−1 ⊕WΓ

l1 for l1 = 1, 2, . . . (3.3)

and
WD

0 := V D
0 and V D

l2 = V D
l2−1 ⊕WD

l2 for l2 = 1, 2, . . . (3.4)

where the sums are direct so that the (finite-dimensional) approximation spaces V Γ
L

and V D
L admit a multilevel decomposition

V Γ
L =

L
⊕

l1=0

WΓ
l1 and V D

L =
L
⊕

l2=0

WD
l2 . (3.5)

Furthermore, let

ΨΓ
l1 = {ψΓ

l1k : k ∈ ∇Γ
l1} ΨD

l2 = {ψD
l2k : k ∈ ∇D

l2}, (3.6)
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with ∇Γ
l1

, ∇D
l2

being appropriate index sets, be bases of the increment spaces WΓ
l1

and WD
l2

, respectively. The two sets

ΨΓ = {ψΓ
l1k : l1 ≥ 0, k ∈ ∇Γ

l1}, ΨD = {ψD
l2k : l2 ≥ 0, k ∈ ∇D

l2} (3.7)

are assumed to be Riesz bases of L2
ρ(Γ) and of H1

0 (D), respectively.
In the next two sections we present examples of hierarchic sequences of subspaces

for both components of H1
0 = L2

ρ(Γ;H1
0 (D)): for L2

ρ(Γ), we use spaces of so-called
‘chaos-polynomials’, as was done e.g. in [4, 5, 7, 15, 20, 38, 37, 40]. This will be
described in the following section. For H1

0 (D), we use a multilevel family of Finite-
Element type subspaces. As will become clear, we need a stable multilevel splitting
so that we opt to use a spline-wavelet Finite-Element basis, which we present in the
next section.

3.2 Hierarchic polynomial approximation in L2
ρ
(Γ; H)

The crucial part in the sGFEM is the choice of the sequence {V Γ
l }∞l=0 of subspaces

in (3.1), due to the possibly arbitrary high dimension M of the parameter domain
Γ.

It is therefore imperative to reduce the number of stochastic degrees of freedom
to a minimum while still retaining accuracy. Since, by Assumption 2.5, the Γm are
compact we assume w.l.o.g. that Γm = [−1, 1], ∀m. We further assume that the
probability densities ρm are constant, i.e. we will restrict our discussion to the case
of a uniform probability density ρm(ym) = 1

2 .
By NN

c , we denote the set of all multiindices of compact support, i.e.. all se-
quences α = (α1, α2, ...) ⊂ N0 of nonnegative integers whose “support”, i.e. the set
supp(α) := {j ∈ N : αj 6= 0}, is finite: for α ∈ NM

c , we denote by |α|0 = #supp(α).
For α ∈ NN

c , we denote the tensorized Legendre polynomial of degree α by

Lα(y) := Lα1
(y1)Lα2

(y2) · · ·LαM (yM ) · · · y ∈ Γ (3.8)

where Lαm(ym) denotes the Legendre polynomial of degree αm of ym ∈ [−1, 1]
normalized such that Lαm(1) = 1. Then, L2

ρ(Γ) = span{Lα : α ∈ NN
c } where the

closure is w.r. to L2
ρ(Γ) and the solution uM to the parametric, deterministic

problem (2.24) can be represented in terms of Legendre polynomials as

uM (y,x) =
∑

α∈NN
c

uα(x)Lα(y), (3.9)

where the Legendre “coefficient” uα ∈ H1
0 (D) is given by

uα =

(
M
∏

m=1

2αm + 1

)
∫

Γ
uM (y, ·)LM,α(y)ρ(y) dy (3.10)

where the equality has to be read in H1
0 (D). Given any index set Λ ⊂ NM

0 of
cardinality |Λ| < ∞, we denote

uM,Λ(y,x) =
∑

α∈Λ

uα(x)LM,α(y). (3.11)

the Λ-truncated Legendre expansion (3.10).
In the Galerkin approximation below, we aim at finding an increasing sequence

Λ(1) ⊂ Λ(2) ⊂ Λ(3) ⊂ · · · ⊂ NN
c of index sets Λ(l) such that the approximations

uM,Λ(l) converge at a certain rate 0 < r ∈ R in terms of |Λ(l)|. We adopt |Λ(l)| as

10



(rough) measure of work (construction of uM,Λ in (3.11) requires computation of
|Λ| many functions uα ∈ H1

0 (D)).
For exponential eigenvalue decay (2.9) in the KL-expansion (2.11), i.e. if λm !

e−cmκ
, κ := 1

d , this is indeed possible with arbitrary high algebraic convergence
rates r as it has been shown in [7, 33]. There, an algorithm has been presented
to find index sets Λ, based only on the input data a, f , such that there exists a
constant C(r) > 0, independent of l and M and

‖uM − uM,Λl‖L2
ρ(Γ,H1

0 (D)) ≤ C(r)|Λ(l)|−r ∀ r > 0 (3.12)

The case of algebraic decay (2.14) of the Karhunen-Loève eigenvalues however,
is more difficult due to the possibly slow decay of the “coefficients” in (3.11).

We use best N -term approximations of uM in (3.9) as a benchmark and prove
a similar result to (3.12) in the case of algebraic Karhunen-Loève eigenvalue decay
(2.14), (2.28), for a certain range of rates r by providing sufficient conditions on the
input data.

To this end, for any finite set Λ ⊂ NN
c and for any Hilbert space H , we denote

by

Π(Λ;H) := {v =
∑

α∈Λ

vαLα : vα ∈ H, α ∈ Λ} ⊂ L2
ρ(Γ;H) (3.13)

the linear space of H-valued polynomials which can be expressed as a finite linear
combination of |Λ| many ρ(dy) orthogonal polynomials Lα(y) (if Λ = ∅, we define
Π(Λ;H) = {0}). They are a countable ρ(dy)-orthonormal basis of L2

ρ(Γ) and any
v ∈ L2

ρ(Γ;H) is determined by its coefficient vector (vα : α ∈ NN
c ) ⊂ H via v =

∑

α∈NN
c
vαLα. Moreover, we have the isometry

‖v‖2L2
ρ(Γ;H) =

∑

α∈NN
c

‖vα‖2H =
∥
∥{‖vα‖H : α ∈ N

N
c }
∥
∥

2

&2
.

The best N -term semidiscrete approximation error of u ∈ L2
ρ(H) is defined as

σN (u) := inf
Λ⊂NN

c ,|Λ|≤N
inf

v∈Π(Λ;H)
‖u− v‖L2

ρ(H). (3.14)

Note that σN (u) is uniquely defined even though v might not be unique.
As is well-known, best N -term approximations are generally not computationally

accessible. We therefore present in Section 5 an algorithm to locate for certain se-
quences {λm}∞m=1 of Karhunen-Loève -eigenvalues corresponding sequences {Λl}∞l=0
of index sets Λl ⊂ NN

c of “active” indices in the “chaos” expansions (3.11) which
realize “quasi-best N -term approximations”.

We define Ar(H) as the set of those u ∈ L2
ρ(Γ;H) for which

|u|Ar(H) := sup
N≥1

N rσN (u) (3.15)

is finite. This class consists of functions in L2
ρ(Γ;H) which can be best N -term

approximated at a rate r. For a parameter γ > 0 we introduce the index sets

Λγ(l1) := argmax
Λ⊂N

M
0

|Λ|=)2γl1*

(

∑

α∈Λ

‖uα‖H

)

⊂ N
N
0 , l1 = 0, 1, 2, ... (3.16)

of the 82γl19 coefficients uα in (3.9) with the largest H-norm. Thus Λγ(l1) provides
a best 82γl19-term approximation of u ∈ L2

ρ(Γ;H).
To apply these concepts to (1.2), we choose H = H1

0 (D). The choice of the
parameter γ > 0 will be discussed in Section 3.7 and be based on the expected

11



convergence rate of the spatial discretization of (1.2). The corresponding approxi-
mation spaces are then given by

V Γ
l1 := Π(Λγ(l1);V ). (3.17)

Since the Karhunen-Loève eigenvalue sequence {λm} in (2.8) is monotonically de-
creasing, the index sets Λγ(l1) are nested for a fixed γ > 0 and hence also the V Γ

l1

in the sense of (3.1). The detail spaces WΓ
l1

then consist exactly of the multivariate
Legendre polynomials corresponding to the indices in Λγ(l1) \ Λγ(l1 − 1), i.e.

WΓ
l1 = Π(Λ(l1) \ Λ(l1 − 1);V ) (3.18)

Further define the L2
ρ projection PΓ

l1
: L2

ρ(Γ) −→ V Γ
l1

by PΓ
l1

uM := uM,Λγ(l1) as
in (3.11). Then the following approximation properties hold.

Proposition 3.1. Let s > 1 be the decay rate of ψm(x) given by (2.29). If uM

solves (2.24) then for each 0 < r < s− 3
2 exists a constant C(r) such that for every

γ > 0 and for the sequence of projections PΓ
l1

corresponding to the index sets Λγ(l1)
in (3.16) it holds

‖uM − PΓ
l1uM‖L2

ρ(Γ;H1
0 (D)) ≤ C(r)(NΓ

l1 )
−r|uM |Ar(H1

0 (D)) (3.19)

where NΓ
l1

:= |Λγ(l1)| →∞ as l1 = 0, 1, 2, .... Since NΓ
l1

= 82γl19, we can express
(3.19) equivalently as

‖uM − PΓ
l1uM‖L2

ρ(Γ;H1
0 (D)) ≤ C(r)2−l1γr|uM |Ar(H1

0 (D)) (3.20)

Here, the constant C(r) is independent of M (see Appendix A for a proof).

Remark 3.2. To have r > 0 in (3.19) requires s > 3
2 in (2.29). Such a decay can

be expected, for example, if Ca ∈ Ht,t(D × D) with t > 4d as it can be easily
derived from Remark 2.6. In other words, the regularity of the 2-point correlation
Ca implies the range of possible rates r of best N -term approximations of uM .

Remark 3.3. Proposition 3.1 indicates only the existence and the convergence rate
r of a semidiscrete best-NΓ-term approximation. These approximations are not
constructive: the proof uses the (a-priori unknown) values of ‖uα‖H1

0 (D). However,
in Section 4 we will present a strategy based on the Karhunen-Loève eigenvalues of
the input data to a-priori locate sequences of sets Λγ(l1) that appear to be close to
the optimal sets in numerical experiments. Moreover, we will prove that the time
and memory used to find those sets is linear (up to logarithms) in the size of the
index sets.

3.3 Hierarchic Multilevel Approximation in D

As hierarchical basis for the spatial discretization in the physical domain D we
choose finite element wavelet bases. In the following we will briefly present a con-
struction of such finite element wavelet bases and recapitulate basic approximation
results. For a more detailed introduction into wavelets we refer to [11, 13]. The
construction presented here is based on [22] which, in principle, allows us to con-
struct wavelets on a regular simplicial triangulation of D ⊂ Rd. Here, we will treat
the case of d = 1 and d = 2 explicitly.

Let {Tl2}l2 be a nested sequence of regular simplicial triangulations of D and
denote by I(Tl2) the index set of vertices of the mesh Tl2 , denoted by C(Tl2), and
by Î(Tl2+1) the index set of vertices of the mesh Tl2+1 which do not belong to Tl2 .
We then define

V D
l2 := S1(D, Tl2) =

{

u ∈ H1
0 (D) : u|T ∈ P1(T ) for T ∈ Tl2

}

, (3.21)
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Figure 3.1: The function θi
l2

on the reference element [−1, 1]d for d = 1 (left) and
d = 2 (right)

i.e. the space of continuous piecewise linear functions on the triangulation Tl2 .
Clearly, the spaces V D

l2
are hierarchic in the sense of (3.2). Denote by φk

l2
(x),

k ∈ I(Tl2 ) the standard hat functions on the mesh Tl2 , i.e. the piecewise linear
polynomials with value 1 at the vertex k and zero at the other nodes. The scaling
functions on the level l2 = 0 are then defined as the hat functions on the coarsest
mesh T0, i.e. ψ0k = φk

0 and ∇0 = I(T0). The construction of wavelets on a higher
level l2 > 0 is based on the meshes Tl2 and Tl2−1. First, we construct a family of
functions θi

l2
(x) ∈ S1(D, Tl2), i ∈ I(Tl2−1) satisfying (θi

l2
, φk

l2−1)L2(D) + δik. Such
functions are given in d = 1 by

θi
l2(v) =







3 v = vi ∈ C(Tl2−1)
− 1

2 v ∈ C(Tl2) is neighbor of vi

0 any other v ∈ C(Tl2)
(3.22)

and in d = 2 by

θi
l2(v) =







14 v = vi ∈ C(Tl2−1)
−1 v ∈ C(Tl2) is neighbor of vi

0 any other v ∈ C(Tl2)
(3.23)

See Figure 3.3 for an example of such a θi
l2

in one and two dimensions.

The ensemble of functions {θi
l2

: i ∈ I(Tl2−1)} ∪ {φi
l2

: i ∈ Î(Tl2)} forms a L2-
Riesz basis of V D

l2
satisfying (θi

l2
, φk

l2−1)L2(D) = 0 if i 6= k. The wavelets on level l2
are then obtained by the formula

ψl2i(x) = φi
l2(x) −

∑

k∈I(Tl2−1)

(φi
l2

, φk
l2−1)L2(D)

(θk
l2

, φk
l2−1)L2(D)

θk
l2(x), i ∈ Î(Tl2) (3.24)

An example of such a wavelet on a triangular mesh in D ⊂ R2 can be seen in Figure
3.3

The functions ψl2i, i ∈ ∇l2 := Î(Tl2) form a uniform L2-Riesz basis for WD
l2

,

see [22], Proposition 3.2.10. Scaling the wavelets with a factor 2−l2 i.e. defining
ψ̃l2i(x) = 2−l2ψl2i(x) then form a Riesz basis for H1(D). In case of homogeneous
Dirichlet boundary conditions, the above construction can be modified as follows:
For vi ∈ C(Tl2), the corresponding φi

l2−1, φ
i
l2

and θi
l2

are excluded from the ensem-

bles and the resulting wavelets ψ̃l2j then form a uniform Riesz bases for H1
0 (D).
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Figure 3.2: A piecewise linear finite element wavelet on a triangular mesh in 2-d

Now define the H1
0 (D)-projection PD

l2
: L2(D) −→ V D

l2
. For functions u ∈

H1+t(D) t ∈ [0, 1] and l2 ≥ 0 the following approximation property is proved in
[22], Lemma 2.3.1:

‖u− PD
l2 u‖H1(D) ! 2−l2t‖u‖H1+t(D), t ∈ [0, 1] (3.25)

Noting that ND
l2

:= dim(V D
l2

) + 2l2d we then obtain the following convergence rates
with respect to the number of degrees of freedom:

‖u− PD
l2 u‖H1(D) ! (ND

l2 )−t/d‖u‖H1+t(D), t ∈ [0, 1]. (3.26)

3.4 Sparse Tensor Product Spaces

Having specified the subspace hierarchies {V Γ
& }&≥0 ⊂ L2

ρ(Γ) and {V D
& }&≥0 ⊂ H1

0 (D)
in (2.23) which admit splittings (3.3) and (3.4), we denote by

V Γ
L ⊗ V D

L =
⊕

0≤l1,l2≤L

WΓ
l1 ⊗WD

l2 ⊂ L2
ρ(Γ)⊗H1

0 (D) (3.27)

the (full) tensor product space of the finite dimensional component subspaces V D
L

and V Γ
L , respectively. Unlike earlier work, we analyze below the approximate so-

lution of the parametric deterministic problem (2.24) by Galerkin projection onto
sparse tensor product spaces defined by

V Γ
L ⊗̂V D

L :=
⊕

0≤l1+l2≤L

WΓ
l1 ⊗WD

l2 , (3.28)

see also Figure 3.6 for an illustration of V Γ
L ⊗̂V D

L in terms of the component detail
spaces. Every function u ∈ V Γ

L ⊗̂V D
L can therefore be decomposed as

u =
L
∑

l2=0

L−l2∑

l1=0

∑

k∈∇D
l2

∑

k′∈∇Γ
l1

dl1l2kk′ψΓ
l1k′ψD

l2k. (3.29)

3.5 Sparse Tensor sGFEM discretization

The stochastic Galerkin FEM discretization of the elliptic sPDE (1.2), based on its
deterministic, parametric reformulation (2.24), can be written as:
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Figure 3.3: Illustration of the sparse tensor product space V Γ
L ⊗̂V D

L

Find
ûM ∈ V Γ

L ⊗̂V D
L : bM (ûM , v) = l(v) ∀ v ∈ V Γ

L ⊗̂V D
L (3.30)

where bM (·, ·) and l(·) are given by (2.25) and (2.26), respectively. As a consequence
of (2.30), (2.31), if M is sufficiently large (3.30) defines, for every L ≥ 0, a unique
sGFEM approximation ûM ∈ V Γ

L ⊗̂V D
L which is a quasioptimal approximation in

L2
ρ(Γ;H1

0 (D)) of uM defined in (2.24):

‖uM − ûM‖L2
ρ(Γ;H1

0 (D)) ≤ C‖uM − v̂‖L2
ρ(Γ;H1

0 (D)) ∀v̂ ∈ V Γ
L ⊗̂V D

L . (3.31)

3.6 Complexity Estimate

In contrast to full tensor product discretizations, where the complexity of sGFEM
and sCFEM algorithms is O(NL

Γ NL
D), we will show log-linear complexity in either

NL
Γ or NL

D for the corresponding sparse tensor product Galerkin discretizations.

Lemma 3.4. Assume that the dimensions of the detail spaces WΓ
l1

and WD
l2

grow
exponentially with respect to the levels l1, l2, i.e. there exist two geometric sequences
bl1
Γ and bl2

D, l1, l2 = 1, 2, 3, ..., with bases bΓ and bD such that

dim(WΓ
l1 ) ∼ bl1

Γ and dim(WD
l2 ) ∼ bl2

D

Then the sparse tensor product space V Γ
L ⊗̂V D

L is of cardinality

dim(V Γ
L ⊗̂V D

L ) ∼ O(Lθ max(bΓ, bD)L+1) (3.32)
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where θ = 1 if bΓ = bD and zero otherwise.

Proof.

dim(V Γ
L ⊗̂V D

L ) ≤ c
L
∑

l1=0

L−l1∑

l2=0

bl1
Γ bl2

D ≤ c
L
∑

l1=0

bl1
Γ bL−l1+1

D (3.33)

In the case where bΓ = bD therefore have

dim(V Γ
L ⊗̂V D

L ) ≤ c
L
∑

l1=0

bL+1
Γ = c(L + 1)bL+1

Γ (3.34)

which leads to (3.32) with θ = 1. Now we assume w.l.o.g. bD > bΓ and it follows
from (3.33)

dim(V Γ
L ⊗̂V D

L ) ≤ c
L
∑

l1=0

bl1
Γ bL−l1+1

D

= cbL+1
D

L
∑

l1=0

bl1
Γ

(
bΓ

bD

)l2

= cbL+1
D

(bD/bΓ)L+1 − 1

(bD/bΓ)− 1

Since the denominator is positive it can be absorbed in the constant and we end up
with

dim(V Γ
L ⊗̂V D

L ) ≤ cbL+1
D (3.35)

This completes the proof.

3.7 Convergence rates of sparse tensor sGFEM

In Sections 3.2 and 3.3, convergence rates of the ‘polynomial chaos’ type stochastic
and the multilevel spatial discretizations of the model diffusion problem (1.2) on
Γ×D have been discussed.

In the present section, we prove algebraic convergence rates of the sparse sGFEM
discretization (3.30) of the parametric, deterministic formulation (2.24) of the sPDE
(1.2), under appropriate regularity hypotheses for the unknown random solution. To
obtain these convergence rate estimates for the sGFEM approximation ûM defined
in (3.30) of u, by (3.31) it remains to estimate the best-approximation error of uM

from the sparse tensor product space V Γ
L ⊗̂V D

L and to combine this bound with the
error introduced by truncation of the Karhunen-Loève series (2.32).

To this end, we define the sparse tensor product projection operator P̂L : L2
ρ(Γ)⊗

H1
0 (D) −→ V Γ

L ⊗̂V D
L by

(P̂Lv)(y,x) :=
∑

0≤l1+l2≤L

(

PΓ
l1 − PΓ

l1−1

)

⊗
(

PD
l2 − PD

l2−1

)

v(y,x) (3.36)

The error of the sparse sGFEM approximation can be decomposed into the error
stemming from truncating the KL-expansion and from the additional discretization
error resulting from approximation of the gpc coefficient uα on V Γ

L ⊗̂V D
L rather than

on L2
ρ(Γ)⊗H1

0 (D).
To simplify notation we denote by ‖ · ‖ the norm taken w.r.t. L2

ρ(Γ;H1
0 (D))

unless otherwise indicated. Denoting by u the solution to the original problem
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(1.2), by uM the solution to the truncated problem (2.24) and by ûM the discrete
solution to (3.30) we have, by the triangle inequality,

‖u− ûM‖
︸ ︷︷ ︸

e

≤ ‖u− uM‖
︸ ︷︷ ︸

eM

+ ‖uM − P̂LuM‖
︸ ︷︷ ︸

êL

. (3.37)

To estimate the discretization error êL we start from the definition of P̂L in (3.36)
and write

‖v − P̂Lv‖ ≤ ‖
L
∑

l1=0

∞
∑

l2=L−l1+1

(

PΓ
l1 − PΓ

l1−1

)

⊗
(

PD
l2 − PD

l2−1

)

v‖

+‖
∞
∑

l1=L+1

∞
∑

l2=0

(

PΓ
l1 − PΓ

l1−1

)

⊗
(

PD
l2 − PD

l2−1

)

v‖

= ‖
L
∑

l1=0

(

PΓ
l1 − Id + Id− PΓ

l1−1

)

⊗
(

Id− PD
L−l1+1

)

v‖

+‖
(

Id− PΓ
L

)

⊗ (Id) v‖

≤
L
∑

l1=0

(

‖
(

Id− PΓ
l1

)

⊗
(

Id− PD
L−l1+1

)

v‖

+ ‖
(

Id− PΓ
l1−1

)

⊗
(

Id− PD
L−l1+1

)

v‖
)

+ C(r)2−Lγr‖v‖Ar(H1+t(D))

≤ (C(r, t)L2−L min(γr,t) + C(r)2−Lγr)‖v‖Ar(H1+t(D))

Note that we used the approximation results (3.20) and (3.25) in the last two lines
of the estimates above. We equilibrate the two error bounds by choosing

γ :=
t

r
(3.38)

and we obtain for the error êL the estimate

êL = ‖uM − P̂LuM‖L2
ρ(Γ,H1

0 (D)) ≤ C(r, t)L2−Lt‖uM‖Ar(H1+t(D)) (3.39)

with a constant possibly depending on the stochastic approximation rate r.
It remains to estimate the Karhunen-Loève -truncation error eM and to choose

M s.t. eM ∼ êL.
Due to the orthonormality of the eigenfunctions in (2.11) we have that

e2
M =

∑

m>M

λm !
∑

m>M

m−s ≤
∫ ∞

M
x−s = sM−(s−1) (3.40)

Hence choosing M ∼ L−2/(s−1)22Lt/(s−1) leads to

‖u− ûM‖L2
ρ(Γ;H1

0 (D)) ≤ C(t)L2−Lt‖uM‖Ar((H1
0∩H1+t)(D)) (3.41)

Since the cardinality of the detail spaces WΓ
l1

, WD
l2

both satisfy the assumptions
of Lemma 3.4 we arrive at our main result on convergence rates for the sGFEM
discretization of sPDEs.

Proposition 3.5. Let the solution u to the model problem (1.2) satisfy

u ∈ Ar((H
1+t ∩H1

0 )(D)) forsome 0 < r < s− 3

2
, 0 < t ≤ 1 (3.42)
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with s > 3
2 as in (2.28). Let ûM denote the sGFEM solution to the problem (3.30)

with the sparse tensor product spaces sequence V Γ
L ⊗̂V D

L , defined in (3.28) with the
sequence V Γ

& in (3.1) given by (3.17) with the index sets (3.16).
Then there exists a constant c1 > 0, independent of M and L, such that by

choosing M = 8c1L−1/(s−1)2Lt/(s−1)9 we have

‖u− ûM‖L2
ρ(Γ;H1

0 (D)) ≤ C(β)L1+β(N̂L)−β‖u‖Ar(H1+t(D)) (3.43)

where N̂L := dim(V Γ
L ⊗̂V D

L ) and β = min(r, t/d).

Remark 3.6 (Higher order elements). So far we only considered linear finite element
wavelets in D, i.e. p = 1. Considering, more generally, elements of order p ≥ 1
results in convergence rates

‖u− ûM‖L2
ρ(Γ;H1

0 (D)) ! L1+β(N̂L)−β‖u‖Ar(Ht+1(D)) (3.44)

with β = min(r, t/d) if

u ∈ Ar((H
1+t ∩H1

0 )(D)) for some 0 < r < s− 3

2
, 0 < t ≤ p

We see from this that by choosing p = 8rd9 we can obtain the maximum possible
rate r.

Remark 3.7 (full tensor product). The main motivation for using the sparse tensor
product (3.28) between hierarchic sequences of spatial and stochastic discretization
spaces lies in the reduction of degrees of freedom to O(Lθ max(dim(V Γ

L ), dim(V D
L )),

shown in Lemma 3.4, as opposed to O(dim(V Γ
L )·dim(V D

L )) in a full tensor approach.
Using the approximation results (3.20) and (3.25) one can easily derive the full
tensor convergence rates

‖u− PD
L ⊗ PΓ

Lu‖ ! (NL)−β̄‖u‖Ar((H1
0∩Hp+1)(D)) (3.45)

with β̄ = (d/p + 1/r)−1 and where PD
L and PΓ

L denote the L2 projections onto the
spatial and stochastic discretization spaces, respectively, as described in Subsections
3.2 and 3.3. A proof of the regularity (3.42) for p = 1 is given in [10].

4 Localization of gPC modes

In the present section, we address an implementation of the sparse tensor sGFEM
discretization of (2.1).

It is based on the observation, proved in Appendix A, that the decay of the
KL-coefficients of the input random field determines the decay of the coefficients
uα in the expansion (3.10) of the random solution which are to be computed ap-
proximately in the sGFEM. Specifically, we use (cf. (A.15), (A.8) in Appendix A)
that for any α ∈ NN

c it holds

‖uα‖H ! η−α :=
∏

m≥1

η−αm
m , ηm = rm +

√

1 + r2
m, rm =

a∗
min

C(δ)‖ψm‖L∞(D)m1+δ

(4.1)
where ψm is defined in (2.27) being the spatial basis functions in the KL-expansion
of a. In particular it follows from (4.1) that η−1

m ! ‖ψm‖L∞m1+δ and further
by Remark 2.6 that η−1

m ! m−s+(1+δ). In order to obtain a viable algorithm,
efficient identification of quasi-optimal index sets V Γ

l1
of “active” gpc-coefficients

of possibly minimal cardinality is necessary. To this end we present an algorithm
which identifies those “active” gpc-coefficients uα based on the sequence of upper
bounds {‖ψm‖L∞}m≥1. We start by introducing some notation.
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Definition 4.1. Let c0 be the collection of strictly decreasing sequences of positive
real numbers bounded above by one and tending to zero:

c0 = {µ = (µ1, µ2, . . .) ∈ R
N
+ | lim

m→∞
µm = 0 and 1 > µ1 ≥ µ2 ≥ . . .}. (4.2)

By NN
0 denote the set of sequences of nonnegative integers “with compact support”,

i.e. all sequences, for which only a finite number of terms are different from zero. As
before, for µ ∈ c0 and α ∈ NN

c , we denote by µα = µα1

1 µα2

2 .... Note that the product
is well-defined due to α ∈ NN

c having only a finite number of nonzero elements. For
any threshold ε > 0 and any µ ∈ c0, we define

Λε(µ) = {α ∈ N
N
c | µα ≥ ε} ⊂ N

N
c (4.3)

and

Mε(µ) =

{

0, if Λε(µ) = ∅
maxm∈N{µm ≥ ε}, else

(4.4)

which is finite for any µ ∈ c0 and any ε > 0.
By 0 we denote both, the real number zero and the sequence (0, 0, 0, ...) and we

use the convention 00 = 1. For α ∈ NN
c the support of α is the set where its non-zero

indices are located, and nnz(α) the (finite) number of nonzero entries:

supp(α) = {m ∈ N | αm 6= 0}, nnz(α) = |supp(α)|. (4.5)

In the algorithm for the location of sets Λ ⊂ NN
c of “active” indices and the

derivation of asymptotic convergence rates of the sparse tensor product approxima-
tions, the following monotonicity properties of the index sets Λε(µ) will be crucial.

Definition 4.2. Let µ, µ̄ ∈ c0. We write

µ < µ̄ ⇐⇒ µm ≤ µ̄m ∀m ∈ N.

For µ ∈ c0 and any pair α, ᾱ ∈ Λε(µ) we write

α ≤µ ᾱ ⇐⇒ µα ≤ µᾱ.

Remark 4.3. The relation ≤µ is a total quasi-order on Λε(µ), i.e, it is transitive,
reflexive and any two multiindices are comparable. The elements of Λε(µ) can
therefore be quasi-sorted according to ≤µ, albeit not in a unique fashion.

We now make precise the monotonicity properties of the sets Λε(µ).

Lemma 4.4. For any µ, µ̄ ∈ c0 and any ε̄, ε > 0 the following properties hold:

a) Mε(µ) ≤ |Λε(µ)| < ∞

b) ∀α ∈ Λε(µ) : supp(α) ⊂ {1, 2, . . . , Mε(µ)}

c) ε̄ ≥ ε implies Λε̄(µ) ⊆ Λε(µ)

d) µ < µ̄ implies Λε(µ) ⊆ Λε(µ̄).

Proof. Assume ε̄ ≥ ε > 0 and µ, µ̄ ∈ c0 with µ < µ̄. With

M = Mε(µ) < ∞ and N = max
n∈N0

{µn
1 ≥ ε} < ∞

we have M ≤ |Λε(µ)| ≤ (N+1)M <∞. The second property is a direct consequence
of the definition of Mε(µ). Further, for α ∈ Λε̄(µ) it holds

µα =
∏

m∈N

µαm
m ≥ ε̄ ≥ ε
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and hence, α ∈ Λε(µ). Similarly,

µ̄α =
∏

m∈N

µ̄αm
m ≥

∏

m∈N

µαm
m ≥ ε

and hence, α ∈ Λε(µ̄).

We exploit the monotonicity properties of the sets Λε(µ) in conjunction with
the following sequence νσ ∈ c0 which exemplifies Karhunen-Loève eigenvalue decay
(2.9) of order σ > 0:

νσ = {(m + 1)−σ|m = 1, 2, 3, ...} (4.6)

For νσ, sharp asymptotics on the cardinality of the index sets Λε(νσ) as ε → 0 follow
from results on integer factorization in number theory:

Proposition 4.5. Let σ > 0 and νσ ∈ c0 be given by (4.6). Then, as ε → 0,

|Λε(νσ)| ∼ x
e2

√
log x

2
√

π(log x)3/4
with x = ε−1/σ. (4.7)

In particular, for any sequence µ satisfying µ < νσ the sequence µα := µα1

1 µα2

2 ...
satisfies {µα}α∈NN

c
∈ 5τ

w for any τ < 1/σ.

Proof. First we observe that

∀ε > 0, σ > 0 : Λε(νσ) = Λε1/σ(ν1). (4.8)

Let f(n) denote the number of multiplicative partitions of n ∈ N modulo the order
of factors, e.g., f(12) = 4, since 12 = 1 ·12 = 2 ·4 = 3 ·4 = 2 ·2 ·3. Sharp asymptotics
of the quantity

FΣ(x) :=
∑

n≤x

f(n)

as x →∞ were found by Oppenheim [25] and Szekeres and Turan [32] (see also [9])
who proved

FΣ(x) = F (x) (1 + O (1/ logx)) with F (x) = x
e2

√
log x

2
√

π(log x)3/4
as x →∞.

Let now ε > 0 be so small that Λε(ν1) \ {0} 6= ∅. Then

∃0 6= α ∈ Λε(ν1) :
∏

m∈N

(m + 1)αm ≤ 1/ε

and since the product is an integer, the multiindex α represents a multiplicative
partition of some integer x ≤ 1/ε. On the other hand, any multiplicative partition
of some integer x ≤ 1/ε yields a multiindex α ∈ NN

0 such that
∏

m∈N
(m + 1)αm = x

and thus να
1 = 1/x ≥ ε. Hence, |Λε(ν1)| = FΣ(1/ε) ∼ F (1/ε). By (4.8), we have

|Λε(νσ)| = |Λε1/σ(ν1)| ∼ F (ε−1/σ) for ε → 0

which implies (4.7).
Finally, to show that for µ < νσ the sequence {µα}α∈NN

c
belongs to 5τ

w for any

τ < 1/σ, we use that a sequence x ∈ 5τ
w iff x∗

n ! n−1/τ (where (x∗
n)n denotes the

decreasing rearrangement of (xn)n). This is equivalent to the existence of a constant
c > 0 such that for all ε > 0 it holds that #{n : |xn| > ε} ≤ cτ ε−τ (cf. e.g. [16],
(4.23)). By (4.7), the assertion {να

σ }α∈NN
c
∈ 5τ

w for any τ < 1/σ follows. The proof
is complete since {µα}α∈NN

c
is dominated by {(νσ)α}α∈NN

c
(cf. Lemma 4.4, part d)).
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Figure 4.1: Cardinality |Λε(ν1)| as function of ε.

The asymptotic result (4.7) is sharp already for thresholds ε as large as 10−2 as
is evident from Fig. 4.1.

The following lemma will be useful to bound the number of non-zero entries in
α ∈ Λε(µ) for particular sequences µ.

Lemma 4.6. For any fixed σ > 0 there holds

(M + 1)σ = o (8σ log M9!) as M →∞.

Proof. For σ > 0 we have as n = 8σ log M9 → ∞ by Stirling’s formula

8σ log M9! = n! ≈
√

2πn
(n

e

)n
. (4.9)

Hence

lim
M→∞

(M + 1)σ

8σ log M9!
≤ lim

M→∞

eσ log (M+1)

en log n−n
≤ lim

M→∞

e3n

en log n
= 0. (4.10)

Next, we introduce a class of sequences µ with qualitatively the same algebraic
decay as νσ, which will allow us to derive complexity bounds on the set Λε(µ).

Definition 4.7. Let c = (c1, c2) and σ = (σ1, σ2) ∈ R2
+. A sequence µ ∈ c0 is

(c, σ)-algebraic, if

0 < c1m
−σ1 ≤ µm ≤ c2m

−σ2 ∀m ∈ N0.

In particular, the sequence νσ in (4.6) is (c, (σ, σ))-algebraic for σ > 0.

Lemma 4.8. Let µ ∈ c0 be (c, σ)-algebraic. Then there exists a C > 0 independent
of ε such that for all ε > 0

0 6= α ∈ Λε(µ) =⇒ nnz(α) ≤ C log Mε(µ).

Proof. First note that Mε(µ) > 0 if and only if Λε(µ) /∈ {∅, {0}}. Secondly, Mε(µ)
is monotonically increasing in ε given µ ∈ c0 and furthermore

Mε(µ) →∞ ⇐⇒ ε→ 0
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as µ is a monotone null sequence. By assumption, µ satisfies

c1m
−σ1 ≤ µm ≤ c2m

−σ2 ∀m ∈ N0

with some fixed c1, c2 > 0 and σ1 ≥ σ2 > 0. This implies

ε > µMε(µ)+1 ≥ c1(Mε(µ) + 1)−σ1 .

Further, as µ is strictly decreasing with µ1 < 1, we may choose c2 = 1, possibly

with a decreased σ2. Suppose now nnz(α) ≥
(

1 + σ1

σ2

)

log Mε(µ) for some α ∈ NN
0 .

Then, using Lemma 4.6,

µα ≤ (8nnz(α)9!)−σ2 ≤
(⌈(

1 +
σ1

σ2

)

log Mε(µ)

⌉

!

)−σ2

= o

(
(

(Mε(µ) + 1)1+
σ1
σ2

)−σ2

)

= o

(
1

c1
(Mε(µ) + 1)−σ2(c1(Mε(µ) + 1)−σ1)

)

= o

(
1

c1
(Mε(µ) + 1)−σ2ε

)

as M →∞.

With
1

c1
(Mε(µ) + 1)−σ2 → 0 as ε→ 0

we have shown that there exists ε0 > 0 such that for all positive ε ≤ ε0 it holds

nnz(α) ≥
(

1 +
σ1

σ2

)

log Mε(µ) =⇒ µα < ε

and hence

0 6= α ∈ Λε(µ) =⇒ nnz(α) ≤
(

1 +
σ1

σ2

)

log Mε(µ).

To complete the proof, define C as

C = 1 +
σ1

σ2
+ sup

ε>ε0
max

0/=α∈Λε(µ)

nnz(α)

log Mε(µ)
.

Note that the supremum is taken over a finite number of quantities, since there
exist only a finite number of distinct sets Λε(µ) with ε > ε0 > 0.

Corollary 4.9. Let µ ∈ c0 be (c, σ)-algebraic. Then there exists a constant C > 0
such that

max
α∈Λε(µ)

nnz(α) ≤ C log |Λε(µ)|

for any ε > 0 with Λε(µ) 6= ∅.

Proof. Suppose µ ∈ c0 is (c, σ)-algebraic. With Lemma 4.8 and Lemma 4.4 we note
that for ε > 0 and 0 6= α ∈ Λε(µ) there holds

nnz(α) ! log Mε(µ) ≤ log |Λε(µ)|.

Definition 4.10. A one-parameter family {Λε}ε>0 of sets Λε of finite cardinality is
of log-linear complexity w.r.t. ε if there exist constants C > 0 and k > 0 independent
of ε such that ∀ε > 0 the set Λε can be constructed with the computational effort
(e.g., time and memory) bounded above by

C|Λε| logk |Λε|.
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Further analysis shall be based on

Assumption 4.11 (On the memory model). We assume that one memory
location is able to store one real number of finite but sufficient precision. Further we
assume the performance of data structures linked list, and sorted set in accordance
with the C++98 standard (see [30]).

Lemma 4.12. For any given (c, σ)-algebraic sequence µ ∈ c0 the index set Λε(µ)
is of log-linear complexity w.r.t. ε.

Proof. The sets Λε(µ) are indeed of log-linear complexity w.r.t. ε in terms of mem-
ory: each index α ∈ Λε(µ) can be stored in the sparse format

sparse(α, µα) ≡ ({(m, αm)|αm 6= 0}, µα) (4.11)

as a sorted set of pairs (ordered by the first component) together with a real number.
This format requires about (1 + 2 · nnz(α)) + 1 memory locations, but essentially
linear in nnz(α). By Corollary 4.9, the total number of memory locations which are
required to store the set Λε(µ) is bounded by C|Λε(µ)| log |Λε(µ)| where C > 0 is
independent of ε.

For δ > 0 consider now the set

Λ0
δ(µ) = {α ∈ Λδ(µ) | α1 = 0}.

Observe that

Λε(µ) =
N
⋃

n=0

(

(n, 0, 0, . . .) + Λ0
ε/µn

1

)

where N = maxn∈N0
{µn

1 ≥ ε}. This suggests the following algorithm.

Algorithm 4.13. Given ε > 0, µ ∈ c0, set α0 = (0, 0, . . .).

• Set Λ← {sparse(α0, 1)} ∪ enumerate(α0, 0, 1)

• Function enumerate(α, m, εα) with local variables α, m and εα returns a set
λ ⊂ Λε(µ)

– Let λ = ∅
– If µmεα < ε return λ

– For n = 0, 1, . . .

∗ Set λ ← λ ∪ enumerate(α, m + 1, εα)

∗ Set αm ← αm + 1 and εα ← µmεα

∗ If εα < ε return λ

∗ Set λ ← λ ∪ {sparse(α, εα)}

• Return Λε(µ) = Λ

In Algorithm 4.13, the function enumerate is called either right before or right
after the set λ is increased. Hence, the number of calls is bounded by 2|Λε(µ)|. At
each call

• the local variable α is created by duplication. By Corollary 4.9, this step
requires O (log |Λε(µ)|) operations.

• the set λ is increased at most twice. By assumption 4.11 we can store λ as a
linked list of pointers hence requiring a constant effort for this operation.

In total, the computational effort is therefore bounded byO (|Λε(µ)| log |Λε(µ)|).
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For 1 ≥ ε > 0 and an integer 5, let a sequence

1 ≡ ε−1 ≥ ε0 ≥ ε1 ≥ . . . ≥ ε& = ε > 0

be given. With these values we associate a sequence of multiindex sets

∅ = Λε0(µ) ⊂ Λε1(µ) ⊂ . . . ⊂ Λε&(µ)

where the nestedness follows from Lemma 4.4, iii). This sequence yields the follow-
ing partition of Λε(µ) into 5 + 1 sets:

Λε(µ) =
(

Λε&(µ)\Λε&−1
(µ)

)

∪̇
(

Λε&−1
(µ)\Λε&−2

(µ)
)

∪̇ . . . ∪̇
(

Λε0(µ)\Λε−1
(µ)

)

.
(4.12)

Lemma 4.14. Let µ ∈ c0 be (c, σ)-algebraic for some σ > 0. Given a finite sequence
of threshold parameters

1 ≡ ε−1 ≥ ε0 ≥ ε1 ≥ . . . ≥ ε& = ε > 0

such that
Λεk(µ)\Λεk−1

(µ) 6= ∅ k = 0, 1, ..., 5,

the corresponding disjoint partition (4.12) can be constructed with computational
effort bounded above by

C|Λε(µ)| log |Λε(µ)|

with C independent of ε.

Remark 4.15. Note that from any sequence of threshold parameters {ek > 0}k≥0

accumulating at zero we can extract a subsequence satisfying the above assumptions.

Proof. As shown in the previous lemma, Λε(µ) is of log-linear complexity w.r.t.
ε when the indices are stored in the SPARSE format which we assume in what
follows. The set Λε(µ) can then be quasi-sorted w.r.t. the quasi-ordering ≤µ (cf.
Remark 4.3) using at most

Csort|Λε(µ)| log |Λε(µ)|

comparison operations using, e.g., the merge-sort algorithm [12]. Each comparison
between two multiindices α1, α2 ∈ Λε(µ) involves the computation of µα1 and µα2 ,
which are, however, already provided by the SPARSE format in constant time.
Denote now

{α1 ≤µ α2 ≤µ . . . ≤µ α|Λε(µ)|} = Λε(µ).

Note that while the ordering within each
(

Λεk(µ)\Λεk−1
(µ)

)

may be ambiguous, the
following holds for 5 ≥ m > n ≥ 0:

α ∈ Λεm(µ), β ∈ Λεn(µ) ⇒ ¬(β ≤µ α)

which is a paraphrase of (iii), Lemma 4.4. The disjoint partition (4.12) is computed
by iteration over the sorted set by

Algorithm 4.16. Let k = 5. For each α = α1, α2, . . . , α|Λε(µ)|:

• if µα ≥ εk−1, set k ← k − 1

• append α to the linked list Λεk(µ)\Λεk−1
(µ).
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Given Assumption 4.11, Algorithm 4.16 admits the computational complexity
bound

Cpart|Λε(µ)| log |Λε(µ)|.

Thus the claim follows with essentially C = Csort + Cpart.

Remark 4.17. Algorithms 4.13 and 4.16 are exemplary. Depending on further usage
of the multiindex set Λε(µ), data structures may be adapted. E.g.:

• to each computed multiindex α we may assign the level 5 such that α ∈
Λε&(µ)\Λε&−1

(µ).

• instead of linked lists we may use sorted sets, allowing fast access without
changing the overall complexity significantly.

5 Implementation and numerical examples

This section summarizes the sGFEM algorithm and provides numerical examples.
The sGFEM algorithm may be outlined as

1. Given the mean field Ea(x) and the covariance Ca(x,x′), compute the eigen-
pairs (λ, ϕ) of the Karhunen-Loève representation of the random field a up to
order M ,

2. Given a maximum level L, compute for each 0 ≤ l2 ≤ L, the respective
deterministic stiffness matrices.

3. Choose a threshold sequence {εl1}L
l1=0 such that Λεl1

(µ) ∼ 2γl1, where µ ∈ c0

is a suitably chosen sequence and γ > 0.

4. Compute the index sets Λεl1
(µ) by Algorithm 4.13 and generate the corre-

sponding stochastic moment matrices (see Sect. 5.4 below).

5. sGFEM: discretize (3.30) in the sparse tensor product spaces V Γ
L ⊗̂V D

L . Solve
the resulting system by a (preconditioned) CG algorithm.

6. Postprocessing: derive the response statistics from the computed sGFEM
solution.

These issues are addressed in more detail below.

5.1 Karhunen-Loève eigenpairs

The Karhunen-Loève eigenpairs (see Sect. 2.3) can be computed by standard finite
element methods. In this paper we only consider analytically known Karhunen-
Loève expansions and their tensorized versions.

Example 5.1. Let D = (−1, 1), Ea(x) = 5 + x, Ca(x, x′) = min{x,x′}+1
2 ∈ H1,1(D ×

D). It is straight forward to verify that λ̃m = 8
π2(2m−1)2 , fm(x) = sin((x +

1)/
√

2λ̃m) are the corresponding Karhunen-Loève eigenpairs, m ≥ 1. Note the
algebraic decay with rate 2.
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5.2 Wavelet basis

The construction of wavelets has already been presented in Sect. 3.3. We will
employ two different strategies to incorporate multilevel spatial discretization into
the solution process. First one is to assemble the FEM stiffness matrix directly in
the wavelet basis. We will do so in Example 5.9, using the wavelets from Sect. 3.3 on
a uniform grid. Second one is to assemble the stiffness matrix w.r.t. the hat function
basis and apply a preconditioned CG algorithm to the resulting system, where the
inverse wavelet transform (and its adjoint) act as the preconditioner. This approach
is described in greater detail in [3] for our case of two spatial dimensions. Both lead
to a well-conditioned linear system of equations (see [7]).

5.3 Threshold sequence

Based on Corollary A.4 and Assumption 2.5 we propose to choose µm ∝ (1+m)−t in
Algorithm 4.13, where t ∈ (0, s−1). In consequence, the multiindices α ∈ Λε(µ) will
be a superset of the multiindices corresponding to the largest Legendre coefficients
uα in the H1

0 (D)-norm by (iv), Lemma 4.4. Moreover, since (4.7) is a one to one
correspondence of the size of the index set #Λε(µ) and ε for sufficiently small ε, we
can efficiently choose the sequence {εn}n≥1 such that #Λεn(µ) ∼ 2γn, see (3.17).

5.4 Stochastic moment matrices

The variational formulation (2.24) reduces to the linear system of equations of the
form

(A0⊗̂G0 +
∑

m≥1

Am⊗̂Gm)u = l.

For details we refer to [7]. While the matrices {Am}m≥0 can be computed by
standard FEM techniques, the stochastic moment matrices {Gm}m≥1 exhibit a
non-trivial sparsity pattern. We note that G0 is diagonal and

(Gm)αβ =

∫

Γ

√

λmymLM,α(y)LM,β(y)ρ(y)dy

where α, β ∈ Λγ(L) are two multiindices. Hence,
∑

m≥0(Gm)αβ is non-zero if and
only if α and β differ by one in exactly one location, i.e., there holds |αm−βm| = δmn

for some n ∈ N.

Definition 5.2. Let α and β be two multiindices. We call α and β neighbors if
there exists n ∈ N such that |αm − βm| = δmn for all m ∈ N.

Algorithm 4.13 can be easily extended to compute such neighborhood relations
in an efficient manner, with the help of the following observations.

Lemma 5.3. Let ε > 0 and µ ∈ c0. Further, let α, β ∈ Λε(µ) be two neighboring
multiindices, with αn + 1 = βn for some n ∈ N. Every β̂ ∈ Λ satisfying

m ≤ n ⇒ β̂m = βm

has a neighbor α̂ ∈ Λε(µ) with α̂n + 1 = β̂n.

Proof. Since µn < 1 by definition of µ, µβ̂ ≥ ε implies µα̂ ≥ ε, where α̂ is as
above.

Algorithm 4.13 also suggests the following terminology.
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Definition 5.4. Let α and β be two multiindices. α is called parent of β and β is
called child of α if there exists n ∈ N such that

αm = βm for all m < n, αn < βn and αm = 0 for all m > n.

If β is a child of α, it can only be derived from α by Algorithm 4.13 through
a sequence of modifications of the type αm ← αm + 1 of α and its children. Con-
versely, each such modification performed by Algorithm 4.13 identifies the original
multiindex as a parent.

Lemma 5.5. Let ε > 0, µ ∈ c0 and α, β ∈ Λε(µ) be neighbors with |αm−βm| = δmn

for some n ∈ N. Suppose α is parent of β. Any child β̂ ∈ Λε(µ) of β has exactly
one neighbor α̂ ∈ Λε(µ) among the children of α which are not children of β.

Proof. Uniqueness follows from the restriction that α̂ may not be a child of β and
thus already differs from β̂ in the n-th position. Existence is a direct consequence
of Lemma 5.3.

Lemma 5.6. Let ε > 0, µ ∈ c0 be given. If α̂ ∈ Λε(µ) and β̂ ∈ Λε(µ) are neighbors
(without loss of generality α̂n < β̂n) then there exist multiindices α ∈ Λε(µ), parent
of α̂ and β ∈ Λε(µ), parent of β̂ satisfying the assumptions of the previous lemma.

Proof. Set

αm =

{

α̂m, m ≤ n,

0, else

and similarly for β. Note that αm is the last common parent of α̂ and β̂ (i.e., does
not have any child which is parent to α̂ and β̂).

Lemma 5.6 implies that any neighboring relation, say between α̂ ∈ Λε(µ) and
β̂ ∈ Λε(µ), is easily computable. Whenever the step αm ← αm + 1 of Algorithm
4.13 is executed, all the children of the new multiindex α′ need to be associated
with some of the children of the old multiindex (which are not children of α′). This
is conveniently done using a tree structure to record the parenthood relations to
subsequently traverse the tree as in Lemma 5.5. The neighborhood relations of a
multiindex α may be stored as a list of identifiers, e.g., pointers to the neighboring
multiindices. It is easy to see that the computational complexity (time and memory
requirements) of the neighborhood relations is linear in their count.

Remark 5.7. The ease with which the neighborhood relations may be computed for
Λε(µ) is crucially a consequence of Lemma 5.3. For more general multiindex sets,
e.g., in the context of adaptivity, this construction fails.

Having the neighborhood relations at hand, it is easy to traverse and if necessary
build the stochastic stiffness matrices {Gm}m≥1 in linear time.

5.5 Convergence rate estimation

The extrapolated estimated order of convergence is based on the fact that the
Galerkin solution is an orthogonal projection in the L2(H1) norm. Thus for the
purpose of the estimating the order of convergence we assume

‖u‖2L2
ρ(H1

0 ) − ‖uM‖2L2
ρ(H1

0 ) ∼ (dim(V Γ
L ⊗ V D

L )−α)2

for the full tensor product and

‖u‖2L2
ρ(H1

0 ) − ‖ûM‖2L2
ρ(H1

0 ) ∼ (dim(V Γ
L ⊗̂V D

L )−β)2
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for the sparse tensor product. Assuming equality up to a multiplicative constant, the
three unknown quantities, i.e. the constant, the norm ‖u‖2L2(H1) of the (unknown)
exact solution and the order of convergence, are fit using three consecutive data
points.

5.6 Examples

Example 5.8. Let D = (0, 1)2 be the unit square. The sequence {ϕm}m≥1 is chosen
as the tensor product of the sequence from Example 5.1 ordered by magnitude of
the resulting eigenvalues {λ̃}m≥1. The eigenvalues λm are chosen as λm = λ̃θ

m with
θ = 2.5, hence the decay of {λm}m≥1 and of {‖ψm‖L∞(D)}m≥1 is algebraic with
rate s = 5, see Remark 2.6.

This implies the stochastic rate r = 1 and thus γ = 1
2 , see Sect. 3.7. The

expected value Ea(x) is assumed to equal Ea(x) = x + 5 and we set amin = 4. The
right hand side is f ≡ 1.

In order to construct the index set Λεn(µ), based on (4.1), we choose µm =
(rm +

√

1 + r2
m)−1 where rm := a∗

min/(m
√

λm).
The reference solution consists of |V Γ

L ⊗ V D
L | = 6′594′624 degrees of freedom

in the full tensor case, while |V Γ
L ⊗̂V D

L | = 155′424 in the sparse tensor case, where
L = 6, see Table 5.1.

The relative residual tolerance for the conjugate gradientmethods is set to 10−10.
In both cases the conjugate gradient algorithm requires about 125 steps to converge
on the finest level.

As shown in Fig. 5.1, there appears to be no significant loss in accuracy due to
the usage of the sparse tensor approximation in place of the full tensor approxima-
tion, while the total number of degrees of freedom, dim(V Γ

L ⊗̂V D
L ), is substantially

smaller than dim(V Γ
L ⊗V D

L ). For comparison purposes, we also give the rate of con-
vergence of the Monte Carlo Method in terms of the “number of degrees of freedom”
(interpreted as number of MC samples times the number of FE degrees of freedom);
the higher efficiency of the sparse deterministic-stochastic tensor Galerkin FEM is
evident.

Sparse tensorization is therefore an essential tool to reduce the total number of
degrees of freedom in order to handle random input data with slowly convergent
Karhunen-Loève expansions efficiently.

In Fig. 5.1 we also show the expected Monte Carlo error as discussed in Sect.
5.7.

5 0 1 2 3 4 5 6 Total
|WΓ

& | 1 1 2 3 7 15 31 64
|WD

& | 36 85 320 1240 4880 19360 77120 103041

Table 5.1: Degrees of freedom in the detail spaces used in the computation of the
reference solution for Example 5.8.

Example 5.9. Let D = (−1, 1). Let the Karhunen-Loève eigenpairs be given by
λm = (m + 1)−σ, σ = 2.2 and ϕm(x) = fm(x) from Example 5.1. The load is
assumed to be f(x) = exp(x) and the mean diffusion coefficient Ea(x) = amin +
1 + sin(πx) with amin = 10. We set Λ(n) = Λεn(µ) with the underlying sequence
µm =

√
λm/amin with εn such that |Λ(n)| = 82γn9, γ = 3.5 for 0 ≤ n ≤ L. The

maximal number of levels is L = 6. In Table 5.2 the resulting number of degrees of
freedom is listed. The solution for L = 6 has 1838 degrees of freedom in Γ which are
distributed among M = 1594 dimensions. The relative residual tolerance for the
conjugate gradient methods is set to 10−11, requiring less than 50 steps to converge.
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Figure 5.1: The performance of the sparse tensor approximation vs. the full tensor
approximation in terms of the total number of degrees of freedom for Example 5.8.
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Figure 5.2: The response statistics for Example 5.8: mean and variance.
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Figure 5.3: Convergence of the sparse tensor approximation in terms of the total
number of degrees of freedom for Example 5.9.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

’mean.dat’ u 1:2

 0

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 9e-07

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

’variance.dat’ u 1:2

Figure 5.4: The response statistics for Example 5.9: mean and variance.

The total computation time is less than 15 min. on a laptop with 1.7GHz CPU and
2GB RAM.

Remark 5.10. The Karhunen-Loève eigenfunctions in this example are highly oscil-
latory compared to the mesh width. This requires an accurate integration routine
to compute the deterministic stiffness matrices. In this case we use the adaptive
7+8 Gauss-Kronrod quadrature (see [18]) on each element with relative tolerance
of 10−10.

Remark 5.11. The Karhunen-Loève eigenvalue decay rate of σ = 2.2 with normed
eigenfunctions ‖ϕm‖L∞(D) = 1 entails s ≤ 1.1 in 2.28. As the assumptions of
Proposition 3.1 and Proposition 3.5 do not hold in this case, no choice for γ is
suggested by these propositions. The value γ = 3.5 which we chose in (3.16) and
in Proposition 3.1 is an empirical one, chosen such that stable convergence was
observed in the numerical experiments.

The convergence plots are shown in Fig. 5.3. The computed response statistics
are displayed in Fig. 5.4.

5 0 1 2 3 4 5 6 Total
|WΓ

& | 1 2 9 30 108 375 1313 1838
|WD

& | 3 2 4 8 16 32 64 129

Table 5.2: Degrees of freedom of the reference solution for Example 5.9.
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5.7 Discussion

We have presented and analyzed a new class of sparse tensor discretizations for
elliptic PDEs with stochastic coefficients. It is based on hierarchic Galerkin dis-
cretizations of multilevel type in the physical domain D and of “polynomial chaos”
type in the probability domain Γ; approximations are obtained by Galerkin pro-
jection on sparse tensor products of these discretizations. We note here that the
same idea works not only in the stochastic Galerkin setting but also for stochastic
collocation methods, where a hierarchic sequence of collocation operators are used
in conjunction with a multilevel discretization in space, see [6]. We analyze and
implement a strategy to localize hierarchic sets of data-adapted active gPC modes
to be used in the sparse tensor Galerkin projections.

Our algorithm is valid for general sequences of type (4.2), i.e., our Assumption
on the probability density (see Sect. 3.2) is not essential at this point. Due to the
monotonicity properties of the index sets |Λε(µ)| (see Lemma 4.4) the hierarchic
moment matrices Gm can be computed efficiently, as outlined in Sect. 5.4. This
issue needs to be addressed since for algebraic Karhunen-Loève decay the trivial
algorithm to compute a subset of {Gm}m≥1 is of cubic complexity in the total
number of nonzero entries, and of quadratic complexity if the multiindices are stored
in a sparse format.

The presented numerical experiments illustrate the developed theory for sparse
tensor approximation, see Sect. 3.7. The convergence rates as shown in Fig. 5.1 are
supported by the theory. Indeed, the full tensor product approximation exhibits a
rate of (d/p + 1/r)−1 = 1

3 where d = 2 is the spatial dimension, p = 1 the piecewise
polynomial degree of the ansatz functions in the physical space and r = 1 is the
maximally allowed approximation rate, see Example 5.8, while the sparse tensor
product shows the predicted rate min{r, p/d} = 1

2 , see Eqn. (3.43). Both methods
are superior to the straightforward Monte Carlo approach for which we expect a
convergence rate of (d/p+1/(1/2))−1 = 1

4 in the total number of degrees of freedom
(i.e., Ntot = NDNΩ) as shown in Fig. 5.1. In this analysis we have assumed that
the resulting linear systems can be solved in linear time, as is the case for multiscale
bases from Sect. 3.3. As is shown in Prop. 3.5, when the “stochastic regularity” r
is high, the gap in efficiency between all three methods will increase even further.

In our second numerical Example 5.9 we have considered a “deep” Karhunen-
Loève expansion for a algebraically decaying sequence (2.9) of Karhunen-Loève
eigenvalues: in this case, our Algorithm 4.13 selects gPC “modes” which are dis-
tributed anisotropically in a possibly very high dimensional parameter space.

A Best N-term approximation of gpc expansions

To prove Proposition 3.1 we will first have to provide a bound on the Legendre
coefficients uα(x) defined in (3.10). Eventually, we then establish some results
on approximation of sequences of such coefficients and complete the Appendix by
proving Proposition 3.1.

A.1 Estimates of Legendre coefficients

We establish bounds on the coefficients uα(x) defined in (3.10) by complex variable
techniques. To this end, it is necessary to consider the parametric, deterministic
problem (2.24) also for complex parameter vectors z = (z1, z2, ...) with zm ∈ C.

To prove the bounds, we define the complex domain
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U(r) =
M̄
⊗

m=1

Um(rm) ⊂ C
M̄ , (A.1)

where r = (r1, . . . , rM̄ ) ∈ RM̄ is a given vector of radii, with “component” domains

Um(rm) = {zm ∈ C : dist(zm, Γm) ≤ rm}. (A.2)

We introduce the following notation: given m ∈ N and y = (y1, y2, ...) ∈ Γ,
we define y∗

m = (y1, ..., ym−1, ym+1, ...) and write y = (y∗
m, ym) ∈ Γ∗

m × Γm if the
dependence of y-dependent quantities on the coordinate ym is to be emphasized.
Likewise, we denote by z = (z∗m, zm) ∈ U(r) = U∗

m(r∗m)×Um(rm) the corresponding
partitioning of the complex vector z. We introduce the real-valued parametric
bilinear form

B(y; uM (y, ·), v) =

∫

D
aM (y, x)∇xuM ·∇xv dx, y ∈ Γ, u, v ∈ V D. (A.3)

With this definition, we have in (2.25)

bM (uM , v) =

∫

y∈Γ
B(y; uM (y, ·), v(y, ·))ρ(y) dy, u, v ∈ C0(Γ, V D).

Next, we extend B(y; u, v) in (A.3) to complex-valued arguments: abusing notation,
we denote by V D = H1

0 (D) also the space of complex-valued functions which belong
to H1

0 (D) and define, for z ∈ U(r) the complex extension of the (truncated) diffusion
coefficient aM by

aM (z,x) = Ea(x) +
M
∑

m=1

ψm(x)zm (A.4)

with ψm(x) as in (2.27). For u, v ∈ V D the sesquilinear extension of B(y; u, v) in
(A.3) is then given by

B(z; u, v) =

∫

D
aM (z, x)∇xu ·∇xv dx, (A.5)

The complex valued parametric problem is then given by

−∇x · (aM (z,x)∇xuM (z,x)) = f(x) in D, uM (z, x)|x∈∂D = 0. (A.6)

and, in weak form: Find uM ∈ L2(U(r), V D) s.t.

B(z; uM (z, ·), v) = (f, v) ∀v ∈ V D, ∀z ∈ U(r) (A.7)

We will now prove that for certain r = (r1, . . . , rM ) problem (A.7) is uniquely
solvable and its solution is ‘coordinate-wise’ analytic in U(r):

Lemma A.1. Let aM be given as in (A.4). Define the vector of radii r(δ) =
(r1(δ), . . . , rM (δ)) by

rm(δ) :=
τm

C(δ)m1+δ
where 0 < τm <

a∗
min

‖ψm‖L∞(D)
(A.8)

and

C(δ) :=
∑

m≥1

1

m1+δ
, a∗

min = min
x∈D

Ea(x)− amin. (A.9)

Then, for any z ∈ U(r(δ)) with δ > 0, (A.7) admits a unique solution uM ∈
L2(U(r(δ)), V D). Moreover, uM (z∗m, zm, ·) : U(r(δ)) → V D is, for fixed coordinates
z∗m ∈ U∗

m(r∗m(δ)), a V D-valued analytic function of zm ∈ Um(rm(δ))
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Proof. To prove the existence and uniqueness of a solution to (A.7) we show that
the real part Rea(z,x) of the random field, as in (A.4), with z ∈ U(r(δ)) is bounded
away from zero:

ReaM (z,x) = Ea(x) +
∑

m≥1

ψm(x)Rezm

≥ Ea(x)−
∑

m≥1

bm|zm|

≥ Ea(x)−
∑

m≥1

bm
a∗
min

C(δ)bmm1+δ

≥ min
x∈D

Ea(x)− amin = a∗
min > 0

In a similar fashion we can conclude that

|aM (z,x)| ≤ a∗
max := ‖Ea‖L∞(D) + a∗

min

for z ∈ U(r(δ)). It follows that

ReB(z; u, u) ≥ 1

a∗
min

‖u‖2V D and |B(z; u, v)| ≤ a∗
max‖u‖V D‖v‖V D (A.10)

hence the unique solvability of (A.7) follows by Lax-Milgram. Choosing v = u(z, ·)
in (A.7), we find with (A.10) that

a∗
min‖u(z, ·)‖2V D ≤ |B(z; u(z, ·), u(z, ·))| = |(f, u(z, ·))|

≤ ‖f‖(V D)∗‖u(z, ·)‖V D

from where it follows that

∀z ∈ U(r(δ)) : ‖u(z, ·)‖V D ≤
‖f‖(V D)∗

a∗
min

. (A.11)

We now establish analyticity with respect to zm by a power series argument. To
this end, we consider the parametric problem (A.6) for parameters (z∗m, ym) ∈
U∗

m(r∗m(δ)) × Γm. Differentiating (A.6) with respect to the real-valued parame-
ter ym, we obtain that for any ν ∈ N and every v ∈ V D, the partial derivative
∂ν

ym
uM ((z∗m, ym); ·) ∈ V D solves the problem:

B((z∗m, ym); ∂ν
ym

u, v) = −ν

∫

D
ψm(x)∇x(∂ν−1

ym
uM ) ·∇xvdx ∀v ∈ V.

Choosing here v = ∂ν
ym

uM (z∗m, ym, ·) ∈ V D gives

a∗
min‖∂ν

ym
uM (z∗m, ym, ·)‖2V D ≤ |B((z∗m, ym); ∂ν

ym
uM , ∂ν

ym
uM )|

= ν
∣
∣
∫

D ψm(x)∇x(∂ν−1
ym

uM (z∗m, ym,x)·
∇x∂ν

ym
uM (z∗m, ym,x)dx

∣
∣
∣

≤ ν‖ψm‖L∞(D)‖∂ν−1
ym

uM (z∗m, ym, ·)‖V D ·
‖∂ν

ym
uM (z∗m, ym, ·)‖V D

whence we obtain, for any z∗m ∈ U∗
m(r∗m(δ)) and any m, ν ∈ N,

‖∂ν
ym

uM (z∗m, ym, ·)‖V D ≤ ν
bm

a∗
min

‖∂ν−1
ym

uM (z∗m, ym, ·)‖V D .
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Iterating this estimate gives with (A.11)

‖∂ν
ym

uM (z∗m, ym, ·)‖V D ≤ ν!

(
bm

a∗
min

)ν

‖uM (z∗m, ym, ·)‖V D

≤ ν!

a∗
min

(
bm

a∗
min

)ν

‖f‖(V D)∗ . (A.12)

Now define, for arbitrary m ∈ N and arbitrary, fixed ym ∈ Γm, the formal power
series Um(rm(δ)) * zm → uM (z∗m, zm, ·) ∈ V D by

u(z∗m, zm, ·) =
∞
∑

k=0

(zm − ym)k

k!
∂k

ym
uM (z∗m, ym, ·). (A.13)

To estimate its convergence radius, we use (A.12):

‖uM(z∗m, zm, ·)‖V D ≤
∞
∑

k=0

|zm − ym|k

k!
‖∂k

ym
uM (z∗m, ym, ·)‖V D

≤
‖f‖(V D)∗

a∗
min

∞
∑

k=0

(

bm
|zm − ym|

a∗
min

)k

.

This infinite sum and, hence, the series (A.13) converges in V D if

bm
|zm − ym|

a∗
min

< 1.

Since ym ∈ Γm was arbitrary, the series (A.13) converges for any ym ∈ Γm = [−1, 1]
and, by a continuation argument, for any zm ∈ C satisfying dist(zm, Γm) < a∗

min/bm.
This completes the proof.

Now we can prove analyticity of U(r(δ)) * z→ u(z, ·) ∈ V D.

Theorem A.2. Given the assumptions of Lemma A.1, for any M the solution
uM (z, ·) to (A.7) is analytic in the complex domain U(r(δ)) with r(δ) defined as in
(A.8).

Proof. This is a direct consequence of Hartogs’ Theorem, see e.g. [19], Theorem
2.2.8

This enables us to find bounds on the Legendre “coefficients” uα ∈ H1
0 (D) due to

Cauchy’s integral formula for analytic functions of several variables ([19], Theorem
2.2.1)

Lemma A.3. Let the assumptions of Proposition 2.3 hold. If uM solves the para-
metric deterministic problem (2.24) and is expanded in a Legendre chaos series as
in (3.9), then, for any δ1 > 0 the Legendre coefficients satisfy

‖uα‖H1
0 (D) ≤ C





∏

m∈supp(α)

2(2αm + 1)



 η(δ1)−α (A.14)

where C > 0 is independent of M, α with η(δ1) = (η1(δ1), . . . , ηM (δ1)) ∈ RM and

ηm(δ) := rm(δ) +
√

1 + rm(δ)2 (A.15)

and rm(δ) as in (A.8).
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Proof. Note that for simplicity of notation we do not indicate in the following the
dependence of η on δ1. The V D-valued Legendre “coefficients” are given by

uα =




∏

m≥1

2αm + 1





∫

Γ
uM (y)Lα(y)ρ(y) dy (A.16)

where the integral is a Bochner integral w.r.t. the probability measure dρ(y) =
ρ(y)dy and the equality has to be read in V D.

In the following we will use the abbreviations S = supp(α) ⊂ {1, . . . , M} and
S = {1, . . . , M} \ S (omitting the dependence on α for reasons of readability of
the formulae below) and, for a set G ⊂ {1, . . . , M}, we will write ΓG =

∏

m∈G Γm

and by yG ∈ ΓG the respective extraction from y. Since, by Theorem A.2, uM is
analytic in U(r(δ1)) for any δ1 > 0 we may use Cauchy’s integral formula along
ES =

∏

m∈supp(α) Em, where Em denotes the (Bernstein-)ellipse in Um(rm(δ1)) with
foci at ±1 and the sum of the semiaxes

ηm := rm(δ1) +
√

1 + rm(δ1)2 > 1 (A.17)

to rewrite the Legendre coefficients (A.16) as

uα =

(

∏

m∈S

2αm + 1

2πi

)
∫

Γ
Lα(yS)

∮

ES

uM (zS ,yS)

(zS − yS)1
dzS ρ(y)dy (A.18)

=

(

∏

m∈S

2αm + 1

2πi

)
∫

ΓS

∮

ES

uM (zS ,yS)

∫

ΓS

Lα(yS)

(zS − yS)1
ρ(y) dyS dzSdyS(A.19)

By [31] §4.9, the innermost integral in (A.19) is a representation for the Legendre
polynomials of the second kind,

Qα(zS) =

∫

Γ

Lα(yS)

(zS − yS)1
ρS(yS) dyS . (A.20)

Furthermore, if, for m ∈ S, we substitute zm = 1
2 (wm + w−1

m ) (Joukowski trans-
formation) with |wm| = ηm, the Legendre polynomials of the second kind can be
expanded like (cf. [14], Lemma 12.4.6)

Qαm(
1

2
(wm + w−1

m )) =
∞
∑

k=αm+1

qαmk

wk
m

with |qαmk| ≤ π. Hence,

|Qα(zS)| ≤
∏

m∈S

∞
∑

k=αm+1

π

ηk
m

=
∏

m∈S

π
η−αm−1

m

1− η−1
m

. (A.21)

From [8], see also [41] Chapter V.5, we learn that for any Bochner integrable function
g ∈ L2((M, µ);V ), with (M, µ) a measure space and V a Banach space it holds

∥
∥
∥
∥

∫

M
g dµ

∥
∥
∥
∥

V

≤
∫

M
‖g‖V dµ

35



From this, together with (A.21) and (A.19), we obtain

‖uα‖V D =

∥
∥
∥
∥
∥

(

∏

m∈S

2αm + 1

2πi

)
∫

ΓS

∮

ES

uM (zS ,yS)Qα(zS) dzS ρS(yS)dyS

∥
∥
∥
∥
∥

V D

≤
(

∏

m∈S

2αm + 1

2πi

)
∫

ΓS

∮

ES

‖uM(zS ,yS)‖V DQα(zS) dzS ρS(yS)dyS

≤
(

∏

m∈S

2αm + 1

2π
Len(Em)

)

‖uM (z)‖L∞(ES×ΓS ,V D) max
ES

|Qα|

≤
(

∏

m∈S

2αm + 1

2π
Len(Em)

)

∏

m∈S

π
η−αm−1

m

1− η−1
m

≤ C

(

∏

m∈S

2(2αm + 1)

)

η−α‖uM(z)‖L∞(ES×ΓS;V D) (A.22)

where the last estimate holds due to the fact that Len(Em) ≤ 4ηm.

It follows from Remark 2.6 that for δ1 > 0 sufficiently small there exists a
constant C(s, d, δ1) > 0 such that

∀m ∈ N : η−1
m ≤ C1(s, d, δ1)m

−(s−1−δ1) (A.23)

where s is defined in (2.29). Since, furthermore, for any δ2 > 0 there exists a
constant C2(δ2) s.t. 2αm + 1 ≤ C2(δ2)ηδ2αm

m , it follows from the definition of ηm

together with (A.23)

Corollary A.4. Given the assumptions of Lemma A.3. For any 0 < t < s − 1
there exists a constant C3(t, d) > 0, independent of m, M, α s.t. by defining

η̃−αm
m :=

{
1 m = 0

C3(t, d)η−(1−δ2)αm
m m > 0

(A.24)

the Legendre coefficients satisfy

‖uα‖H1
0 (D) ≤ C

∏

m∈supp(α)

η̃−αm
m (A.25)

where the constant C > 0 does not depend on M, α.

Note that it follows from (A.23), that η̃−αm
m → 0 if either m or αm tend to

infinity, hence the product in (A.25) remains finite even if |supp(α)|→∞.

A.2 τ-summability of the Legendre coefficients

To obtain best N -term approximation rates, suitable regularity of the function
under consideration is required [16]. This means that in our case that the Legendre
coefficients uα have to be τ -summable.

Lemma A.5. Let the assumptions of Proposition 2.3 hold. If uM solves (2.24) and
is expanded in a Legendre series as in (3.9), then for any τ > 1

s−1 , where s is given

by (2.29), then {‖uα‖H1
0 (D) : α ∈ NN

c } ∈ 5τ and there holds:

‖{‖uα‖H1
0(D) : α ∈ N

N
c }‖τ

&τ =
∑

α∈NM
0

‖uα‖τ
H1

0
(D) ≤ C exp

(

C3‖η−1‖τ
&τ

(1− η−τ
1 )

)

(A.26)

with C = C(τ, d) > 0 independent of M , C3 as in (A.24) and with η̃m defined as in
(A.15).
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Proof. From (A.23) it follows that ‖(η−1
m )m‖&τ < ∞ if τ > 1

s−1 . Using (A.24)
together with the summation formula for geometric series we obtain for any finite
M <∞ that

∑

α∈NM
0

‖uα‖τ
H1

0 (D) ≤ C
M
∑

m=1

∞
∑

αm=0

M
∏

m=1

η̃−αmτ
m

= C
M
∏

m=1

(

1 +
C3η−1

m

1− η−τ
m

)

≤ Ce
C3

1−η−τ
1

PM
m=1

η−τ
m

where we used 1 + x ≤ ex if x ≥ 0. Letting M →∞ gives (A.26).

A.3 Proof of Proposition 3.1

Recall the definitions of Π(Λ;H), σN and Ar(H) from (3.13)-(3.15) with H denoting
a Hilbert space, e.g. H1

0 (D) in our examples. The weak 5τ spaces 5w
τ consist of all

sequences (fk)k∈N for which it holds

|(fk)k|&w
τ

:= sup
k≥1

k1/τf∗
k <∞ (A.27)

where (f∗
k )k denotes the decreasing rearrangement of (|fk|)k. Since 5τ ⊂ 5w

τ , this
enables us now to characterize the space Ar(H): In fact, a generalization of a well-
known result of nonlinear approximation theory to Bochner spaces (see e.g. [16],
Theorem 4) states that a function u ∈ L2(Γ;H) is in Ar(H) if and only if the
H-norm of its Legendre coefficients uα form a sequence in 5w

τ for τ := (r + 1
2 )−1 In

fact, denote by (u∗
k)k∈N the decreasing rearrangement of (‖uα‖H)α. Due to

|u|2Ar(H) = sup
N≥1

N2r
∑

k>N

‖u∗
k‖2H

(A.27)
≤ |(‖uα‖H)α|2&w

τ
sup
N≥1

N2r
∑

k>N

k−2r−1

≤ |(‖uα‖H)α|2&w
τ

sup
N≥1

∫ ∞

N

N2r

x2r+1
dx

≤ |(‖uα‖H)α|2&w
τ

1

2r + 1

and

(u∗
2k−1)

2 ≤ (u∗
2k)2 ≤

1

k

2k
∑

l=k+1

(u∗
k)2 ≤

1

k
σk(u)2 ≤ |u|2Ar

k−2r−1 (A.28)

we have that

|u|Ar(H) ! 2τ |(‖uα‖H)α|&w
τ

!
2

2r + 1
|u|Ar(H)

Since Lemma A.5 ensures that the Legendre coefficients of the solution uM belong to
5w
τ for τ > (s−1)−1 it follows that the solution uM is in Ar(H) for τ = (r+1/2)−1 >

(s − 1)−1 and hence for 0 < r < s − 3/2. Proposition 3.1 then follows from the
definition of Ar(H) (3.15). !
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[9] E. Rodney Canfield, Paul Erdős, and Carl Pomerance. On a problem of Op-
penheim concerning “factorisatio numerorum”. Journal of Number Theory,
17:1–28, 1983.

[10] A. Cohen, R. DeVore, and Ch. Schwab. Convergence rates of best N-term
stochastic Galerkin FE-approximations for a class of elliptic sPDEs. Technical
Report 2009-02, Seminar for Applied Mathematics, ETH Zürich, 2009.
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[31] Gabor Szegö. Orthogonal polynomials. AMS Colloquium Publications, 1939.

[32] G. Szekeres and P. Turan. Ueber das zweite hauptproblem der ”factorisatio
numerorum”. Acta Litt. Sci. Szeged, 6:143–154, 1933.

[33] R.-A. Todor and Ch. Schwab. Convergence rates for sparse chaos approxima-
tions of elliptic problems with stochastic coefficients. IMA Journal of Numerical
Analysis, 27:p. 232–261, 2007.

[34] Hans Triebel. Interpolation theory, Function spaces, Differential operators.
Johann Ambrosius Barth Verlag, second edition, 1995.

39



[35] Erik Vanmarcke. Random fields. The MIT press, Cambridge-Mass. & London,
1983.

[36] T. von Petersdorff and Ch. Schwab. Sparse finite element methods for operator
equations with stochastic data. Applications of Mathematics, 52:p. 145–180,
2006.

[37] X. Wan and G.E. Karniadakis. Multi-element generalized polynomial chaos
for arbitrary probability measures. SIAM J. Sci. Comput., 28(3):p. 901–928,
2006.

[38] X. Wan and G.E. Karniadakis. Error control in multi-element polynomial
chaos method for elliptic problems with random coefficients. Communications
in Computational Physics, (5/2–4):pp. 793–820, 2009.

[39] D. Xiu and J.S. Hesthaven. High-order collocation methods for differential
equations with random inputs. SIAM J. Scientific Computing, 27(3):p. 1118–
1139, 2005.

[40] D. Xiu and G.E. Karniadakis. The wiener-askey polynomial chaos for stochastic
differential equations. SIAM J. Scientific Computing, 24(2):p. 619–644, 2002.

[41] Kôsaku Yosida. Functional Analysis. Springer Classics in Mathematics.
Springer, reprint of the 1980 edition, 1995.

40



Research Reports

No. Authors/Title

09-07 M. Bieri, R. Andreev, C. Schwab
Sparse tensor discretization of elliptic sPDEs

09-06 A. Moiola
Approximation properties of plane wave spaces and application to the
analysis of the plane wave discontinuous Galerkin method

09-05 D. Kressner
A block Newton method for nonlinear eigenvalue problems

09-04 R. Hiptmair, J. Li, J. Zou
Convergence analysis of Finite Element Methods for H(curl;Ω)-elliptic
interface problems

09-03 A. Chernov, T. von Petersdorff, C. Schwab
Exponential convergence of hp quadrature for integral operators with
Gevrey kernels

09-02 A. Cohen, R. DeVore, C. Schwab
Convergence rates of best N -term Galerkin approximations for a class of
elliptic sPDEs

09-01 B. Adhikari, R. Alam, D. Kressner
Structured eigenvalue condition numbers and linearizations for matrix
polynomials

08-32 R. Sperb
Optimal bounds in reaction diffusion problems with variable diffusion
coefficient

08-31 R. Hiptmair
Discrete compactness for p-version of tetrahedral edge elements

08-30 H. Heumann, R. Hiptmair
Extrusion contraction upwind schemes for convection-diffusion problems

08-29 N. Hilber, C. Schwab, C. Winter
Variational sensitivity analysis of parametric Markovian market models

08-28 K. Schmidt, S. Tordeux
Asymptotic modelling of conductive thin sheets

08-27 R. Hiptmair, P.R. Kotiuga, S. Tordeux
Self-adjoint curl operator

08-26 N. Reich
Wavelet compression of anisotropic integrodifferential operators on sparse
tensor product spaces


