
This paper is included in the Proceedings of the
13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).
March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the
13th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’16)

is sponsored by USENIX.

Embark: Securely Outsourcing
Middleboxes to the Cloud

Chang Lan, Justine Sherry, Raluca Ada Popa, and Sylvia Ratnasamy, University of California,
Berkeley; Zhi Liu, Tsinghua University

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 255

Embark: Securely Outsourcing Middleboxes to the Cloud
Chang Lan Justine Sherry Raluca Ada Popa Sylvia Ratnasamy Zhi Liu*

UC Berkeley *Tsinghua University

Abstract
It is increasingly common for enterprises and other
organizations to outsource network processing to the
cloud. For example, enterprises may outsource fire-
walling, caching, and deep packet inspection, just as
they outsource compute and storage. However, this poses
a threat to enterprise confidentiality because the cloud
provider gains access to the organization’s traffic.

We design and build Embark, the first system that en-
ables a cloud provider to support middlebox outsourcing
while maintaining the client’s confidentiality. Embark en-
crypts the traffic that reaches the cloud and enables the
cloud to process the encrypted traffic without decrypting
it. Embark supports a wide-range of middleboxes such as
firewalls, NATs, web proxies, load balancers, and data ex-
filtration systems. Our evaluation shows that Embark sup-
ports these applications with competitive performance.

1 Introduction
Middleboxes such as firewalls, NATs, and proxies,
have grown to be a vital part of modern networks,
but are also widely recognized as bringing significant
problems including high cost, inflexibility, and complex
management. These problems have led both research
and industry to explore an alternate approach: moving
middlebox functionality out of dedicated boxes and into
software applications that run multiplexed on commodity
server hardware [53, 52, 54, 29, 37, 28, 27, 14, 8]. This ap-
proach – termed Network Function Virtualization (NFV)
in industry – promises many advantages including the
cost benefits of commodity infrastructure and outsourced
management, the efficiency of statistical multiplexing,
and the flexibility of software solutions. In a short time,
NFV has gained a significant momentum with over 270
industry participants [27] and a number of emerging
product offerings [1, 7, 6].

Leveraging the above trend, several efforts are explor-
ing a new model for middlebox deployment in which
a third-party offers middlebox processing as a service.
Such a service may be hosted in a public cloud [54, 13, 17]
or in private clouds embedded within an ISP infrastruc-
ture [14, 11]. This service model allows customers such
as enterprises to “outsource” middleboxes from their
networks entirely, and hence promises many of the known
benefits of cloud computing such as decreased costs and
ease of management.

However, outsourcing middleboxes brings a new chal-

lenge: the confidentiality of the traffic. Today, in order to
process an organization’s traffic, the cloud sees the traffic
unencrypted. This means that the cloud now has access
to potentially sensitive packet payloads and headers. This
is worrisome considering the number of documented
data breaches by cloud employees or hackers [23, 60].
Hence, an important question is: can we enable a third
party to process traffic for an enterprise, without seeing
the enterprise’s traffic?

To address this question, we designed and imple-
mented Embark1, the first system to allow an enterprise
to outsource a wide range of enterprise middleboxes
to a cloud provider, while keeping its network traffic
confidential. Middleboxes in Embark operate directly
over encrypted traffic without decrypting it.

In previous work, we designed a system called Blind-
Box to operate on encrypted traffic for a specific class
of middleboxes: Deep Packet Inspection (DPI) [55] –
middleboxes that examine only the payload of packets.
However, BlindBox is far from sufficient for this setting
because (1) it has a restricted functionality that supports
too few of the middleboxes typically outsourced, and (2)
it has prohibitive performance overheads in some cases.
We elaborate on these points in §2.4.

Embark supports a wide range of middleboxes with
practical performance. Table 1 shows the relevant mid-
dleboxes and the functionality Embark provides. Embark
achieves this functionality through a combination of
systems and cryptographic innovations, as follows.

From a cryptographic perspective, Embark provides a
new and fast encryption scheme called PrefixMatch to en-
able the provider to perform prefix matching (e.g., if an IP
address is in the subdomain 56.24.67.0/16) or port range
detection (e.g., if a port is in the range 1000-2000). Prefix-
Match allows matching an encrypted packet field against
an encrypted prefix or range using the same operators as
for unencrypted data: ≥ and prefix equality. At the same
time, the comparison operators do not work when used
between encrypted packet fields. Prior to PrefixMatch,
there was no mechanism that provided the functionality,
performance, and security needed in our setting. The clos-
est practical encryption schemes are Order-Preserving
Encryption (OPE) [21, 48]. However, we show that
these schemes are four orders of magnitude slower than

1This name comes from “mb” plus “ark”, a shortcut for middlebox
and a synonym for protection, respectively.

1

256 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Middlebox Functionality Support Scheme
L

3/
L

4
H

ea
de

r

IP Firewall [66]
(SIP, DIP, SP, DP, P)∈(SIP[], DIP[], SP[], DP[], P)

⇔Enc(SIP, DIP, SP, DP, P)∈Enc(SIP[], DIP[], SP[], DP[], P)
Yes PrefixMatch

NAT (NAPT) [57]

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2)

Enc(SIP1,SP1)=Enc(SIP2,SP2)⇒(SIP1,SP1)=(SIP2,SP2)

Yes PrefixMatch

L3 LB (ECMP) [58]
(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇔Enc(SIP1,DIP1,SP1,DP1,P1) = Enc(SIP2,DIP2,SP2,DP2,P2)
Yes PrefixMatch

L4 LB [4]
(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇔Enc(SIP1,DIP1,SP1,DP1,P1) = Enc(SIP2,DIP2,SP2,DP2,P2)
Yes PrefixMatch

H
T

T
P HTTP Proxy

/ Cache [25, 4, 10]
Match(Request-URI, HTTP Header)
=Match�(Enc(Request-URI), Enc(HTTP Header))

Yes KeywordMatch

D
ee

p
Pa

ck
et

In
sp

ec
tio

n
(D

PI
) Parental Filter [10]

Match(Request-URI, HTTP Header)
=Match�(Enc(Request-URI), Enc(HTTP Header))

Yes KeywordMatch

Data Exfiltration
/ Watermark
Detection [56]

Match(Watermark, Stream)
=Match�(Enc(Watermark), Enc(Stream))

Yes KeywordMatch

Match(Keyword, Stream)=
Match�(Enc(Keyword), Enc(Stream))

Yes KeywordMatch

Intrusion
Detection [59, 47]

RegExpMatch(RegExp, Stream)
=RegExpMatch�(Enc(RegExp), Enc(Stream))

Partially KeywordMatch

Run scripts,
cross-flow analysis, or other advanced (e.g. statistical) tools

No -

Table 1: Middleboxes supported by Embark. The second column indicates an encryption functionality that is sufficient to support
the core functionality of the middlebox. Appendix §A demonstrates this sufficiency. “Support” indicates whether Embark supports
this functionality and “Scheme” is the encryption scheme Embark uses to support it. Legend: Enc denotes a generic encryption
protocol, SIP = source IP address, DIP = destination IP, SP = source port, DP = destination port, P = protocol, E[] = a range of E,
⇔ denotes “if and only if”, Match(x,s) indicates if x is a substring of s, and Match� is the encrypted equivalent of Match. Thus,
(SIP, DIP, SP, DP, P) denotes the tuple describing a connection.

PrefixMatch making them infeasible for our network
setting. At the same time, PrefixMatch provides stronger
security guarantees than these schemes: PrefixMatch
does not reveal the order of encrypted packet fields, while
OPE reveals the total ordering among all fields. We de-
signed PrefixMatch specifically for Embark’s networking
setting, which enabled such improvements over OPE.

From a systems design perspective, one of the key in-
sights behind Embark is to keep packet formats and header
classification algorithms unchanged. An encrypted IP
packet is structured just as a normal IP packet, with
each field (e.g., source address) containing an encrypted
value of that field. This strategy ensures that encrypted

packets never appear invalid, e.g., to existing network
interfaces, forwarding algorithms, and error checking.
Moreover, due to PrefixMatch’s functionality, header-
based middleboxes can run existing highly-efficient
packet classification algorithms [34] without modifi-
cation, which are among the more expensive tasks in
software middleboxes [52]. Furthermore, even software-
based NFV deployments use some hardware forwarding
components, e.g. NIC multiqueue flow hashing [5],
‘whitebox’ switches [12], and error detection in NICs and
switches [5, 2]; Embark is also compatible with these.

Embark’s unifying strategy was to reduce the core func-
tionality of the relevant middleboxes to two basic opera-

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 257

tions over different fields of a packet: prefix and keyword
matching, as listed in Table 1. This results in an encrypted
packet that simultaneously supports these middleboxes.

We implemented and evaluated Embark on EC2.
Embark supports the core functionality of a wide-range
of middleboxes as listed in Table 1, and elaborated in
Appendix A. In our evaluation, we showed that Embark
supports a real example for each middlebox category in
Table 1. Further, Embark imposes negligible throughput
overheads at the service provider: for example, a single-
core firewall operating over encrypted data achieves
9.8Gbps, equal to the same firewall over unencrypted
data. Our enterprise gateway can tunnel traffic at 9.6
Gbps on a single core; a single server can easily support
10Gbps for a small-medium enterprise.

2 Overview
In this section, we present an overview of Embark.

2.1 System Architecture
Embark uses the same architecture as APLOMB [54],
a system which redirects an enterprise’s traffic to the
cloud for middlebox processing. Embark augments this
architecture with confidentiality protection.

In the APLOMB setup, there are two parties: the enter-
prise(s) and the service provider or cloud (SP). The enter-
prise runs a gateway (GW) which sends traffic to middle-
boxes (MB) running in the cloud; in practice, this cloud
may be either a public cloud service (such as EC2), or an
ISP-supported service running at a Central Office (CO).

We illustrate the two redirection setups from APLOMB
in Fig. 1. The first setup, in Fig. 1(a), occurs when the
enterprise communicates with an external site: traffic
goes to the cloud and back before it is sent out to the
Internet. It is worth mentioning that APLOMB allows an
optimization that saves on bandwidth and latency relative
to Fig. 1(a): the traffic from SP can go directly to the exter-
nal site and does not have to go back through the gateway.
Embark does not allow this optimization fundamentally:
the traffic from SP is encrypted and cannot be understood
by an external site. Nonetheless, as we demonstrate in §6,
for ISP-based deployments this overhead is negligible.
For traffic within the same enterprise, where the key is
known by two gateways owned by the same company, we
can support the optimization as shown in Fig. 1(b).

We do not delve further into the details and motivation
of APLOMB’s setup, but instead refer the reader to [54].

2.2 Threat Model
Clients adopt cloud services for decreased cost and ease
of management. Providers are known and trusted to
provide good service. However, while clients trust cloud
providers to perform their services correctly, there is an
increasing concern that cloud providers may access or
leak confidential data in the process of providing service.

Reports in the popular press describe companies selling
customer data to marketers [20], disgruntled employees
snooping or exporting data [16], and hackers gaining
access to data on clouds [60, 23]. This type of threat is
referred to as an ‘honest but curious’ or ‘passive’ [33]
attacker: a party who is trusted to handle the data and
deliver service correctly, but who looks at the data, and
steals or exports it. Embark aims to stop these attackers.
Such an attacker differs from the ‘active’ attacker, who
manipulates data or deviates from the protocol it is sup-
posed to run [33]. We consider that such a passive attacker
has gained access to all the data at SP. This includes any
traffic and communication SP receives from the gateway,
any logged information, cloud state, and so on.

We assume that the gateways are managed by the en-
terprise and hence trusted; they do not leak information.

Some middleboxes (such as intrusion or exfiltration
detection) have a threat model of their own about the two
endpoints communicating. For example, intrusion detec-
tion assumes that one of the endpoints could misbehave,
but at most one of them misbehaves [47]. We preserve
these threat models unchanged. These applications rely
on the middlebox to detect attacks in these threat models.
Since we assume the middlebox executes its functions
correctly and Embark preserves the functionality of these
middleboxes, these threat models are irrelevant to the
protocols in Embark, and we will not discuss them again.

2.3 Encryption Overview
To protect privacy, Embark encrypts the traffic passing
through the service provider (SP). Embark encrypts both
the header and the payload of each packet, so that SP does
not see this information. We encrypt headers because
they contain information about the endpoints.

Embark also provides the cloud provider with a set of
encrypted rules. Typically, header policies like firewall
rules are generated by a local network administrator.
Hence, the gateway knows these rules, and these rules
may or may not be hidden from the cloud. DPI and
filtering policies, on the other hand, may be private to
the enterprise (as in exfiltration policies), known by both
parties (as in public blacklists), or known only by the
cloud provider (as in proprietary malware signatures).
We discuss how rules are encrypted, generated and
distributed given these different trust settings in §4.2.

As in Fig. 1, the gateway has a secret key k; in the setup
with two gateways, they share the same secret key. At
setup time, the gateway generates the set of encrypted
rules using k and provides them to SP. Afterwards, the
gateway encrypts all traffic going to the service provider
using Embark’s encryption schemes. The middleboxes at
SP process encrypted traffic, comparing the traffic against
the encrypted rules. After the processing, the middleboxes
will produce encrypted traffic which SP sends back to the

3

258 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Enterprise

client

External site

gateway

Service
provider

middleboxes

(a) Enterprise to external site communication

Enterprise 1

client
gateway 1

Enterprise 2

server
gateway 2

middleboxes

Service provider

(b) Enterprise to enterprise communication

Figure 1: System architecture. APLOMB and NFV system setup with Embark encryption at the gateway. The arrows indicate traffic
from the client to the server; the response traffic follows the reverse direction.

gateway. The gateway decrypts the traffic using the key k.
Throughout this process, middleboxes at SP handle

only encrypted traffic and never access the decryption
key. On top of Embark’s encryption, the gateway can
use a secure tunneling protocol, such as SSL or IPSec to
secure the communication to SP.
Packet encryption. A key idea is to encrypt packets
field-by-field. For example, an encrypted packet will
contain a source address that is an encryption of the
original packet’s source address. We ensure that the
encryption has the same size as the original data, and
place any additional encrypted information or metadata
in the options field of a packet. Embark uses three encryp-
tion schemes to protect the privacy of each field while
allowing comparison against encrypted rules at the cloud:
• Traditional AES: provides strong security and no

computational capabilities.
• KeywordMatch: allows the provider to detect if an

encrypted value in the packet is equal to an encrypted
rule; does not allow two encrypted values to be
compared to each other.

• PrefixMatch: allows the provider to detect whether or
not an encrypted value lies in a range of rule values –
e.g. addresses in 128.0.0.0/24 or ports between 80-96.

We discuss these cryptographic algorithms in §3.
For example, we encrypt IP addresses using Prefix-

Match. This allows, e.g., a firewall to check whether the
packet’s source IP belongs to a prefix known to be con-
trolled by a botnet – but without learning what the actual
source IP address is. We choose which encryption scheme
is appropriate for each field based on a classification of
middlebox capabilities as in Table 1. In the same table,
we classify middleboxes as operating only over L3/L4
headers, operating only over L3/L4 headers and HTTP
headers, or operating over the entire packet including
arbitrary fields in the connection bytestream (DPI). We
revisit each category in detail in §5.

All encrypted packets are IPv6 because PrefixMatch
requires more than 32 bits to encode an encrypted IP
address and because we expect more and more service
providers to be moving to IPv6 by default in the future.
This is a trivial requirement because it is easy to convert
from IPv4 to IPv6 (and back) [42] at the gateway. Clients

may continue using IPv4 and the tunnel connecting the
gateway to the provider may be either v4 or v6.

Example. Fig. 2 shows the end-to-end flow of a packet
through three example middleboxes in the cloud, each
middlebox operating over an encrypted field. Suppose the
initial packet was IPv4. First, the gateway converts the
packet from IPv4 to IPv6 and encrypts it. The options field
now contains some auxiliary information which will help
the gateway decrypt the packet later. The packet passes
through the firewall which tries to match the encrypted
information from the header against its encrypted rule,
and decides to allow the packet. Next, the exfiltration
device checks for any suspicious (encrypted) strings in
data encrypted for DPI and not finding any, it allows the
packet to continue to the NAT. The NAT maps the source
IP address to a different IP address. Back at the enterprise,
the gateway decrypts the packet, except for the source IP
written by the NAT. It converts the packet back to IPv4.

2.4 Architectural Implications and Com-
parison to BlindBox

When compared to BlindBox, Embark provides broader
functionality and better performance. Regarding
functionality, BlindBox [55] enables equality-based
operations on encrypted payloads of packets, which
supports certain DPI devices. However, this excludes
middleboxes such as firewalls, proxies, load balancers,
NAT, and those DPI devices that also examine packet
headers, because these need an encryption that is com-
patible with packet headers and/or need to perform range
queries or prefix matching.

The performance improvement comes from the differ-
ent architectural setting of Embark, which provides a set
of interesting opportunities. In BlindBox, two arbitrary
user endpoints communicate over a modified version of
HTTPS. BlindBox requires 97 seconds to perform the
initial handshake, which must be performed for every
new connection. However, in the Embark context, this
exchange can be performed just once at the gateway
because the connection between the gateway and the
cloud provider is long-lived. Consequently, there is no
per-user-connection overhead.

The second benefit is increased deployability. In Em-
bark, the gateway encrypts traffic whereas in BlindBox

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 259

gateway

rewall
block from

19::*/8

exltration
detection

match
0xE932CB?

NAT
client

sourceIP: 128.0...
destIP: 28.1...
payload: password

sourceIP: 8:9::
destIP: 199:2::
options: x78d1
payload: x582A

sourceIP: 8:9::
destIP: 199:2::
options: x78d1
payload: x582A

sourceIP: 0::ffff:8.8.8.8
destIP: 199:2::
options: x78d1
payload: x582A

gateway
sourceIP: 8.8.8.8
destIP: 28.1...
payload: password

server

no!allow!

from: 8:9::
to: 0:ffff:8.8.8.8

Figure 2: Example of packet flow through a few middleboxes. Red in bold indicates encrypted data.

the end hosts do. Hence, deployability improves because
the end hosts do not need to be modified.

Finally, security improves in the following way. Blind-
Box has two security models: a stronger one to detect
rules that are ‘exact match’ substrings, and a weaker one
to detect rules that are regular expressions. The more
rules there are, the higher the per-connection setup cost is.
Since there is no per-connection overhead in Embark, we
can afford having more rules. Hence, we convert many
regular expressions to a set of exact-match strings. For
example /hello[1-3]/ is equivalent to exact matches on
"hello1", "hello2", "hello3". Nonetheless, many regular
expressions remain too complex to do so – if the set of
potential exact matches is too large, we leave it as a reg-
ular expression. As we show in §6, this approach halves
the number of rules that require using the weaker security
model, enabling more rules in the stronger security model.

In the rest of the paper, we do not revisit these archi-
tectural benefits, but focus on Embark’s new capabilities
that allow us to outsource a complete set of middleboxes.

2.5 Security guarantees
We formalize and prove the overall guarantees of Embark
in our extended paper. In this version, we provide only a
high-level description. Embark hides the values of header
and payload data, but reveals some information desired
for middlebox processing. The information revealed is
the union of the information revealed by PrefixMatch
and KeywordMatch, as detailed in §3. Embark reveals
more than is strictly necessary for the functionality, but it
comes close to this necessary functionality. For example,
a firewall learns if an encrypted IP address matches an
encrypted prefix, without learning the value of the IP
address or the prefix. A DPI middlebox learns whether a
certain byte offset matches any string in a DPI ruleset.

3 Cryptographic Building Blocks
In this section, we present the building blocks Embark
relies on. Symmetric-key encryption (based on AES)
is well known, and we do not discuss it here. Instead,
we briefly discuss KeywordMatch (introduced by [55],
to which we refer the reader for details) and more
extensively discuss PrefixMatch, a new cryptographic
scheme we designed for this setting. When describing
these schemes, we refer to the encryptor as the gateway

whose secret key is k and to the entity computing on the
encrypted data as the service provider (SP).

3.1 KeywordMatch
KeywordMatch is an encryption scheme using which SP
can check if an encrypted rule (the “keyword”) matches
by equality an encrypted string. For example, given an
encryption of the rule “malicious”, and a list of encrypted
strings [Enc(“alice”), Enc(“malicious”), Enc(“alice”)],
SP can detect that the rule matches the second string, but
it does not learn anything about the first and third strings,
not even that they are equal to each other. KeywordMatch
provides typical searchable security guarantees, which
are well studied: at a high level, given a list of encrypted
strings, and an encrypted keyword, SP does not learn
anything about the encrypted strings, other than which
strings match the keyword. The encryption of the strings
is randomized, so it does not leak whether two encrypted
strings are equal to each other, unless, of course, they
both match the encrypted keyword. We use the scheme
from [55] and hence do not elaborate on it.

3.2 PrefixMatch
Many middleboxes perform detection over prefixes or
ranges of IP addresses or port numbers (i.e. packet clas-
sification). To illustrate PrefixMatch, we use IP addresses
(IPv6), but the scheme works with ports and other value
domains too. For example, a network administrator
might wish to block access to all servers hosted by MIT,
in which case the administrator would block access to
the prefix 0::ffff:18.0.0.0/104, i.e., 0::ffff:18.0.0.0/104–
0::ffff:18.255.255.255/104. PrefixMatch enables a mid-
dlebox to tell whether an encrypted IP address v lies in an
encrypted range [s1, e1], where s1 = 0::ffff:18.0.0.0/104
and e1 = 0::ffff:18.255.255.255/104. At the same time,
the middlebox does not learn the values of v, s1, or e1.

One might ask whether PrefixMatch is necessary,
or one can instead employ KeywordMatch using the
same expansion technique we used for some (but not
all) regexps in §2.4. To detect whether an IP address
is in a range, one could enumerate all IP addresses in
that range and perform an equality check. However, the
overhead of using this technique for common network
ranges such as firewall rules is prohibitive. For our own
department network, doing so would convert our IPv6
and IPv4 firewall rule set of only 97 range-based rules to

5

260 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

2238 exact-match rules; looking only at IPv4 rules would
still lead to 38M exact-match rules. Hence, for efficiency,
we need a new scheme for matching ranges.

Requirements. Supporting the middleboxes from
Table 1 and meeting our system security and performance
requirements entail the following requirements in design-
ing PrefixMatch. First, PrefixMatch must allow for direct
order comparison (i.e., using ≤/≥) between an encrypted
value Enc(v) and the encrypted endpoints s1 and e1 of a
range, [s1,e1]. This allows existing packet classification
algorithms, such as tries, area-based quadtrees, FIS-trees,
or hardware-based algorithms [34], to run unchanged.

Second, to support the functionality of NAT as in
Table 1, Enc(v) must be deterministic within a flow.
Recall that a flow is a 5-tuple of source IP and port,
destination IP and port, and protocol. Moreover, the
encryption corresponding to two pairs (IP1, port1) and
(IP2, port2) must be injective: if the pairs are different,
their encryption should be different.

Third, for security, we require that nothing leaks about
the value v other than what is needed by the functionality
above. Note that Embark’s middleboxes do not need to
know the order between two encrypted values Enc(v1)
and Enc(v2), but only comparison to endpoints; hence,
PrefixMatch does not leak such order information.
PrefixMatch also provides protection for the endpoints of
ranges: SP should not learn their values, and SP should not
learn the ordering of the intervals. Further, note that the
NAT does not require that Enc(v) be deterministic across
flows; hence, PrefixMatch hides whether two IP addresses
encrypted as part of different flows are equal or not. In
other words, PrefixMatch is randomized across flows.

Finally, both encryption (performed at the gateway)
and detection (performed at the middlebox) should be
practical for typical middlebox line rates. Our Prefix-
Match encrypts in < 0.5μs per value (as we discuss in
§6), and the detection is the same as regular middleboxes
based on the ≤/≥ operators.

Functionality. PrefixMatch encrypts a set of ranges
or prefixes P1, ... , Pn into a set of encrypted prefixes.
The encryption of a prefix Pi consists of one or more
encrypted prefixes: Pi,1...,Pi,ni . Additionally, PrefixMatch
encrypts a value v into an encrypted value Enc(v). These
encryptions have the property that, for all i,

v∈Pi⇔Enc(v)∈Pi,1∪···∪Pi,ni .

In other words, the encryption preserves prefix matching.
For example, suppose that encrypting P =

0::ffff:18.0.0.0/104 results in one encrypted prefix
P = 1234::/16, encrypting v1 = 0::ffff:18.0.0.2 re-
sults in v1 = 1234:db80:85a3:0:0:8a2e:37a0:7334,
and encrypting v2 = 0::ffff:19.0.0.1 results in v2 =
dc2a:108f:1e16:992e:a53b:43a3:00bb:d2c2. We can see
that v1∈P and v2 /∈P.

0:…:0 ffff:...:ffff

P1

I1 I2 I3 I4I0

P0

P2

Figure 3: Example of prefix encryption with PrefixMatch.

3.2.1 Scheme
PrefixMatch consists of two algorithms: EncryptPrefixes
to encrypt prefixes/ranges and EncryptValue to encrypt a
value v.

Prefixes’ Encryption. PrefixMatch takes as input a set
of prefixes or ranges P1 = [s1,e1],...,Pn = [sn,en], whose
endpoints have size len bits. PrefixMatch encrypts each
prefix into a set of encrypted prefixes: these prefixes are
prefix_len bits long. As we discuss below, the choice of
prefix_len depends on the maximum number of prefixes
to be encrypted. For example, prefix_len=16 suffices for
a typical firewall rule set.

Consider all the endpoints si and ei laid out on an
axis in increasing order as in Fig. 3. Add on this axis the
endpoints of P0, the smallest and largest possible values,
0 and 2len−1. Consider all the non-overlapping intervals
formed by each consecutive pair of such endpoints. Each
interval has the property that all points in that interval
belong to the same set of prefixes. For example, in Fig. 3,
there are two prefixes to encrypt: P1 and P2. PrefixMatch
computes the intervals I0, ... , I4. Two or more prefix-
es/ranges that overlap in exactly one endpoint define a
one-element interval. For example, consider encrypting
these two ranges [13::/16, 25::/16] and [25::/16, 27::/16];
they define three intervals: [13::/16, 25::/16-1], [25::/16,
25::/16], [25::/16+1, 27::/16].

Each interval belongs to a set of prefixes. Let
prefixes(I) denote the prefixes of interval I. For example,
prefixes(I2)={P0,P1,P2}.

PrefixMatch now assigns an encrypted prefix to each
interval. The encrypted prefix is simply a random number
of size prefix_len. Each interval gets a different random
value, except for intervals that belong to the same pre-
fixes. For example, in Fig. 3, intervals I0 and I4 receive the
same random number because prefixes(I0)=prefixes(I4).

When a prefix overlaps partially with another prefix,
it will have more than one encrypted prefix because it is
broken into intervals. For example, I1 was assigned a ran-
dom number of 0x123c and I2 of 0xabcc. The encryption
of P1 in Fig. 3 will be the pair (123c ::/16, abcc ::/16).

Since the encryption is a random prefix, the encryption
does not reveal the original prefix. Moreover, the fact that
intervals pertaining to the same set of prefixes receive the
same encrypted number hides where an encrypted value
matches, as we discuss below. For example, for an IP
address v that does not match either P1 or P2, the cloud

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 261

provider will not learn whether it matches to the left or
to the right of P1 ∪P2 because I0 and I4 receive the same
encryption. The only information it learns about v is that
v does not match either P1 or P2.

We now present the EncryptPrefixes procedure, which
works the same for prefixes or ranges.

EncryptPrefixes (P1, ..., Pn, prefix_len, len):
1: Let si and ei be the endpoints of Pi. // Pi =[si,ei]

2: Assign P0← [0,2len−1]
3: Sort all endpoints in ∪iPi in increasing order
4: Construct non-overlapping intervals I0, ... , Im

from the endpoints as explained above. For each
interval Ii, compute prefixes(Ii), the list of prefixes
Pi1 ,...,Pim that contain Ii.

5: Let I0, ... , Im each be a distinct random value of
size prefix_len.

6: For all i, j with i < j if prefixes(Ii) = prefixes(I j),
set I j ← Ii

7: The encryption of Pi is Pi =
{I j/prefix_len, for all j s.t. Pi ∈ prefixes(I j)}.
The encrypted prefixes are output sorted by value
(as a means of randomization).

8: Output P1,..., Pn and the interval map [Ii→ Ii]

Value Encryption. To encrypt a value v, PrefixMatch
locates the one interval I such that v ∈ I. It then looks up
I in the interval map computed by EncryptPrefixes and
sets I to be the prefix of the encryption of v. This ensures
that the encrypted v, v, matches I/prefix_len. The suffix
of v is chosen at random. The only requirement is that
it is deterministic. Hence, the suffix is chosen based on
a pseudorandom function [32], prfsuffix_len, seeded in a
given seed seed, where suffix_len = len− prefix_len. As
we discuss below, the seed used by the gateway depends
on the 5-tuple of a connection (SIP, SP, DIP, DP, P).

For example, if v is 0::ffff:127.0.0.1, and the assigned
prefix for the matched interval is abcd :: /16, a possible
encryption given the ranges encrypted above is Enc(v)=
abcd : e f 01 : 2345 : 6789 : abcd : e f 01 : 2345 : 6789. Note
that the encryption does not retain any information about
v other than the interval it matches in because the suffix
is chosen (pseudo)randomly. In particular, given two
values v1 and v2 that match the same interval, the order of
their encryptions is arbitrary. Thus, PrefixMatch does not
reveal order.

EncryptValue (seed, v, suffix_len, interval map):
1: Run binary search on interval map to locate the

interval I such that v∈ I.
2: Lookup I in the interval map.
3: Output

Enc(v)= I�prfsuffix_len
seed (v) (1)

Rule Encryption

Data Encryption

Data Decryption

Service
Provider

Encryption requests: rules and state

Encrypted rules and state

Encrypted data packets

Encrypted payload metadata

Encrypted data packetsPlaintext
packets

Plaintext
packets

Gateway

Figure 4: Communication between the cloud and gateway
services: rule encryption, data encryption, and data decryption.

Comparing encrypted values against rules. Determin-
ing if an encrypted value matches an encrypted prefix is
straightforward: the encryption preserves the prefix and
a middlebox can use the regular ≤/≥ operators. Hence, a
regular packet classification can be run at the firewall with
no modification. Comparing different encrypted values
that match the same prefix is meaningless, and returns a
random value.

3.2.2 Security Guarantees
PrefixMatch hides the prefixes and values encrypted with
EncryptPrefixes and EncryptValue. PrefixMatch reveals
matching information desired to enable functionality at
the cloud provider. Concretely, the cloud provider learns
the number of intervals and which prefixes overlap in
each interval, but no additional information on the size,
order or endpoints of these intervals. Moreover, for every
encrypted value v, it learns the indexes of the prefixes
that contain v (which is the functionality desired of the
scheme), but no other information about v. For any two
encrypted values Enc(v) and Enc(v�), the cloud provider
learns if they are equal only if they are encrypted as part
of the same flow (which is the functionality desired for
the NAT), but it does not learn any other information
about their value or order. Hence, PrefixMatch leaks less
information than order-preserving encryption, which
reveals the order of encrypted prefixes/ranges.

Since EncryptValue is seeded in a per-connection
identifier, an attacker cannot correlate values across
flows. Essentially, there is a different key per flow. In
particular, even though EncryptValue is deterministic
within a flow, it is randomized across flows: for example,
the encryption of the same IP address in different flows is
different because the seed differs per flow.

We formalize and prove the security guarantees of
PrefixMatch in our extended paper.

4 Enterprise Gateway
The gateway serves two purposes. First, it redirects traffic
to/from the cloud for middlebox processing. Second, it
provides the cloud with encryptions of rulesets. Every
gateway is configured statically to tunnel traffic to a fixed
IP address at a single service provider point of presence. A
gateway can be logically thought of as three services: the

7

262 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

rule encryption service, the pipeline from the enterprise
to the cloud (Data encryption), and the pipeline from
the cloud to the enterprise (Data decryption). All three
services share access to the PrefixMatch interval map and
the private key k. Fig. 4 illustrates these three services and
the data they send to and from the cloud provider.

We design the gateway with two goals in mind:

Format-compatibility: in converting plaintext traffic
to encrypted traffic, the encrypted data should be struc-
tured in such a way that the traffic appears as normal
IPv6 traffic to middleboxes performing the processing.
Format-compatibility allows us to leave fast-path oper-
ations unmodified not only in middlebox software, but
also in hardware components like NICs and switches; this
results in good performance at the cloud.

Scalability and Low Complexity: the gateway should
perform only inexpensive per-packet operations and
should be parallelizable. The gateway should require only
a small amount of configuration.

4.1 Data Encryption and Decryption
As shown in Table 1, we categorize middleboxes as
Header middleboxes, which operate only on IP and
transport headers; DPI middleboxes, which operate on
arbitrary fields in a connection bytestream; and HTTP
middleboxes, which operate on values in HTTP headers
(these are a subclass of DPI middleboxes). We discuss
how each category of data is encrypted/decrypted in order
to meet middlebox requirements as follows.

4.1.1 IP and Transport Headers
IP and Transport Headers are encrypted field by field
(e.g., a source address in an input packet results in an
encrypted source address field in the output packet) with
PrefixMatch. We use PrefixMatch for these fields be-
cause many middleboxes perform analysis over prefixes
and ranges of values – e.g., a firewall may block all
connections from a restricted IP prefix.

To encrypt a value with PrefixMatch’s Encrypt-
Value, the gateway seeds the encryption with seed =
prfk(SIP, SP, DIP, DP, P), a function of both the key
and connection information using the notation in Table 1.
Note that in the system setup with two gateways, the gate-
ways generate the same encryption because they share k.

When encrypting IP addresses, two different IP
addresses must not map to the same encryption because
this breaks the NAT. To avoid this problem, encrypted IP
addresses in Embark must be IPv6 because the probability
that two IP addresses get assigned to the same encryption
is negligibly low. The reason is that each encrypted prefix
contains a large number of possible IP addresses. Suppose
we have n distinct firewall rules, m flows and a len-bit
space, the probability of a collision is approximately:

1−e
−m2(2n+1)

2len+1 (2)
Therefore, if len=128 (which is the case when we use

IPv6), the probability is negligible in a realistic setting.
When encrypting ports, it is possible to get collisions

since the port field is only 16-bit. However, this will not
break the NAT’s functionality as long as the IP address
does not collide, because NATs (and other middleboxes
that require injectivity) consider both IP addresses and
ports. For example, if we have two flows with source IP
and source ports of (SIP,SP1) and (SIP,SP2) with SP1 �=
SP2, the encryption of SIP will be different in the two flows
because the encryption is seeded in the 5-tuple of a con-
nection. As we discuss in Appendix A, the NAT table can
be larger for Embark, but the factor is small in practice.

Decryption. PrefixMatch is not reversible. To enable
packet decryption, we store the AES-encrypted values
for the header fields in the IPv6 options header. When the
gateway receives a packet to decrypt, if the values haven’t
been rewritten by the middlebox (e.g., NAT), it decrypts
the values from the options header and restores them.

Format-compatibility. Our modifications to the IP and
transport headers place the encrypted prefix match data
back into the same fields as the unencrypted data was
originally stored; because comparisons between rules
and encrypted data rely on ≤≥, just as unencrypted data,
this means that operations performing comparisons on IP
and transport headers remain entirely unchanged at the
middlebox. This ensures backwards compatibility with
existing software and hardware fast-path operations.
Because per-packet operations are tightly optimized in
production middleboxes, this compatibility ensures good
performance at the cloud despite our changes.

An additional challenge for format compatibility is
where to place the decryptable AES data; one option
would be to define our own packet format, but this
could potentially lead to incompatibilities with existing
implementations. By placing it in the IPv6 options header,
middleboxes can be configured to ignore this data.2

4.1.2 Payload Data
The connection bytestream is encrypted with Keyword-
Match. Unlike PrefixMatch, the data in all flows is
encrypted with the same key k. The reason is that Key-
wordMatch is randomized and it does not leak equality
patterns across flows.

This allows Embark to support DPI middleboxes,
such as intrusion detection or exfiltration prevention.
These devices must detect whether or not there exists

2It is a common misconception that middleboxes are incompatible
with IP options. Commercial middleboxes are usually aware of IP
options but many administrators configure the devices to filter or drop
packets with certain kinds of options enabled.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 263

an exact match for an encrypted rule string anywhere
in the connection bytestream. Because this encrypted
payload data is over the bytestream, we need to generate
encrypted values which span ‘between’ packet payloads.
Searchable Encryption schemes, which we use for
encrypted DPI, require that traffic be tokenized and that a
set of fixed length substrings of traffic be encrypted along
a sliding window – e.g., the word malicious might be
tokenized into ‘malici’, ‘alicio’, ‘liciou’, ‘icious’. If the
term ‘malicious’ is divided across two packets, we may
not be able to tokenize it properly unless we reconstruct
the TCP bytestream at the gateway. Hence, if DPI is
enabled at the cloud, we do exactly this.

After reconstructing and encrypting the TCP
bytestream, the gateway transmits the encrypted
bytestream over an ‘extension’, secondary channel that
only those middleboxes which perform DPI operations
inspect. This channel is not routed to other middle-
boxes. We implement this channel as a persistent TCP
connection between the gateway and middleboxes. The
bytestream in transmission is associated with its flow
identifier, so that the DPI middleboxes can distinguish
between bytestreams in different flows. DPI middleboxes
handle both the packets received from the extension
channel as well as the primary channel containing the
data packets; we elaborate on this mechanism in [55].
Hence, if an intrusion prevention system finds a signature
in the extension channel, it can sever or reset connectivity
for the primary channel.
Decryption. The payload data is encrypted with AES and
placed back into the packet payload – like PrefixMatch,
KeywordMatch is not reversible and we require this
data for decryption at the gateway. Because the exten-
sion channel is not necessary for decryption, it is not
transmitted back to the gateway.
Format-compatibility. To middleboxes which only
inspect/modify packet headers, encrypting payloads has
no impact. By placing the encrypted bytestreams in the
extension channel, the extra traffic can be routed past and
ignored by middleboxes which do not need this data.

DPI middleboxes which do inspect payloads must
be modified to inspect the extension channel alongside
the primary channel, as described in [55]; DPI devices
are typically implemented in software and these modi-
fications are both straightforward and introduce limited
overhead (as we will see in §6).

4.1.3 HTTP Headers
HTTP Headers are a special case of payload data.
Middleboxes such as web proxies do not read arbitrary
values from packet payloads: the only values they read
are the HTTP headers. They can be categorized as
DPI middleboxes since they need to examine the TCP
bytesteam. However, due to the limitation of full DPI

support, we treat these values specially compared to other
payload data: we encrypt the entire (untokenized) HTTP
URI using a deterministic form of KeywordMatch.

Normal KeywordMatch permits comparison between
encrypted values and rules, but not between one value
and another value; deterministic KeywordMatch permits
two values to be compared as well. Although this is a
weaker security guarantee relative to KeywordMatch,
it is necessary to support web caching which requires
comparisons between different URIs. The cache hence
learns the frequency of different URIs, but cannot
immediately learn the URI values. This is the only field
which we encrypt in the weaker setting. We place this
encrypted value in the extension channel; hence, our
HTTP encryption has the same format-compatibility
properties as other DPI devices.

Like other DPI tasks, this requires parsing the entire
TCP bytestream. However, in some circumstances we
can extract and store the HTTP headers statelessly; so
long as HTTP pipelining is disabled and packet MTUs are
standard-sized (>1KB), the required fields will always
appear contiguously within a single packet. Given that
SPDY uses persistent connections and pipelined requests,
this stateless approach does not apply to SPDY.
Decryption. The packet is decrypted as normal using the
data stored in the payload; IP options are removed.

4.2 Rule Encryption
Given a ruleset for a middlebox type, the gateway
encrypts this ruleset with either KeywordMatch or Prefix-
Match, depending on the encryption scheme used by that
middlebox as in Table 1. For example, firewall rules are
encrypted using PrefixMatch. As a result of encryption,
some rulesets expand and we evaluate in §6 by how
much. For example, a firewall rule containing an IP prefix
that maps to two encrypted prefixes using PrefixMatch
becomes two rules, one for each encrypted prefix. The
gateway should generate rules appropriately to account
for the fact that a single prefix maps to encrypted prefixes.
For example, suppose there is a middlebox that counts the
number of connections to a prefix P. P maps to 2 encrypted
prefixes P1 and P2. If the original middlebox rule is ‘if v
in P then counter++’, the gateway should gener-
ate ‘if v in P1 or v in P2 then counter++’.

Rules for firewalls and DPI services come from a va-
riety of sources and can have different policies regarding
who is or isn’t allowed to know the rules. For example,
exfiltration detection rules may include keywords for
company products or unreleased projects which the client
may wish to keep secret from the cloud provider. On
the other hand, many DPI rules are proprietary features
of DPI vendors, who may allow the provider to learn
the rules, but not the client (gateway). Embark supports
three different models for KeywordMatch rules which

9

264 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

allow clients and providers to share rules as they are
comfortable: (a) the client knows the rules, and the
provider does not; (b) the provider knows the rule, and
the client does not; or (c) both parties know the rules.
PrefixMatch rules only supports (a) and (c) – the gateway
must know the rules to perform encryption properly.

If the client is permitted to know the rules, they encrypt
them – either generating a KeywordMatch, AES, or
PrefixMatch rule – and send them to the cloud provider.
If the cloud provider is permitted to know the rules as
well, the client will send these encrypted rules annotated
with the plaintext; if the cloud provider is not allowed,
the client sends only the encrypted rules in random order.

If the client (gateway) is not permitted to know the
rules, we must somehow allow the cloud provider to learn
the encryption of each rule with the client’s key. This is
achieved using a classical combination of Yao’s garbled
circuits [65] with oblivious transfer [40], as originally
applied by BlindBox [55]. As in BlindBox, this exchange
only succeeds if the rules are signed by a trusted third
party (such as McAffee, Symantec, or EmergingThreats)
– the cloud provider should not be able to generate their
own rules without such a signature as it would allow the
cloud provider to read arbitrary data from the clients’
traffic. Unlike BlindBox, this rule exchange occurs
exactly once – when the gateway initializes the rule.
After this setup, all connections from the enterprise are
encrypted with the same key at the gateway.

Rule Updates. Rule updates need to be treated carefully
for PrefixMatch. Adding a new prefix/range or removing
an existing range can affect the encryption of an existing
prefix. The reason is that the new prefix can overlap with
an existing one. In the worst case, the encryption of all
the rules needs to be updated.

The fact that the encryption of old rules changes poses
two challenges. The first challenge is the correctness of
middlebox state. Consider a NAT with a translation table
containing ports and IP addresses for active connections.
The encryption of an IP address with EncryptValue
depends on the list of prefixes so an IP address might
be encrypted differently after the rule update, becoming
inconsistent with the NAT table. Thus, the NAT state
must also be updated. The second challenge is a race
condition: if the middlebox adopts a new ruleset while
packets encrypted under the old ruleset are still flowing,
these packets can be misclassified.

To maintain a consistent state, the gateway first runs
EncryptPrefixes for the new set of prefixes. Then, the
gateway announces to the cloud the pending update, and
the middleboxes ship their current state to the gateway.
The gateway updates this state by producing new encryp-
tions and sends the new state back to the middleboxes.
During all this time, the gateway continued to encrypt
traffic based on the old prefixes and the middleboxes

processed it based on the old rules. Once all middleboxes
have the new state, the gateway sends a signal to the cloud
that it is about to ‘swap in’ the new data. The cloud buffers
incoming packets after this signal until all ongoing pack-
ets in the pipeline finish processing at the cloud. Then, the
cloud signals to all middleboxes to ‘swap in’ the new rules
and state; and finally it starts processing new packets.
For per-packet consistency defined in [51], the buffering
time is bounded by the packet processing time of the
pipeline, which is typically hundreds of milliseconds.
However, for per-flow consistency, the buffering time
is bounded by the lifetime of a flow. Buffering for such
a long time is not feasible. In this case, if the cloud has
backup middleboxes, we can use the migration avoidance
scheme [43] for maintaining consistency. Note that all
changes to middleboxes are in the control plane.

5 Middleboxes: Design & Implementation
Embark supports the core functionality of a set of
middleboxes as listed in Table 1. Table 1 also lists the
functionality supported by Embark. In Appendix A, we
review the core functionality of each middlebox and
explain why the functionality in Table 1 is sufficient to
support these middleboxes. In this section, we focus on
implementation aspects of the middleboxes.

5.1 Header Middleboxes
Middleboxes which operate on IP and transport headers
only include firewalls, NATs, and L3/L4 load balancers.
Firewalls are read-only, but NATs and L4 load balancers
may rewrite IP addresses or port values. For header
middleboxes, per-packet operations remain unchanged
for both read and write operations.

For read operations, the firewall receives a set of
encrypted rules from the gateway and compares them di-
rectly against the encrypted packets just as normal traffic.
Because PrefixMatch supports ≤ and ≥, the firewall may
use any of the standard classification algorithms [34].

For write operations, the middleboxes assign values
from an address pool; it receives these encrypted pool
values from the gateway during the rule generation
phase. These encrypted rules are marked with a special
suffix reserved for rewritten values. When the gateway
receives a packet with such a rewritten value, it restores
the plaintext value from the pool rather than decrypting
the value from the options header.

Middleboxes can recompute checksums as usual after
they write.

5.2 DPI Middleboxes
We modify middleboxes which perform DPI operations
as in BlindBox [55]. The middleboxes search through
the encrypted extension channel – not the packet pay-
loads themselves – and block or log the connection if a
blacklisted term is observed in the extension. Embark

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 265

also improves the setup time and security for regular
expression rules as discussed in §2.4.

5.3 HTTP Middleboxes
Parental filters and HTTP proxies read the HTTP URI
from the extension channel. If the parental filter observes
a blacklisted URI, it drops packets that belong to the
connection.

The web proxy required the most modification of any
middlebox Embark supports; nonetheless, our proxy
achieves good performance as we will discuss in §6. The
proxy caches HTTP static content (e.g., images) in order
to improve client-side performance. When a client opens
a new HTTP connection, a typical proxy will capture the
client’s SYN packet and open a new connection to the
client, as if the proxy were the web server. The proxy
then opens a second connection in the background to
the original web server, as if it were the client. When a
client sends a request for new content, if the content is
in the proxy’s cache, the proxy will serve it from there.
Otherwise, the proxy will forward this request to the web
server and cache the new content.

The proxy has a map of encrypted file path to encrypted
file content. When the proxy accepts a new TCP con-
nection on port 80, the proxy extracts the encrypted URI
for that connection from the extension channel and looks
it up in the cache. The use of deterministic encryption
enables the proxy to use a fast search data structure/index,
such as a hash map, unchanged. We have two possible
cases: there is a hit or a miss. If there is a cache hit, the
proxy sends the encrypted file content from the cache
via the existing TCP connection. Even without being
able to decrypt IP addresses or ports, the proxy can still
accept the connection, as the gateway encrypts/decrypts
the header fields transparently. If there is a cache miss,
the proxy opens a new connection and forwards the
encrypted request to the web server. Recall that the traffic
bounces back to gateway before being forwarded to the
web server, so that the gateway can decrypt the header
fields and payloads. Conversely, the response packets
from the web server are encrypted by the gateway and
received by the proxy. The proxy then caches and sends
the encrypted content back. The content is separated into
packets. Packet payloads are encrypted on a per-packet
basis. Hence, the gateway can decrypt them correctly.

5.4 Limitations
Embark supports the core functionality of a wide-range
of middleboxes, as listed in Table 1, but not all middlebox
functionality one could envision outsourcing. We now
discuss some examples. First, for intrusion detection,
Embark does not support regular expressions that cannot
be expanded in a certain number of keyword matches,
running arbitrary scripts on the traffic [47], or advanced
statistical techniques that correlate different flows studied

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

APLOMB Header Header
 + HTTP

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

 0
 2x10

6
 4x10

6
 6x10

6
 8x10

6
 1x10

7
 1.2x10

7
 1.4x10

7
 1.6x10

7

APLOMB Header Header
 + HTTP

P
ac

k
et

s
p
er

 S
ec

o
n
d

Pessimal: min size packets
Realistic (mixed) packets

Maximal: 1500 byte packets
Empirical Trace (m57)

Figure 5: Throughput on a single core at stateless gateway.

 9.5

 9.6

 9.7

 9.8

 9.9

 10

1 2 4

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

of Cores

APLOMB
Embark, Header
Embark, Header+HTTP

Figure 6: Gateway throughput with increasing parallelism.

in the research literature [69].
Second, Embark does not support application-level

middleboxes, such as SMTP firewalls, application-level
gateways or transcoders. These middleboxes parse the
traffic in an application-specific way – such parsing is
not supported by KeywordMatch. Third, Embark does
not support port scanning because the encryption of a
port depends on the associated IP address. Supporting all
these functionalities is part of our future work.

6 Evaluation
We now investigate whether Embark is practical from a
performance perspective, looking at the overheads due to
encryption and redirection. We built our gateway using
BESS (Berkeley Extensible Software Switch, formerly
SoftNIC [35]) on an off-the-shelf 16-core server with
2.6GHz Xeon E5-2650 cores and 128GB RAM; the net-
work hardware is a single 10GbE Intel 82599 compatible
network card. We deployed our prototype gateway in our
research lab and redirected traffic from a 3-server testbed
through the gateway; these three client servers had the
same hardware specifications as the server we used as
our gateway. We deployed our middleboxes on Amazon
EC2. For most experiments, we use a synthetic workload
generated by the Pktgen [63]; for experiments where
an empirical trace is specified we use the m57 patents
trace [26] and the ICTF 2010 trace [62], both in IPv4.

Regarding DPI processing which is based on BlindBox,
we provide experiment results only for the improvements
Embark makes on top of BlindBox, and refer the reader
to [55] for detailed DPI performance.

6.1 Enterprise Performance
We first evaluate Embark’s overheads at the enterprise.

6.1.1 Gateway
How many servers does a typical enterprise require to
outsource traffic to the cloud? Fig. 5 shows the gateway
throughput when encrypting traffic to send to the cloud,

11

266 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

 0 20000
 40000

 60000
 80000

 100000

 120000

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

T
h
ro

u
g
h
p
u
t

(p
p
s)

P
ro

ce
ss

in
g
 T

im
e

(u
s)

Throughput
Processing Time

Figure 7: Throughput as # of PrefixMatch rules increases.

first with normal redirection (as used in APLOMB [54]),
then with Embark’s L3/L4-header encryption, and fi-
nally with L3/L4-header encryption as well as state-
less HTTP/proxy encryption. For empirical traffic traces
with payload encryption (DPI) disabled, Embark averages
9.6Gbps per core; for full-sized packets it achieves over
9.8Gbps. In scalability experiments (Fig. 6) with 4 cores
dedicated to processing, our server could forward at up to
9.7Gbps for empirical traffic while encrypting for headers
and HTTP traffic. There is little difference between the
HTTP overhead and the L3/L4 overhead, as the HTTP en-
cryption only occurs on HTTP requests – a small fraction
of packets. With DPI enabled (not shown), throughput
dropped to 240Mbps per core, suggesting that an enter-
prise would need to devote at least 32 cores to the gateway.
How do throughput and latency at the gateway scale
with the number of rules for PrefixMatch? In §3.2, we
discussed how PrefixMatch stores sorted intervals; every
packet encryption requires a binary search of intervals.
Hence, as the size of the interval map goes larger, we can
expect to require more time to process each packet and
throughput to decrease. We measure this effect in Fig. 7.
On the y1 axis, we show the aggregate per packet through-
put at the gateway as the number of rules from 0 to 100k.
The penalty here is logarithmic, which is the expected per-
formance of the binary search. From 0-10k rules, through-
put drops from 3Mpps to 1.5Mpps; after this point the
performance penalty of additional rules tapers off. Adding
additional 90k rules drops throughput to 1.1Mpps. On the
y2 axis, we measure the processing time per packet, i.e.,
the amount of time for the gateway to encrypt the packet;
the processing time follows the same logarithmic trend.
Is PrefixMatch faster than existing order preserving
algorithms? We compare PrefixMatch to BCLO [21] and
mOPE [48], two prominent order-preserving encryption
schemes. Table 2 shows the results. We can see that
PrefixMatch is about four orders of magnitude faster than
these schemes.

Operation BCLO mOPE PrefixMatch
Encrypt 10K rules 9333μs 6640μs 0.53μs
Encrypt 100K rules 9333μs 8300μs 0.77μs

Decrypt 169μs 0.128μs 0.128μs
Table 2: PrefixMatch’s performance.

What is the memory overhead of PrefixMatch? Storing
10k rules in memory requires 1.6MB, and storing 100k
rules in memory requires 28.5MB – using unoptimized
C++ objects. This overhead is negligible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F
 (

S
it

es
)

Page Load Time (s)

Baseline
Central Office

CDN
EC2

Figure 8: Page load times under different deployments.

6.1.2 Client Performance
We use web performance to understand end-to-end user
experience of Embark. Fig. 8 shows a CDF for the Alexa
top-500 sites loaded through our testbed. We compare
the baseline (direct download) assuming three different
service providers: an ISP hosting services in a Central
Office (CO), a Content-Distribution Network, and a
traditional cloud provider (EC2). The mean RTTs from
the gateway are 60μs, 4ms, and 31ms, respectively. We
deployed Embark on EC2 and used this deployment for
our experiments, but for the CO and CDN we emulated
the deployment with inflated latencies and servers in our
testbed. We ran a pipeline of NAT, firewall and proxy (with
empty cache) in the experiment. Because of the ‘bounce’
redirection Embark uses, all page load times increase by
some fraction; in the median case this increase is less than
50ms for the ISP/Central Office, 100ms for the CDN,
and 720ms using EC2; hence, ISP based deployments
will escape human perception [39] but a CDN (or a cloud
deployment) may introduce human-noticeable overheads.

6.1.3 Bandwidth Overheads
We evaluate two costs: the increase in bandwidth due
to our encryption and metadata, and the increase in
bandwidth cost due to ‘bounce’ redirection.
How much does Embark encryption increase the amount
of data sent to the cloud? The gateway inflates the size of
traffic due to three encryption costs:
• If the enterprise uses IPv4, there is a 20-byte per-packet

cost to convert from IPv4 to IPv6. If the enterprise uses
IPv6 by default, there is no such cost.

• If HTTP proxying is enabled, there are on average 132
bytes per request in additional encrypted data.

• If HTTP IDS is enabled, there is at worst a 5× overhead
on all HTTP payloads [55].

We used the m57 trace to understand how these overheads
would play out in aggregate for an enterprise. On the up-
link, from the gateway to the middlebox service provider,
traffic would increase by 2.5% due to encryption costs for
a header-only gateway. Traffic would increase by 4.3× on
the uplink for a gateway that supports DPI middleboxes.
How much does bandwidth increase between the gateway
and the cloud from using Embark? How much would
this bandwidth increase an enterprises’ networking
costs? Embark sends all network traffic to and from
the middlebox service provider for processing, before

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 267

Application Baseline
Throughput

Embark
Throughput

IP Firewall 9.8Gbps 9.8Gbps
NAT 3.6Gbps 3.5 Gbps
Load Balancer L4 9.8 Gbps 9.8Gbps
Web Proxy 1.1Gbps 1.1Gbps
IDS 85Mbps 166Mbps [55]
Table 3: Middlebox throughput for an empirical workload.

sending that traffic out to the Internet at large.
In ISP contexts, the clients’ middlebox service provider

and network connectivity provider are one and the same
and one might expect costs for relaying the traffic to and
from the middleboxes to be rolled into one service ‘pack-
age;’ given the latency benefits of deployment at central
offices (as we saw in Fig. 8) we expect that ISP-based
deployments are the best option to deploy Embark.

In the cloud service setting the client must pay a
third party ISP to transfer the data to and from the
cloud, before paying that ISP a third time to actually
transfer the data over the network. Using current US
bandwidth pricing [24, 38, 61], we can estimate how
much outsourcing would increase overall bandwidth
costs. Multi-site enterprises typically provision two kinds
of networking costs: Internet access, and intra-domain
connectivity. Internet access typically has high bandwidth
but a lower SLA; traffic may also be sent over shared
Ethernet [24, 61]. Intra-domain connectivity usually
has a private, virtual Ethernet link between sites of the
company with a high SLA and lower bandwidth. Because
bounce redirection is over the ‘cheaper’ link, the overall
impact on bandwidth cost with header-only encryption
given public sales numbers is between 15-50%; with DPI
encryption, this cost increases to between 30-150%.

6.2 Middleboxes
We now evaluate the overheads at each middlebox.
Is throughput reduced at the middleboxes due to Embark?

Table 3 shows the throughput sustained for the apps we
implemented. The IP Firewall, NAT, and Load Balancer
are all ‘header only’ middleboxes; the results shown
compare packet processing over the same dataplane, once
with encrypted IPv6 data and once with unencrypted IPv4
data. The only middlebox for which any overhead is ob-
servable is the NAT – and this is a reduction of only 2.7%.

We re-implemented the Web Proxy and IDS to enable
the bytestream aware operations they require over our
encrypted data. We compare our Web Proxy implemen-
tation with Squid [10] to show Embark can achieve
competitive performance. The Web Proxy sustains the
same throughput with and without encrypted data, but, as
we will present later, does have a higher service time per
cache hit. The IDS numbers compare Snort (baseline) to
the BlindBox implementation; this is not an apples-to-
apples comparison as BlindBox performs mostly exact

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 500
 1000

 1500
 2000

 2500
 3000T

im
e

p
er

 r
eq

u
es

t
(m

s)

Concurrent Connections

Embark Proxy
Unencrypted Proxy

Figure 9: Access time per page against the number of concurrent
connections at the proxy.

matches where Snort matches regular expressions.
In what follows, we provide some further middlebox-

specific benchmarks for the firewall, proxy, and IDS.
Firewalls: Does Embark support all rules in a typical
firewall configuration? How much does the ruleset
“expand” due to encryption?

We tested our firewall with three rulesets provided
to us by a network administrator at our institution and
an IP firewall ruleset from Emerging Threats [3]. We
were able to encode all rules using range and keyword
match encryptions. The size of 3 rulesets did not change
after encryption, while the size of the other ruleset from
Emerging Threats expanded from 1363 to 1370 – a 0.5%
increase. Therefore, we conclude that it has negligible
impact on the firewall performance.
Proxy/Caching: The throughput number shown in
Table 3 is not the typical metric used to measure proxy
performance. A better metric for proxies is how many
connections the proxy can handle concurrently, and
what time-to-service it offers each client. In Fig. 9, we
plot time-to-service against the number of concurrent
connections, and see that it is on average higher for
Embark than the unencrypted proxy, by tens to hundreds
of milliseconds per page. This is not due to computation
costs, but instead, due to the fact that the encrypted HTTP
header values are transmitted on a different channel
than the primary data connection. The Embark proxy
needs to synchronize between these two flows; this
synchronization cost is what increases the time to service.
Intrusion Detection: Our IDS is based on BlindBox [55].
BlindBox incurs a substantial ‘setup cost’ every time a
client initiates a new connection. With Embark, however,
the gateway and the cloud maintain one, long-term
persistent connection. Hence, this setup cost is paid once
when the gateway is initially configured. Embark also
heuristically expands regular expressions in the rulesets
into exact match strings. This results in two benefits:
(1) End-to-end performance improvements. Where
BlindBox incurs an initial handshake of 97s [55] to
open a new connection and generate the encrypted rules,
end hosts under Embark never pay this cost. Instead,
the gateway pays a one-time setup cost, and end hosts
afterwards perform a normal TCP or SSL handshake of
only 3-5 RTTs. In our testbed, this amounts to between
30 and 100 ms, depending on the site and protocol – an

13

268 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

improvement of 4 orders of magnitude.
(2) Security improvements. Using IDS rulesets from
Snort, we converted regular expressions to exact match
strings as discussed in §2.4. In BlindBox, exact match
rules can be supported with higher security than regular
expressions. With 10G memory, we were able to convert
about half of the regular expressions in this ruleset to a fi-
nite number of exact match strings; the remainder resulted
in too many possible states. We used two rulesets to evalu-
ate this [3, 9]. With the first ruleset BlindBox would resort
to a lower security level for 33% of rules, but Embark
would only require this for 11.3%. With the second rule-
set, BlindBox would use lower security for 58% of rules,
but Embark would only do so for 20.2%. At the same time,
Embark does not support the lower security level so Em-
bark simply does not support the remaining regexp rules.

It is also worth noting that regular expression expan-
sion in this way makes the one-time setup very slow in one
of the three cases: the case when the gateway may not see
the rules. The reason is that, in this case, Embark runs the
garbled circuit rule-exchange protocol discussed in §4.2,
whose slowdown is linear in the number of rules. On one
machine, the gateway to server initial setup would take
over 3,000 hours to generate the set of encrypted rules due
to the large number of keywords. Fortunately, this setup
cost is easily parallelizable. Moreover, this setup cost
does not occur in the other two rule exchange approaches
discussed in §4.2, since they rely only on one AES encryp-
tion per keyword rather than a garbled circuit computation
which is six orders of magnitude more expensive.

7 Related Work
Middlebox Outsourcing: APLOMB [54] is a practical
service for outsourcing enterprise’s middleboxes to the
cloud, which we discussed in more detail in §2.
Data Confidentiality: Confidentiality of data in the cloud
has been widely recognized as an important problem and
researchers proposed solutions for software [18], web ap-
plications [30, 50], filesystems [19, 36, 31], databases [49,
46], and virtual machines [68]. CryptDB [49] was one of
the first practical systems to compute on encrypted data,
but its encryption schemes and database system design

do not apply to our network setting.

Focusing on traffic processing, the most closely related
work to Embark is BlindBox [55], discussed in §2.4.
mcTLS [41] proposed a protocol in which client and
server can jointly authorize a middlebox to process
certain portions of the encrypted traffic. Unlike Embark,
the middlebox gains access to unencrypted data. A
recent paper [67] proposed a system architecture for
outsourced middleboxes to specifically perform deep
packet inspection over encrypted traffic.

Trace Anonymization and Inference: Some systems
which focus on offline processing allow some analysis
over anonymized data [44, 45]; they are not suitable for
online processing as is Embark. Yamada et al [64] show
how one can perform some very limited processing on
an SSL-encrypted packet by using only the size of data
and the timing of packets, however they cannot perform
analysis of the contents of connection data.

Encryption Schemes: Embark’s PrefixMatch scheme
is similar to order preserving encryption schemes [15],
but no existing scheme provided both the performance
and security properties we required. Order-preserving
encryption (OPE) schemes such as [21, 48] are > 10000
times slower than PrefixMatch (§6) and additionally leak
the order of the IP addresses encrypted. On the other
hand, OPE schemes are more generic and applicable to a
wider set of scenarios. PrefixMatch, on the other hand, is
designed for our particular scenario.

The encryption scheme of Boneh et al. [22] enables
detecting if an encrypted value matches a range and
provides a similar security guarantee to PrefixMatch; at
the same time, it is orders of magnitude slower than the
OPE schemes which are already slower than PrefixMatch.

Acknowledgments
We thank our shepherd, Srinivasan Seshan, and the
anonymous reviewers for their thoughtful comments.
We’re also grateful to Dahlia Malkhi and Ittai Abraham
from VMware Research for their valuable feedback on
PrefixMatch.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 269

A Sufficient Properties for Middleboxes
In this section, we discuss the core functionality of the
IP Firewall, NAT, L3/L4 Load Balancers in Table 1, and
why the properties listed in the Column 2 of Table 1 are
sufficient for supporting the functionality of those mid-
dleboxes. We omit the discussion of other middleboxes in
the table since the sufficiency of those properties is obvi-
ous. The reason Embark focuses on the core (“textbook”)
functionality of these middleboxes is that there exist vari-
ations and different configurations on these middleboxes
and Embark might not support some of them.

A.1 IP Firewall
Firewalls from different vendors may have significantly
different configurations and rule organizations, and thus
we need to extract a general model of firewalls. We used
the model defined in [66], which describes Cisco PIX
firewalls and Linux iptables. In this model, the firewall
consists of several access control lists (ACLs). Each ACL
consists of a list of rules. Rules can be interpreted in the
form (predicate, action), where the predicate describes
the packets matching this rule and the action describes the
action performed on the matched packets. The predicate
is defined as a combination of ranges of source/destina-
tion IP addresses and ports as well as the protocol. The
set of possible actions includes "accept" and "deny".

Let Enc denote a generic encryption protocol, and
(SIP[], DIP[], SP[], DP[], P) denote the predicate of a
rule. Any packet with a 5-tuple (SIP, DIP, SP, DP, P) ∈
(SIP[], DIP[], SP[], DP[], P) matches that rule. We
encrypt both tuples and rules. The following property of
the encryption is sufficient for firewalls.

(SIP, DIP, SP, DP, P)∈(SIP[], DIP[], SP[], DP[], P)⇔
Enc(SIP, DIP, SP, DP, P)∈

Enc(SIP[], DIP[], SP[], DP[], P).
(3)

A.2 NAT
A typical NAT translates a pair of source IP and port
into a pair of external source IP and port (and back),
where the external source IP is the external address of the
gateway, and the external source port is arbitrarily chosen.
Essentially, a NAT maintains a mapping from a pair of
source IP and port to an external port. NATs have the
following requirements: 1) same pairs should be mapped
to the same external source port; 2) different pairs should
not be mapped to the same external source port. In order
to satisfy them, the following properties are sufficient:

(SIP1,SP1) = (SIP2,SP2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2),
(4)

Enc(SIP1,SP1)=Enc(SIP2,SP2)

⇒(SIP1,SP1)=(SIP2,SP2).
(5)

However, we may relax 1) to: the source IP and port pair
that belongs to the same 5-tuple should be mapped to the
same external port. After relaxing this requirement, the
functionality of NAT is still preserved, but the NAT table
may get filled up more quickly since the same pair may
be mapped to different ports. However, we argue that this
expansion is small in practice because an application on
a host rarely connects to different hosts or ports using the
same source port. The sufficient properties then become:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2)

(6)

and

Enc(SIP1,SP1)=Enc(SIP2,SP2)

⇒(SIP1,SP1)=(SIP2,SP2).
(7)

A.3 L3 Load Balancer
L3 Load Balancer maintains a pool of servers. It chooses a
server for an incoming packet based on the L3 connection
information. A common implementation of L3 Load
Balancing uses the ECMP scheme in the switch. It guar-
antees that packets of the same flow will be forwarded
to the same server by hashing the 5-tuple. Therefore, the
sufficient property for L3 Load Balancer is:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇔
Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2).

(8)

A.4 L4 Load Balancer
L4 Load Balancer [4], or TCP Load Balancer also main-
tains a pool of servers. It acts as a TCP endpoint that ac-
cepts the client’s connection. After accepting a connection
from a client, it connects to one of the server and forwards
the bytestreams between client and server. The encryption
scheme should make sure that two same 5-tuples have
the same encryption. In addition, two different 5-tuple
should not have the same encryption, otherwise the L4
Load Balancer cannot distinguish those two flows. Thus,
the sufficient property of supporting L4 Load Balancer is:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇔
Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2)

(9)

15

270 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

B Formal Properties of PrefixMatch
In this section, we show how PrefixMatch supports mid-
dleboxes indicated in Table 1. First of all, we formally list
the properties that PrefixMatch preserves. As discussed in
3.2, PrefixMatch preserves the functionality of firewalls
by guaranteeing Property 3. In addition, PrefixMatch also
ensures the following properties:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇒
Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2)

(10)
The following statements hold with high probability:

Enc(SIP1)=Enc(SIP2) ⇒ SIP1=SIP2 (11)

Enc(DIP1)=Enc(DIP2) ⇒ DIP1=DIP2 (12)

Enc(SIP1,SP1)=Enc(SIP2,SP2) ⇒
(SIP1,SP1)=(SIP2,SP2)

(13)

Enc(DIP1,DP1)=Enc(DIP2,DP2) ⇒
(DIP1,DP1)=(DIP2,DP2)

(14)

Enc(P1)=Enc(P2) ⇒ P1=P2 (15)
We discuss how those properties imply all the sufficient

properties in §A as follows.
NAT We will show that Eq.(10)-Eq.(15) imply
Eq.(6)- Eq.(7). Given (SIP1, DIP1, SP1, DP1, P1) =
(SIP2, DIP2, SP2, DP2, P2), by Eq. (10), we have
Enc(SIP1, SP1) = Enc(SIP2, SP2). Hence, Eq.(6) holds.
Similarly, given Enc(SIP1, SP1) = Enc(SIP2, SP2), by
Eq.(13), we have (SIP1,SP1)=(SIP2,SP2). Hence, Eq.(7)
also holds. Note that if we did not relax the property in
Eq.(6), we could not obtain such a proof.
L3 Load Balancer By Eq.(10), the left to right direction
of Eq.(8) holds. By Eq.(11)-Eq.(15), the right to left
direction of Eq.(8) also holds.
L4 Load Balancer By Eq.(10), the left to right direction
of Eq.(9) holds. By Eq.(11)-Eq.(15), the right to left
direction of Eq.(9) also holds.

References
[1] Brocade Network Function Virtualiza-

tion. http://www.brocade.com/
en/products-services/software-
networking/network-functions-
virtualization.html.

[2] Cisco IOS IPv6 Commands. http://www.
cisco.com/c/en/us/td/docs/ios-
xml/ios/ipv6/command/ipv6-cr-
book/ipv6-s2.html.

[3] Emerging Threats.net Open rulesets. http://
rules.emergingthreats.net/.

[4] HAProxy. http://www.haproxy.org/.

[5] Intel 82599 10 GbE Controller Datasheet.
http://www.intel.com/content/
dam/www/public/us/en/documents/
datasheets/82599-10-gbe-
controller-datasheet.pdf.

[6] Network Edge Services Products. https:
//www.juniper.net/us/en/products-
services/network-edge-services/.

[7] Network Function Virtualization for Telecom.
http://www.dell.com/learn/us/
en/04/tme-telecommunications-
solutions-telecom-nfv/.

[8] OPNFV: An Open Platform to Accelerate
NFV. https://www.opnfv.org/sites/
opnfv/files/pages/files/opnfv_
whitepaper_103014.pdf.

[9] Snort v2.9 Community Rules. https:
//www.snort.org/downloads/
community/community-rules.tar.gz.

[10] Squid: Optimising Web Delivery. http://www.
squid-cache.org/.

[11] Telefónica NFV Reference Lab. http://
www.tid.es/long-term-innovation/
network-innovation/telefonica-
nfv-reference-lab.

[12] What are White Box Switches? https://www.
sdxcentral.com/resources/white-
box/what-is-white-box-networking/.

[13] ZScaler. http://www.zscaler.com/.

[14] AT&T Domain 2.0 Vision White Paper.
https://www.att.com/Common/
about_us/pdf/AT&T%20Domain%202.
0%20Vision%20White%20Paper.pdf, Nov.
2013.

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 271

[15] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Pro-
ceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04,
pages 563–574. ACM, 2004.

[16] Ars Technica. AT&T fined $25 million after
call center employees stole customers data.
http://arstechnica.com/tech-
policy/2015/04/att-fined-25-
million-after-call-center-
employees-stole-customers-data/.

[17] Aryaka. WAN Optimization. http:
//www.aryaka.com/.

[18] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven.
In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’14, pages 267–283. USENIX Association,
2014.

[19] M. Blaze. A Cryptographic File System for UNIX.
In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93,
pages 9–16. ACM, 1993.

[20] Bloomberg Business. RadioShack Sells
Customer Data After Settling With States.
http://www.bloomberg.com/news/
articles/2015-05-20/radioshack-
receives-approval-to-sell-name-
to-standard-general.

[21] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-Preserving Symmetric Encryption. In
Proceedings of the 28th Annual International Con-
ference on Advances in Cryptology: The Theory and
Applications of Cryptographic Techniques, EURO-
CRYPT ’09, pages 224–241. Springer-Verlag, 2009.

[22] D. Boneh, A. Sahai, and B. Waters. Fully Collusion
Resistant Traitor Tracing with Short Ciphertexts
and Private Keys. In Proceedings of the 24th Annual
International Conference on The Theory and
Applications of Cryptographic Techniques, EURO-
CRYPT’06, pages 573–592. Springer-Verlag, 2006.

[23] P. R. Clearinghouse. Chronology of data breaches
. http://www.privacyrights.org/
data-breach.

[24] Comcast. Small Business Internet. http:
//business.comcast.com/internet/
business-internet/plans-pricing.

[25] I. Cooper, I. Melve, and G. Tomlinson. Internet
Web Replication and Caching Taxonomy. IETF
RFC 3040, Jan. 2001.

[26] Digital Corpora. m57-Patents Scenario.
http://digitalcorpora.org/corpora/
scenarios/m57-patents-scenario.

[27] European Telecommunications Standards Institute.
NFV Whitepaper. https://portal.etsi.
org/nfv/nfv_white_paper.pdf.

[28] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu,
and J. C. Mogul. Enforcing Network-wide Policies
in the Presence of Dynamic Middlebox Actions
Using FlowTags. In Proceedings of the 11th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 533–546.
USENIX Association, 2014.

[29] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling Innovation in Network Func-
tion Control. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages
163–174. ACM, 2014.

[30] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Maz-
ières, J. C. Mitchell, and A. Russo. Hails: Protecting
Data Privacy in Untrusted Web Applications. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, pages 47–60. USENIX Association,
2012.

[31] E.-J. Goh, H. Shacham, N. Modadugu, and
D. Boneh. SiRiUS: Securing Remote Untrusted
Storage. In Proceedings of the Tenth Network and
Distributed System Security Symposium, NDSS ’03,
pages 131–145. Internet Society (ISOC), Feb. 2003.

[32] O. Goldreich. Foundations of Cryptography:
Volume I Basic Tools. Cambridge University Press,
2001.

[33] M. Goodrich and R. Tamassia. Introduction to
Computer Security. Pearson, 2010.

[34] P. Gupta and N. McKeown. Algorithms for Packet
Classification. IEEE Network, 15(2):24–32, Mar.
2001.

[35] S. Han, K. Jang, A. Panda, S. Palkar, D. Han,
and S. Ratnasamy. SoftNIC: A Software NIC to
Augment Hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of
California, Berkeley, May 2015.

17

272 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[36] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable Secure File Sharing
on Untrusted Storage. In Proceedings of the
2nd USENIX Conference on File and Storage
Technologies, FAST ’03, pages 29–42. USENIX
Association, 2003.

[37] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and the
Art of Network Function Virtualization. In Proceed-
ings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI’14,
pages 459–473. USENIX Association, 2014.

[38] Megapath. Ethernet Data Plus. http://
www.megapath.com/promos/ethernet-
dataplus/.

[39] R. B. Miller. Response Time in Man-computer
Conversational Transactions. In Proceedings of
the December 9-11, 1968, Fall Joint Computer
Conference, Part I, AFIPS ’68 (Fall, part I), pages
267–277. ACM, 1968.

[40] M. Naor and B. Pinkas. Efficient Oblivious Transfer
Protocols. In Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA ’01, pages 448–457. Society for Industrial
and Applied Mathematics, 2001.

[41] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,
J. Blackburn, D. R. López, K. Papagiannaki, P. Ro-
driguez Rodriguez, and P. Steenkiste. Multi-Context
TLS (mcTLS): Enabling Secure In-Network Func-
tionality in TLS. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 199–212.
ACM, 2015.

[42] E. Nordmark. Stateless IP/ICMP Translation
Algorithm (SIIT). IETF RFC 2765, Feb. 2000.

[43] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda,
S. Ratnasamy, L. Rizzo, and S. Shenker. E2: A
Framework for NFV Applications. In Proceedings
of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 121–136, New York,
NY, USA, 2015. ACM.

[44] R. Pang, M. Allman, V. Paxson, and J. Lee. The
Devil and Packet Trace Anonymization. SIGCOMM
Computer Communication Review, 36(1):29–38,
Jan. 2006.

[45] R. Pang and V. Paxson. A High-level Programming
Environment for Packet Trace Anonymization and
Transformation. In Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures,

and Protocols for Computer Communications,
SIGCOMM ’03, pages 339–351. ACM, 2003.

[46] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,
S. G. Choi, W. George, A. Keromytis, and
S. Bellovin. Blind Seer: A Scalable Private DBMS.
In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 359–374. IEEE
Computer Society, 2014.

[47] V. Paxson. Bro: A System for Detecting Network
Intruders in Real-time. Computer Networks,
31(23-24):2435–2463, Dec. 1999.

[48] R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-
Security Protocol for Order-Preserving Encoding.
In Proceedings of the 2013 IEEE Symposium on
Security and Privacy, SP ’13, pages 463–477. IEEE
Computer Society, 2013.

[49] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting Confi-
dentiality with Encrypted Query Processing. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages
85–100. ACM, 2011.

[50] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zel-
dovich, M. F. Kaashoek, and H. Balakrishnan.
Building Web Applications on Top of Encrypted
Data Using Mylar. In Proceedings of the 11th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 157–172.
USENIX Association, 2014.

[51] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for Network Update. In
Proceedings of the ACM SIGCOMM 2012 Confer-
ence on Applications, Technologies, Architectures,
and Protocols for Computer Communication,
SIGCOMM ’12, pages 323–334. ACM, 2012.

[52] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and Implementation of a Consol-
idated Middlebox Architecture. In Proceedings
of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12,
pages 24–24. USENIX Association, 2012.

[53] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and
G. Shi. The Middlebox Manifesto: Enabling Inno-
vation in Middlebox Deployment. In Proceedings of
the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 21:1–21:6. ACM, 2011.

[54] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes

18

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 273

Someone else’s Problem: Network Processing
As a Cloud Service. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages
13–24. ACM, 2012.

[55] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
BlindBox: Deep Packet Inspection over Encrypted
Traffic. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 213–226. ACM, 2015.

[56] G. Silowash, T. Lewellen, J. Burns, and D. Costa.
Detecting and Preventing Data Exfiltration Through
Encrypted Web Sessions via Traffic Inspection.
Technical Report CMU/SEI-2013-TN-012, Soft-
ware Engineering Institute, Carnegie Mellon
University, 2013.

[57] P. Srisuresh and K. B. Egevang. Traditional IP
Network Address Translator (Traditional NAT).
IETF RFC 3022, Jan. 2001.

[58] D. Thaler and C. E. Hopps. Multipath Issues in
Unicast and Multicast Next-Hop Selection. IETF
RFC 2991, Nov. 2000.

[59] The Snort Project. Snort users manual, 2014.
Version 2.9.7.

[60] Verizon. 2015 Data Breach Investigations Report.
http://www.verizonenterprise.com/
DBIR/2015/.

[61] Verizon. High Speed Internet Pack-
ages. http://www.verizon.com/
smallbusiness/products/business-
internet/broadband-packages/.

[62] G. Vigna. ICTF Data. https://ictf.cs.
ucsb.edu/.

[63] K. Wiles. Pktgen. https://pktgen.
readthedocs.org/.

[64] A. Yamada, Y. Saitama Miyake, K. Takemori,
A. Studer, and A. Perrig. Intrusion Detection for
Encrypted Web Accesses. In 21st International
Conference on Advanced Information Networking
and Applications Workshops, 2007.

[65] A. C.-C. Yao. How to Generate and Exchange Se-
crets. In Proceedings of the 27th Annual Symposium
on Foundations of Computer Science, SFCS ’86,
pages 162–167. IEEE Computer Society, 1986.

[66] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and
P. Mohapatra. FIREMAN: A Toolkit for FIREwall
Modeling and ANalysis. In Proceedings of the 2006
IEEE Symposium on Security and Privacy, SP ’06,
pages 199–213. IEEE Computer Society, 2006.

[67] X. Yuan, X. Wang, J. Lin, and C. Wang. Privacy-
preserving Deep Packet Inspection in Outsourced
Middleboxes. In Proceedings of the 2016 IEEE
Conference on Computer Communications, INFO-
COM ’16, 2016.

[68] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVi-
sor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages
203–216. ACM, 2011.

[69] Y. Zhang and V. Paxson. Detecting stepping stones.
In Proceedings of the 9th Conference on USENIX
Security Symposium - Volume 9, SSYM’00, pages
13–13. USENIX Association, 2000.

19

