Faastlane
Accelerating Function-as-a-Service Workflows

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy,
Arkaprava Basu

e
d

o
[\,‘I\I-S* 1 Computer Systems Lab

Overview of Function-as-a-Service (FaaS)

Developer £ |,

Client(s) ‘ Qi

Overview of Function-as-a-Service (FaaS)

Developer £ |,

Client(s) ‘ Qi

Overview of Function-as-a-Service (FaaS)

Developer £ |,

Client(s) ‘ Qi

Overview of Function-as-a-Service (FaaS)

Developer £ |,

Client(s) ‘ Qi

Overview of Function-as-a-Service (FaaS)

Developer £ |,

Client(s) - > Qi

Overview of Function-as-a-Service (FaaS)

Developer £ |,

Client(s) ‘ ‘ > Qi
dh 4

Overview of Function-as-a-Service (FaaS)

Developer £ |,

¢
Client(s) ‘ ‘ Qi
4
. dh

[Ilsp

Overview of Function-as-a-Service (FaaS)

P e O oe

o e g "
>

= -
Client(s) - - > Qi

Unique FaaS features: Autoscaling, pay-per-use billing

Developer £ |,

Overview of Function-as-a-Service (FaaS)

P * Stateless
*Short -running QE @

= .
O J

S — ¢ i -
>
- -

&>
Client(s) ‘ ‘ ;li

Unique FaaS features: Autoscaling, pay-per-use billing

Developer £ |,

FaaS workflows: Orchestrating multiple functions

Developer £ |,

Clients

FaaS workflows: Orchestrating multiple functions

Developer £ |,

Clients

FaaS workflows: Orchestrating multiple functions

Developer £ |,

Clients

FaaS workflows: Orchestrating multiple functions

Developer £ |,

Clients

FaaS workflows: Orchestrating multiple functions

Developer £ |,

Clients

FaaS workflows: Orchestrating multiple functions

e o2 @—=®—=® o g
I o~ ™"
>
| - "

Clients

FaaS workflows: Orchestrating multiple functions

Developer %t |. i J @ @ @ gi
¢ i -

o
| o8\ 8

Clients

Indian Institute of Scienc

Function interactions in a workflow instance

Current commercial FaaS platforms

v 4 Computer Systems Lab

Indian Institute of Scienc

Function interactions in a workflow instance

Current commercial FaaS platforms

v 4 Computer Systems Lab

Function interactions in a workflow instance

Current commercial FaaS platforms

%

Container 1 Container 2 Container 3

Function interaction latency can be up to 96% of total execution time!

N

Tt
A 4 ._ Computer Systems Lab

{ IISc

Function interactions in a workflow instance

Container 1

Current commercial FaaS platforms

Container 2

Container 3

Function interaction latency can be up to 96% of total execution time!

SAND (Akkus et al., ATC ‘18)

Message Queue

Application Container

Computer Systems Lab

{ IISc

Function interactions in a workflow instance

Container 1

Current commercial FaaS platforms

Container 2

Container 3

Function interaction latency can be up to 96% of total execution time!

SAND (Akkus et al., ATC ‘18)

Message Queue

Application Container

Computer Systems Lab

Indian Institute of Scienc

Faastlane: Running functions in threads

Message Queue

® © @

Application Container

QA
('\ 55 4
[%I-S'f 5 Computer Systems Lab

Indian Institute of Science, Bangalore

Faastlane: Running functions in threads

Application Container

[\«Eﬂ: Computer Systems Lab

)

Indian Institute

Faastlane: Running functions in threads

Message Queue

® =W=0

Process

Application Container

5 | Computer Systems Lab

Faastlane: Running functions in threads

Virtual Address Space

O

~®-®

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

Computer Systems Lab

Faastlane: Running functions in threads

Virtual Address Space
Client request >[]]
T SR o~)
Fastest way to
communicate is via
loads/stores
" —_— ~—
Process

Application Container

5 | Computer Systems Lab

Faastlane: Running functions in threads

Virtual Address Space

Client request >[]]
Load >
(-) ()

Fastest way to
communicate is via
loads/stores

@-0-®

Process

Application Container

5 | Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

d |5

N/

~®-®

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

A IPE

|

O

Store —

~®-®

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

- Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

|

~®-®

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

O

[|

]

N

~®-®

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

]

|

O

LT

~®-®

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

]

-

®-®-m

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Vlrtual Address Space

Y

-

Q]

®-®-m

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

Rl

-

®-®-m

Process

Application Container

5

Fastest way to
communicate is via
loads/stores

' Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

AL

-

®-®-m

Process

> Client response

Fastest way to
communicate is via
loads/stores

Application Container

5

Computer Systems Lab

Faastlane: Running functions in threads

Client request

Virtual Address Space

Y

-

®-®-m

Process

> Client response

Fastest way to
communicate is via
loads/stores

Application Container

5

Computer Systems Lab

Challenge

Client request

One function can
access another’s
private data

1: Protect function’s private memory

Virtual Address Space

> Client response

=
:

® =W=0

Process

Fastest way to
communicate is via
loads/stores

Application Container

5

- Computer Systems Lab

Healthcare analytics: A case for isolation

Patient
Health [’EI

—)

Record

[DHI <

[

Patient
= Consent

Form - +
D

Identifier

v

(& 7| [Pri

PHI

(& 7+

=

AWS Comprehend Medical
(Trusted external NLP service)

PHI

DynamoDB

Choice based
on patient
consent

X X<
I

)[Anon

Record

]

r— Masked
- record

[Analytics]

~

Analytics
output

‘ Computer Systems Lab

Healthcare analytics: A case for isolation

——]

Patient —_ | Patient
Health [’EI % =| consent E] Untrusted
Record N ¢ X=) Form i& + 4

Other examples —) — ,% :

1. Financial record processing <€ >» || —\

Identifier
2. ML prediction service

v
AWS Comprehend Medical
| IEI F PHI (Trusted external NLP service)

Anon
Record

Masked
record

[Anon](FIEI_P"' PHI n@_p’+ PH

Record

Choice based ¢ '

on patient

consent
@ Analytics
DynamoDB | N Analytics
output

6 Computer Systems Lab

X X<
I

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space
(TET S)
~ -~ D
Process

Application Container

7 | Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

Hnminm

SR (-)

@-0-0

Process

Application Container

7

Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

&)

PKRU register
Protection key
permissions

Virtual Address Space

Hnminm

® =@ =
Process

Application Container

7

- Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Shared Private

-

PKRU register
Protection key
permissions

/(1se

Virtual Address Space

Hnminm

® =@ =
Process

Application Container

7

' Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

Client request <

Shared Private

-

PKRU register
Protection key
permissions

A
/(s

L

® =@ =
Process

Application Container

7

Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

Client request <

Shared Private

T

PKRU register
Protection key
permissions

L
N

@-0-0

Process

Application Container

7

' Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

E

™ (-)

Shared Private

% Y)

PKRU register @ —> @ |:>®
Protection key

permissions

Process

Application Container

/(1se

7 (omputer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

Client request <

Shared Private

T

PKRU register
Protection key
permissions

di i
N

@-0-0

Process

Application Container

7

- Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Client request <

Shared Private

T

PKRU register
Protection key
permissions

A
/(s

)

Virtual Address Space

I

-)

~®-®

Process

Application Container

7

Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

M S
Shared Private §
| |y

___ —
PKRU register @ —> @ |:>®
Protection key

permissions

Process

Application Container

/(se

7 Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

N4 -

Client request <

Shared Private

T ns

___ —
PKRU register @ —> @ |:>®
Protection key

permissions

Process

Application Container

/(1se

7 (omputer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

NN

Client request <

Shared Private

S mme ns

___ —
PKRU register @ —> @ |:>®
Protection key

permissions

Process

Application Container

/(se

7 Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Client request <

Shared Private

S mme

PKRU register
Protection key
permissions

Y11Sc
/(1S

V4

)

Virtual Address Space

T~

- @ =

Y

—

Process

Application Container

7

Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Client request <

Shared Private

S mme

PKRU register
Protection key
permissions

Y11Sc
/(1S

NS

)

Virtual Address Space

T~

- @ =

4

—

Process

Application Container

7

Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

Client request < < > Client response

Shared Private

S mme as

A, —
PKRU register @ —> @ |:>®
Protection key

permissions

Process

Application Container

Y11Sc
/(1S

7 Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Virtual Address Space

Client request < < > Client response

Shared Private

~ e as

A, —
PKRU register @ —> @ |:>®
Protection key

permissions

Process

Application Container

Y11Sc
/(1S

7 Computer Systems Lab

Solution 1: Lightweight isolation with Intel MPK

Client request <

Hardware
enforced
sh. isolation |

~ e

PKRU register
Protection key
permissions

Y11Sc
/(1S

)

Virtual Address Space

> Client response

~®-®

Process

Application Container

7

Computer Systems Lab

Challenge 2: No thread-level parallelism

Client request <

Virtual Address Space

Interpreter
Lock

Process

Application Container

8

> Client response

No thread-level
parallelism in
Python, NodelJS

- Computer Systems Lab

FINRA: Parallel functions in a workflow instance

Portfolio DB [Start

@ FINRA

’ _ External
\ (in parallel) Finance
Service

Fetch II Fetch

Portfolio , Market

Data = Data

Iﬁ Zl |

Run (in parallel) r
AuditRule Run
\ II AuditRule2

Compliant?

9 Computer Systems Lab

FINRA: Parallel functions in a workflow instance

Portfolio DB
Sm /

Fetch

Portfolio
Data

J

8]

E’ Run
AuditRule

Start
FINRA

(in paraHeU

External
Finance
Service

Fetch
Market

Data

(in parallel)

Compliant?

111}
—

[Hundreds of audit

rules run in parallel

Run for each instance
AuditRule2’////

Indian Institute of Science, Bangz

Solution 2: Dynamically switch to processes

/\
o)
\ ¢

)

{\‘7
(\/@ 10\ Computer Systems Lab

Tt
v
|

Indian Institute)f S

- W B

Solution 2: Dynamically switch to processes

/\
o)
\ ¢

)

Virtual address space

HAnin

Process-0

Application Container

10

Computer Systems Lab

Solution 2: Dynamically switch to processes

Client request <:

1

Virtual address space

(NN

Process-0

Application Container

10

| Computer Systems Lab

Tt
v
|

- W B

Indian Institute)f S

Solution 2: Dynamically switch to processes

Client request <:

/\
o)
\ ¢

)

I
[}

Virtual address space

Process-0

Application Container

10

Computer Systems Lab

Tt
v
|

- W B

Indian Institute)f S

Solution 2: Dynamically switch to processes

Client request <:

/\
o)
\ ¢

)

I
[}

Virtual address space

I

Process-0

Application Container

10

Computer Systems Lab

Indian Institute «

Solution 2: Dynamically switch to processes

Virtual address space Virtual address space
Client request <::> | ‘ ‘ ‘ ‘ ‘ ‘ ‘ | \ lﬂ:m
’
@ ’ N

@ Process-0 Process-1

Application Container

r[4I\ISc
Ve 10 Computer Systems Lab

Solution 2: Dynamically switch to processes

Virtual address space Virtual address space

Client request <:_'

2
)

/
W | B ks

Vo | @=®

Application Container

A II;;: 3

10 Computer Systems Lab

%

Solution 2: Dynamically switch to processes

Virtual address space Virtual address space
@ ﬁ

/
W | B ks

Vo | @=®

Application Container

A II;;: 3

10 Computer Systems Lab

Indian Institute «

Solution 2: Dynamically switch to processes

Virtual address space Virtual address space

Client request <::>

VA
A 5
%@f) =0y O

Application Container

r[4I\ISc
Ve 10 Computer Systems Lab

Indian Insti ute ¢

Solution 2: Dynamically switch to processes

Virtual address space Virtual address space

Client request <::>

VA
A 5
%@f) =0y O

Application Container

TZ\/I\ISC
v 10 | Computer Systems Lab

Solution 2: Dynamically switch to processes

Client request <:

2
)

V4
¢
2

I
[}

)

Virtual address space

~®=®

Process-0

Application Container

[ngi:

10

Computer Systems Lab

Solution 2: Dynamically switch to processes

Virtual address space

i

Client request <:

2

@ Process-0

Application Container

10 Computer Systems Lab

Solution 2: Dynamically switch to processes

Client request <:

2
)

V4
¢
2

I
[}

)

Virtual address space

~®=®

::> Client response

Process-0

Application Container

[ngi:

10

Computer Systems Lab

So

1 vCPU container

2

/\
)

\ ¢
)

I1Sc
(8

ution 2: Smart scaling with containers

O

Virtual address space

-~ ®=®

Process

Application Container

11

TCP

Virtual address space

-

Process

Application Container

Lo

-

)mputer Systems Lab

Faastlane: Putting it all together

Developer

workflow. json

Input def Orchestrator (...) {
Tl = Thread(target = fooWrap,
args = [Input])
T2 = Thread(target = ParState,
args = fooOut)

T3 = Thread(target = foobarWrap,
args = ...)
Tl.start(),; Tl.join()
T2.start(),; T2.join()
T3.start(); T3.join()

Faastlane yo Unified

def fooWrap (Input) { Workflow

| W kfl global fooOut
or ow fooOut = foo (Input)
Com poser) memset input (Input)
def ParState() {
Pl = Process (target = bar,
args = fooOut);
P2 = Process(target = baz;
args = fooOut) ;
Pl.start(); P2.start():;
Pl.join(); P2.join();

bar
@ memset input(foolut) ;
}

Output
Decide number of
threads, processes
and containers

-

12 Computer Systems Lab

Faastlane: Putting it all together

Developer

workflow. json

Input def Orchestrator (...) {
Tl = Thread(target = fooWrap,
args = [Input])
T2 = Thread(target = ParState,
args = fooOut)

T3 = Thread(target = foobarWrap,
args = ...)
Tl.start(),; Tl.join()
T2.start(),; T2.join()
T3.start(); T3.join()

Faastlane yo Unified

def fooWrap (Input) { Workflow

| W kfl global fooOut
or ow fooOut = foo (Input)
Com poser) memset input (Input)
def ParState() {
Pl = Process (target = bar,
args = fooOut);
P2 = Process(target = baz;
args = fooOut) ;
Pl.start(); P2.start():;
Pl.join(); P2.join();

bar
@ memset input(foolut) ;
}

Output
Decide number of
threads, processes
and containers

-

12 Computer Systems Lab

Faastlane: Putting it all together

Developer

workflow. json

Input def Orchestrator (...) {
Tl = Thread(target = fooWrap,
args = [Input])
T2 = Thread(target = ParState,
args = fooOut)

T3 = Thread(target = foobarWrap,
args = ...)
Tl.start(),; Tl.join()
T2.start(),; T2.join()
T3.start(); T3.join()

Faastlane yo Unified

def fooWrap (Input) { Workflow

| W kfl global fooOut
or ow fooOut = foo (Input)
Com poser) memset input (Input)
def ParState() {
Pl = Process (target = bar,
args = fooOut);
P2 = Process(target = baz;
args = fooOut) ;
Pl.start(); P2.start():;
Pl.join(); P2.join();

bar
@ memset input(foolut) ;
}

Output
Decide number of
threads, processes
and containers

-

12 Computer Systems Lab

Faastlane: Putting it all together

Developer

workflow. json

Input def Orchestrator (...) {
Tl = Thread(target = fooWrap,
args = [Input])
T2 = Thread(target = ParState,
args = fooOut)

T3 = Thread(target = foobarWrap,
args = ...)
Tl.start(),; Tl.join()
T2.start(),; T2.join()
T3.start(); T3.join()

Faastlane yo Unified

def fooWrap (Input) { Workflow

| W kfl global fooOut
or ow fooOut = foo (Input)
Com poser) memset input (Input)
def ParState() {
Pl = Process (target = bar,
args = fooOut);
P2 = Process(target = baz;
args = fooOut) ;
Pl.start(); P2.start():;
Pl.join(); P2.join();

bar
@ memset input(foolut) ;
}

Output
Decide number of
threads, processes
and containers

-

12 Computer Systems Lab

Faastlane: Putting it all together

Developer Cloud Provider

workflow. json
foo 7

Input Gefomnestzator (0 {1 0 e e e e m e e m e — e ——————————————
Tl = Thread(target = fooWrap, A mm mm Em EE EE EE EE EE EE EE EE EEN EE EE EE BN BN EE BN BN BN EE BN BN BN BN BN N BN EE BN N EE Em Em 1
args = [Input]) L I I
T2 = Thread(target = ParState, Container instance |
azgs = fooout) 1 | e — e s pmmmm————— fm————————— I
T3 = Thread(target = f;:obarWrap, r ParState : : bar : = baz : :I
args = ...
T1.start(); T1.join() I thread = 1 thread I 1 thread = I |
T2.start(); T2.join() 1 1 : 1 = 1 1
T3.start(); T3.join() : create 1 i : H = 1 I
1 1 1
1 1 il
H -7 b b !
1 I i 1
1 1 1
1 1 1 |
= 1 1 : 1 ! 1 1
Shared Heap ! ParState ! fork) d 1 ;
def ParState() { (of Orchestrator) ! privaie | bar’s heap baz’s heap 1 |
P1 = Process(target = bar, 1
args = fooout) ; \//’ II
P2 = Process(target = baz; |
args = fooOut) ; F |
Pl.start(); P2.start():; Operatlng SVStem I
Pl.join(); P2.join();
memset input(foolut) ;
} Intel MPK-based Hardware Platform
Output

Faastlane’s thread
level memory
manager

Decide number of
threads, processes
and containers

Unified
FaaStlane ;ef fooWrap (Input) { Workflow
T — sioved sosone
Com poser , memset_input (Tnput)
.

12 mputer Systems Lab

Indian In

Faastlane: Putting it all together

Developer | Cloud Provider
workflow. json I
foo -
Input def Orchestrator (...) { 1
Tl = Thread(target = fooWrap, I __ I
@ args = [Input]) I I 1 | 1
T2 = Thread(target = ParState, 1 1
args = fooOut) Dl e e e e e e ey e . e I
foo T3 = Thread(:z;ze: = f;:obarW’rap, E ParState r bar i baz : :I
bar T1.start(); T1.join() I thread thread 1 thread = I|
T2.start(); T2.join() I i
. 1o i1
! i,!
bar | i |:
1
I i
1
baz !y
baz’s heap " |
ar out | !
ess (ta az; |:
o ax foolut) Operating System I
fOObar 3 ();’ PZ:J Q) !
@ } = it (fooout) Intel MPK-based Hardware Platform
Output

Faastlane’s thread
level memory
manager

T
[\“‘f 12 | Computer Systems Lab

Decide number of
threads, processes
and containers

Evaluation

Experimental setup

e Hardware
* |ntel Xeon, 36 core, 384 GB RAM

e Software
* Unmodified Openwhisk framework
e Custom python runtime with thread-level memory manager

13 Computer Systems Lab

o
£

Indian Institute of Science, Bang

Function interaction latency on FaaS platforms

(\ 55 4
(\/@ 14 Computer Systems Lab

% Function Interaction

{ IISc

Function interaction latency on FaaS platforms

Latency

100

10

0.1

0.95

22.95

1.96

FINRA

ML Prediction Service Healthcare Analytics

14

B ASF B Openwhisk BSAND [Faastlane
96.38 94.82 >3.44 49.8 ___64.74
10.17 9.87 15.51
1.87
0.64 0.66
| | 0.1

Sentiment Analysis

Computer Systems Lab

% Function Interaction

{ IISc

Function interaction latency on FaaS platforms

Latency

100

10

0.1

0.95

22.95

1.96

FINRA

ML Prediction Service Healthcare Analytics

14

B ASF B Openwhisk BSAND [Faastlane
96.38 94.82 >3.44 49.8 ___64.74
10.17 9.87 15.51
1.87
0.64 0.66
| | 0.1

Sentiment Analysis

Computer Systems Lab

% Function Interaction

{ IISc

Function interaction latency on FaaS platforms

Latency

100

10

0.1

0.95

22.95

1.96

FINRA

ML Prediction Service Healthcare Analytics

14

B ASF B Openwhisk BSAND [Faastlane
96.38 94.82 >3.44 49.8 ___64.74
10.17 9.87 15.51
1.87
0.64 0.66
| | 0.1

Sentiment Analysis

Computer Systems Lab

% Function Interaction

{ IISc

Function interaction latency on FaaS platforms

Latency

100

10

0.1

0.95

22.95

1.96

FINRA

ML Prediction Service Healthcare Analytics

14

B ASF B Openwhisk BSAND [Faastlane
96.38 94.82 >3.44 49.8 ___64.74
10.17 9.87 15.51
1.87
0.64 0.66
| | 0.1

Sentiment Analysis

Computer Systems Lab

Indian Institute of Science, Bangz

Request throughput on FaaS platforms

{\‘7
(\,& 15\ Computer Systems Lab

Request throughput on FaaS platforms

W ASF B Openwhisk B SAND O Faastlane

300
= 262
E
)]
g 200 175
5
£ 109
o0
3 100 g3 9°
= 57
£ 36 35 35 45 46 43 46 49 50
6
0
FINRA ML Prediction Service Healthcare Analytics Sentiment Analysis
/’\}1_7

15 Computer Systems Lab

Request throughput on FaaS platforms

W ASF B Openwhisk B SAND O Faastlane

300
= 262
E
)]
g 200 175
5
£ 109
o0
3 100 g3 9°
= 57
£ 36 35 35 45 46 43 46 49 50
6
0
FINRA ML Prediction Service Healthcare Analytics Sentiment Analysis
/’\}1_7

15 Computer Systems Lab

Request throughput on FaaS platforms

W ASF B Openwhisk B SAND O Faastlane

300
= 262
E
)]
g 200 175
5
£ 109
o0
3 100 g3 9°
= 57
£ 36 35 35 45 46 43 46 49 50
6
0
FINRA ML Prediction Service Healthcare Analytics Sentiment Analysis
/’\}1_7

15 Computer Systems Lab

Request throughput on FaaS platforms

W ASF B Openwhisk B SAND O Faastlane

300
= 262
E
)]
g 200 175
5
£ 109
o0
3 100 g3 9°
= 57
£ 36 35 35 45 46 43 46 49 50
6
0
FINRA ML Prediction Service Healthcare Analytics Sentiment Analysis
/’\}1_7

15 Computer Systems Lab

Request throughput on FaaS platforms

W ASF B Openwhisk B SAND O Faastlane

300
= 262
E
)]
g 200 175
5
£ 109
o0
3 100 g3 9°
= 57
£ 36 35 35 45 46 43 46 49 50
6
0
FINRA ML Prediction Service Healthcare Analytics Sentiment Analysis
Faastlane over Openwhisk
Upto 16x better

15 Computer Systems Lab

Request throughput on FaaS platforms

H ASF

B Openwhisk B SAND

[0 Faastlane

—
=
£
-
v
Q.
N
o
=
Q
N o
o0
>
o
-
i
—

36

83
32 35 >’

6

FINRA ML Prediction Service Healthcare Analytics

Faastlane over Openwhisk

Upto 16x better

46 43 46 49

Faastlane over SAND

Upto 1.49x better

175

109

Sentiment Analysis

Computer Systems Lab

Indian Institu

300

200

100

Throughput (per min)

36 32

=

il

FIl

Faastlane: Accelerating Function-as-a-Service Workflows

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, Arkaprava Basu
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Abstract

In Faa$ workflows, a set of functions implement applica-
tion logic by interacting and exchanging data among them-
selves. Contemporary FaaS platforms execute each function
of a workflow in separate containers. When functions in a
workflow interact, the resulting latency slows execution.

Faastlane minimizes function interaction latency by striv-
ing to execute functions of a workflow as threads within a
single process of a container instance, which eases data shar-
ing via simple load/store instructions. For FaaS workflows
that operate on sensitive data, Faastlane provides lightweight
thread-level isolation domains using Intel Memory Protection
Keys (MPK). While threads ease sharing, implementations
of languages such as Python and Node.js (widely vsed in
Faa8 applications) disallow concurrent execution of threads.
Faastlane dynamically identifies opportunities for parallelism
in Faa8 workflows and fork processes (instead of threads)
OF SpAWNS new container instances to concurrently execute
parallel functions of a workflow. We implemented Faastlane
atop Apache OpenWhisk and show that it accelerates work-
flow instances by up to 15x, and reduces function interaction
latency by up to 99.95% compared to OpenWhisk.

16

Faa$ shifts the responsibility of managing compute re-
sources from the developer to the cloud provider. The cloud
provider charges the developer (i.e., cloud client) only for
the resources (e.g., execution time) used to execute func-
tions in the application (workflow). Scaling is automatic for
the developer—as the workload (i.e., number of requests) in-
creases, the provider spawns more instances of the workflow.

In contemporary Faa$ offerings. each function. even those
that belong to the same workflow instance, is executed on
a separate container. This setup is ill-suited for many Faa8
applications (e.g.. image- or texi-processing) in which a work-
flow consists of multiple interacting functions. A key perfor-
mance bottleneck is function interaction latency—the latency
of copving rransieni state (e.g., partially-processed images)
across functions within a workflow instance. The problem is
exacerbated when Faa$§ platforms limit the size of the directly
communicable state across functions. For example, ASF lim-
its the size of arguments that can be passed across functions
to 32KB [35]. However, many applications (e.g., image pro-
cessing) may need to share larger objects [2]. They are forced
to pass state across functions of a workflow instance via cloud

ns

[0 Faastlane

262

175

109

iment Analysis

storage services (e.g., Amazon 53), which typically takes hun-)

i 2 ---"I.IJ--‘—-.J»— L T e, T T L |

Computer Systems Lab

Indian Institute of Science, Bang

Conclusion

* Faastlane minimizes function interaction latency using threads

(\ 55 4
(\,& il Computer Systems Lab

Indian Institute of Scienc

Conclusion

* Faastlane minimizes function interaction latency using threads

* Lightweight intra-process isolation through Intel MPK

('\ 55 4
[%I-S" il Computer Systems Lab

Conclusion

* Faastlane minimizes function interaction latency using threads
* Lightweight intra-process isolation through Intel MPK

* Dynamically switching to processes to leverage parallelism

r'\ A o
[@-S‘ 17 | Computer Systems Lab

Indian k

Conclusion

* Faastlane minimizes function interaction latency using threads

* Lightweight intra-process isolation through Intel MPK

* Dynamically switching to processes to leverage parallelism

* No additional developer effort needed

o
£

17 Computer Systems Lab

Indian Institute of E

Thank You

kijswaroop@gmail.com

ajaynayak@iisc.ac.in

Contact: - _
vg@iisc.ac.in

arkapravab@iisc.ac.in

https://github.com/csl-iisc/faastlane

13 Computer Systems Lab

mailto:pratheekb@iisc.ac.in
mailto:ajaynayak@iisc.ac.in
mailto:vg@iisc.ac.in
mailto:arkapravab@iisc.ac.in
https://github.com/csl-iisc/faastlane

	Slide Number 1
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Slide Number 39
	Healthcare analytics: A case for isolation
	Healthcare analytics: A case for isolation
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Challenge 2: No thread-level parallelism
	FINRA: Parallel functions in a workflow instance
	FINRA: Parallel functions in a workflow instance
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Evaluation
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Thank You

