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Evaluation

Experimental setup

e Hardware
* |ntel Xeon, 36 core, 384 GB RAM

e Software
* Unmodified Openwhisk framework
e Custom python runtime with thread-level memory manager
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Faastlane: Accelerating Function-as-a-Service Workflows

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, Arkaprava Basu
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Abstract

In Faa$ workflows, a set of functions implement applica-
tion logic by interacting and exchanging data among them-
selves. Contemporary FaaS platforms execute each function
of a workflow in separate containers. When functions in a
workflow interact, the resulting latency slows execution.

Faastlane minimizes function interaction latency by striv-
ing to execute functions of a workflow as threads within a
single process of a container instance, which eases data shar-
ing via simple load/store instructions. For FaaS workflows
that operate on sensitive data, Faastlane provides lightweight
thread-level isolation domains using Intel Memory Protection
Keys (MPK). While threads ease sharing, implementations
of languages such as Python and Node.js (widely vsed in
Faa8 applications) disallow concurrent execution of threads.
Faastlane dynamically identifies opportunities for parallelism
in Faa8 workflows and fork processes (instead of threads)
OF SpAWNS new container instances to concurrently execute
parallel functions of a workflow. We implemented Faastlane
atop Apache OpenWhisk and show that it accelerates work-
flow instances by up to 15x, and reduces function interaction
latency by up to 99.95% compared to OpenWhisk.

16

Faa$ shifts the responsibility of managing compute re-
sources from the developer to the cloud provider. The cloud
provider charges the developer (i.e., cloud client) only for
the resources (e.g., execution time) used to execute func-
tions in the application (workflow). Scaling is automatic for
the developer—as the workload (i.e., number of requests) in-
creases, the provider spawns more instances of the workflow.

In contemporary Faa$ offerings. each function. even those
that belong to the same workflow instance, is executed on
a separate container. This setup is ill-suited for many Faa8
applications (e.g.. image- or texi-processing) in which a work-
flow consists of multiple interacting functions. A key perfor-
mance bottleneck is function interaction latency—the latency
of copving rransieni state (e.g., partially-processed images)
across functions within a workflow instance. The problem is
exacerbated when Faa$§ platforms limit the size of the directly
communicable state across functions. For example, ASF lim-
its the size of arguments that can be passed across functions
to 32KB [35]. However, many applications (e.g., image pro-
cessing) may need to share larger objects [2]. They are forced
to pass state across functions of a workflow instance via cloud

ns
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Conclusion

* Faastlane minimizes function interaction latency using threads

* Lightweight intra-process isolation through Intel MPK

* Dynamically switching to processes to leverage parallelism

* No additional developer effort needed
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https://github.com/csl-iisc/faastlane

13 Computer Systems Lab


mailto:pratheekb@iisc.ac.in
mailto:ajaynayak@iisc.ac.in
mailto:vg@iisc.ac.in
mailto:arkapravab@iisc.ac.in
https://github.com/csl-iisc/faastlane

	Slide Number 1
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	Overview of Function-as-a-Service (FaaS)
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	FaaS workflows: Orchestrating multiple functions
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Function interactions in a workflow instance
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Faastlane: Running functions in threads
	Slide Number 39
	Healthcare analytics: A case for isolation
	Healthcare analytics: A case for isolation
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Solution 1: Lightweight isolation with Intel MPK
	Challenge 2: No thread-level parallelism
	FINRA: Parallel functions in a workflow instance
	FINRA: Parallel functions in a workflow instance
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Faastlane: Putting it all together
	Evaluation
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Function interaction latency on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Request throughput on FaaS platforms
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Thank You

