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ABSTRACT possess valuable knowledge, such as public health policies or dis-
Domain experts play an important role in data science, as their ease conditions. This knowledge can unlock the full potential of
knowledge can unlock valuable insights from data. As they often data-driven insights. However, they often lack the technical skills
lack technical skills required to analyze data, they need collabo- to analyze data, such as proficiency in programming languages (e.g.,
rations with technical experts. In these joint efforts, productive Python, R), familiarity with visualization techniques, and under-
collaborations are critical not only in the phase of constructing a standing of machine learning algorithms. They need collaboration
data science task, but more importantly, during the execution of a with technical experts who have the necessary skills but not the
task. This need stems from the inherent complexity of data science, domain knowledge. This need calls for systems that support collab-
which often involves user-defined functions or machine-learning orative data analytics by users with different backgrounds.

operations. Consequently, collaborators want various interactions Collaborative editing services such as Google Docs have revolu-
during runtime, such as pausing/resuming the execution, inspecting tionized how people work together. Unlike collaborative document
an operator’s state, and modifying an operator’s logic. To achieve editing, a unique aspect of collaborative data analytics is that it re-

the goal, in the past few years we have been developing an open- quires sharing not only in the editing process but more importantly,
throughout the execution of an analytical job. This necessity arises

from the nature that data science is a highly iterative process, and
users need to go through a long trial-and-error process to refine

source system called Texera to support collaborative data analytics
using GUI-based workflows as cloud services. In this paper, we
present a holistic view of several important design principles we
followed in the design and implementation of the system. We fo- their analysis tasks. In many data systems, analytical jobs are sub-
cus on different methods of sending messages to running workers, mitted to a backend engine and left to run until completion before
how these methods are adopted to support various runtime inter- any results are returned. This computing paradigm is inadequate
actions from users, and their trade-offs on both performance and for collaboration because users suffer from (1) lengthy delays due
consistency. These principles enable Texera to provide powerful to having to rerun jobs after identifying errors post-execution; and
user interactions during a workflow execution to facilitate efficient (2) not being able to invite collaborators during a job execution.

collaborations in data analytics.
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1 INTRODUCTION

In many data science tasks, domain experts, such as public health
scientists and medical researchers, play a key role because they

Figure 1: A Texera interface with three collaborators working
on the same workflow to do social media analysis.
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users to perform deep investigations during the execution, such
as pausing the execution, inspecting tuples, examining the state of
operators, and changing the logic on the fly. This level of interac-
tivity facilitates a more agile approach to data science, empowering
teams to collaboratively make adjustments in real-time.

To achieve this goal, we have been developing Texera [25], a
workflow-based data analytics system supporting collaborative data
science by users from various backgrounds. As shown in Figure 1,
Texera allows multiple users to collaboratively construct and exe-
cute data science projects as workflows [17], offering an experience
similar to Google Docs. Texera is open-source and has been used by
over 340 users across various domains, such as neuroscience and
diabetes research. At the time of publishing, these users have devel-
oped more than 3,200 workflows, edited over 273,000 versions, and
executed workflows over 22,000 times. It has multiple deployments,
including one on a cluster of 100 quad-core nodes.

We face several challenges to support user interactions during
workflow execution. First, at the workflow level, concurrent execu-
tion of multiple operators has the nature of distributed computation.
We need to consider not only performance when these operators
communicate with each other but also consistency when each op-
erator takes its own actions. Second, within each operator, it needs
to respond to an interaction request quickly, without introducing a
significant overhead to its normal data processing.

In this paper, we present a holistic view of several important
design principles we followed in the design and implementation
of the system to address the challenges and achieve the goal. The
paper is organized as follows. Section 2 explains user collaboration
experiences in Texera. Section 3 focuses on handling interactions at
the workflow level, and discusses how the coordinator dispatches
interaction requests to operators. We present two methods to send
control messages and analyze their trade-offs in terms of responsive-
ness, efficiency, and consistency when supporting three example
user interactions. Section 4 discusses interaction handling at the
operator level. Section 5 reports our experimental results on real-
world data sets to show Texera’s interactivity and scalability.

1.1 Related Work

Traditional workflow-based systems such as Alteryx [1], KNIME [5],
and RapidMiner [6] do not support user interactions during execu-
tion. Some Python-based Jupyter notebooks [2, 3] and SQL note-
books [4] offer real-time collaboration features. They are mainly for
programmers, not users with limited coding skills. Systems such as
Dremel [20], Drill [13], and Druid [30] can efficiently process inter-
active OLAP queries and deliver results in seconds. Texera supports
the interactivity of long-running queries, including those involving
machine learning and user-defined functions (UDFs). Moreover, big
data systems such as Spark [31], Hive [26], and Dask [24] are built
to process vast datasets with a primary emphasis on optimizing
runtime efficiency and scalability. These systems generally do not
provide mechanisms for user interaction with the runtime engine.

Previously, we published how Texera’s backend engine called
Amber supports debugging [16], how to do run-time reconfigura-
tion using a technique called Fries [29], and how to do line-by-line
debugging in Python UDFs using a technique called Udon [14]. In
this paper, we present a holistic view of the design principles in
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Texera to support a variety of user interactions. They were not de-
scribed in the previous papers that focused on specific techniques.
Furthermore, this paper analyzes different approaches to handling
user interactions and gives an in-depth insight into the trade-offs
regarding efficiency, semantics, and consistency.

2 TEXERA SYSTEM OVERVIEW

We first describe the experience when multiple Texera users col-
laboratively construct a workflow and interact with its execution,
then give an overview of the system architecture.

2.1 User Experience of Collaboration

Collaborative Workflow Construction. Consider an interdisci-
plinary research project in analyzing the impact of wildfires on the
environment using tweets [15], co-led by machine learning (ML)
expert Alice and public health scientist Bob using Texera. Alice and
Bob work together to create a workflow using their browsers. Bob
focuses on setting up data sources and simple preprocessing steps,
such as adding filters on specific locations and keywords of tweets.
As an ML expert, Alice works on advanced ML operations, such as
using a Python UDF to do sentiment analysis. Alice and Bob can
jointly edit the same operator, such as the Python code, and they
can see each other’s edits in real-time. This interface facilitates a
seamless integration of their complementary expertise.

Collaborative Execution, Interaction, and Debugging. Alice
and Bob then proceed to execute the workflow. They monitor the
execution status in real-time, such as the number of processed tuples
and the average processing time per operator. If Alice sees problems
during the execution, she collaborates with Bob to troubleshoot the
issue. For instance, to understand the run-time status, Alice can
pause the execution and examine the content of tuples, or check
the value of a variable in an operator. Bob, on his end, can see
the workflow is paused by Alice, as well as Alice’s actions to read
operator states, and the system’s responses. The two users can
also invite another collaborator, say, Charlie, to join the debugging
process. Upon his entry into the session, Charlie can see the same
information visible to Alice and Bob, including the workflow, its
execution status, and the interactions by Alice and Bob.

2.2 System Architecture

Figure 2 shows Texera’s architecture, consisting of frontend UI, web
server, and execution engine. Next, we describe each component.
Frontend UI and Web Server. Texera offers a web-based graph-
ical user interface (GUI) for users to construct workflows using
intuitive drag-and-drop operations. To support collaborative con-
current editing by multiple users, Texera uses the JavaScript library
Yjs [22] based on conflict-free replicated data types (CRDTs) [23]
to resolve concurrent editing conflicts. The shared editing server
relays and propagates editing changes of a user client to the inter-
faces of other clients. The shared execution manager handles user
interaction requests during a workflow execution. In particular, it
sends requests to the engine, collects responses from the engine,
and broadcasts user interaction activities to other clients.
Execution engine. A workflow is executed on the engine called
Amber [16] based on the actor model [7]. A workflow is a directed
acyclic graph (DAG) of operators. A compiler compiles a workflow
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Figure 2: System architecture of Texera.

into a parallel physical execution plan. A scheduler instantiates a
worker actor for each parallel instance of an operator. A coordina-
tor actor manages the execution of worker actors. The coordinator
actor has control channels with workers to exchange control mes-
sages. Workers have data channels with each other to send data
tuples. Each worker actor has a control processor to handle con-
trol messages and a data processor to execute its operator logic,
which will be explained in Section 4. Amber is a push-based engine
and executes workflows in a pipelined fashion. Pipelining allows
the concurrent computation of multiple operators and lowers the
end-to-end latency, enabling users to observe the results sooner.

3 HANDLING USER INTERACTIONS AT THE
WORKFLOW LEVEL

In this section, we discuss how Texera handles interactions at work-
flow level. We present two methods of sending control messages
and analyze how they are used to support various user interactions.

3.1 Two Methods of Sending Control Messages

User interactions in Texera are received by the workflow coordina-
tor and sent as control messages to workers. A control message, as
opposed to a data message carrying data tuples, is a message that
includes instructions for workers to take “control-related” actions,
such as pausing its execution, reading its internal state, and modi-
fying its logic. We consider two methods to send control messages.
Method 1: embedding control messages in data streams from
sources. This method embeds a control message as a special mes-
sage, also referred to as a “marker,” and propagates it in the data
streams [9]. We call such a control message an embedded control
message, or “ECM” for short. After receiving an interaction from
the user, the coordinator sends a control message to each source
worker, which injects a special ECM marker and sends the gener-
ated ECM to their downstream worker(s) following the order of its
output data messages. When a worker receives an ECM, it performs
marker alignment by waiting for all its input edges to receive this
ECM before processing it. After that, the worker sends the ECM to
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its downstream worker(s). Figure 3a shows how a control message
is embedded into the data stream from a source worker A.

@ Interaction @ Interaction

Data =

Marker Data

(a) Method 1. Using embedded
control messages (ECMs).

(b) Method 2. Using direct con-
trol messages (DCMs).

Figure 3: Two methods of sending control messages from the
coordinator to workers A, B, and C to handle an interaction.

Method 2: sending direct control messages. Using this method,
the coordinator sends direct control messages to target workers
using dedicated channels. A worker does not send additional control
messages to its downstream. Such a control message is called a
direct control message (DCM). Upon receiving a DCM, a worker
gives a higher priority to process it, and sends a response back to
the coordinator. We will discuss the prioritization mechanism in
Section 4. Figure 3b shows how DMCs are used to send control
messages. Next, we discuss how to use these two methods to support
three example runtime interactions and analyze their pros and cons.

3.2 Pausing the Workflow Execution

Texera supports pausing workflows on the fly and allows for addi-
tional interactions while paused. For instance, after Alice monitors
the workflow execution for a while, she notices the execution has
become very slow. She pauses the execution to ensure the workflow
is in a stable state, then asks Bob to perform further investigations.
Using ECMs. The coordinator sends a Pause control message to
each source worker. Upon receiving this message, a source worker
pauses emitting data. After that, it emits the Pause ECM to its down-
stream workers. When a downstream worker finishes processing
all its pending data tuples and receives a Pause message from all its
upstream workers, its computation is paused because the upstream
workers no longer send any data tuples. Then it propagates the
Pause message using the ECM markers to its downstream workers.
Figure 4a shows an execution state where workers A and B are
paused by the marker, but worker C is still processing data.

Unprocessed

o(B ] O

Paused

5(c)

Paused Paused

Paused

Paused Running

(a) Using ECM. (b) Using DCM.

Figure 4: Using ECM, workers A and B have paused when
worker C is still waiting for the marker. Using DCM, all work-
ers have paused, leaving in-flight data unprocessed.

Using DCMs. The coordinator sends a Pause control message di-
rectly to all the workers. Upon receiving this message, each worker
stops processing incoming data messages but can continue process-
ing control messages from the control channel. As the message-
delivery time can vary, there can be a situation where, for a specific



data channel, the receiver-side worker is paused, but the sender-
side worker is still processing data and outputting data messages.
We refer to in-flight messages as those sent by the sender but not
yet processed by the receiver. This results in an accumulation of
more in-flight data messages in the receiver’s input buffer. Figure 4b
shows the state after all workers are paused, and there are in-flight
messages left unprocessed between workers.
Comparison of the two methods. In the ECM-based method,
there are no in-flight messages in the channels between work-
ers in a paused state. This is an advantage over the DCM-based
method, which may have increased memory usage due to unpro-
cessed in-flight messages. However, the ECM-based method has
a much higher pause latency as the system needs to fully process
all the in-flight data before transitioning to the paused state. This
latency could be even longer if the workflow contains expensive
workers or has a large number of in-flight tuples. Texera adopts the
DCM-based method because it offers a low pause latency, which is
mainly decided by network speeds. Several deployments of Texera
show that the latency of this method tends to be within a second.
To the best of our knowledge, most data-processing systems do
not support pausing a workflow on the fly nor support interactions
in the paused state. Many systems support checkpointing of a work-
flow [10, 21, 27], which can be considered analogous to stopping
the workflow and then restarting it. However, checkpointing is
usually a slow and resource-intensive process. In contrast, Texera’s
pausing mechanism is lightweight and fast, offering an advantage
in scenarios requiring frequent interactions with the workflow.

3.3 Reading Workers’ Internal States

Texera supports reading the internal states of workers during an
execution, providing users with valuable insights into the process.
For example, when Bob investigates why the workflow has slowed
down, he might check each operator’s state, processing speed, and
the content of in-flight tuples. When the workflow is paused, Bob
can check these states. He can also check them while the workflow
is running, thus having an interactive experience.

Using DCMs. The coordinator directly sends a ReadState control
message to every worker, which responds by sending its current
internal state back to the coordinator.

Inconsistent global states captured by DCMs. This method
could lead to an “inconsistent” global state, as defined by Chandy
and Lamport [11]. That is, an inconsistent global state occurs when
a process’s state reflects a message receipt, but the state of the
corresponding sender does not reflect sending that message. For

ReadState C_]

(a) Worker A reports its state
before processing tuple ¢.

(b) Worker B reports its state
after processing tuple ¢.

Figure 5: Inconsistent state between workers A and B.

instance, consider a scenario where the ReadState DCM is sent
to two workers, A and B, with the following sequence of events:
(1) Worker A receives the DCM and reads its state, as shown in
Figure 5a; (2) Worker A processes a tuple ¢, sending it to worker
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B; (3) Worker B processes tuple t and updates its state; (4) Due to
a network delay, worker B receives the ReadState DCM from the
coordinator and reads its state, as shown in Figure 5b. This sequence
of events results in a discrepancy where worker A’s state does not
reflect the processing and sending of tuple t, whereas worker B’s
state shows the receipt of ¢, leading to an inconsistent global state.
Combining ECMs and DCMs to read workers’ states. Texera
adopts a hybrid strategy, leveraging the strengths of both meth-
ods by having the coordinator utilize both mechanisms within the
workflow for interactions. In particular, for an interaction, the co-
ordinator generates a control message with a unique ID and then
dispatches it as DCMs to all workers. Upon receiving a control mes-
sage, a worker processes the message and returns its internal state.
After that, the worker sends the control message as ECMs to all its
downstream workers. In this case, a worker may receive both the
DCM from the coordinator and an ECM from each of its upstream
workers, with all messages sharing the same ID. The worker will
only process the first instance of such a message, and ignore the
subsequent messages with the same control message ID.

This hybrid method ensures a consistent global state. Recall that
in the DCM approach, inconsistency arises when the DCM sent to
the worker B is delayed. For example, in Figure 6, tuple t is processed
by worker A after worker A receives the ReadState DCM. Worker
B hasn’t received the ReadState DCM yet due to possible network
delays. If B were to process t before reading its state, inconsistency
would occur. To prevent this, the hybrid mechanism ensures worker
A immediately sends an ECM to B after receiving the ReadState
DCM, before processing and emitting the next tuple ¢. Because
ECMs follow the order of data, this ECM will always reach B faster
and ensure B’s state is read before it processes the tuple ¢.

By propagating ECMs between workers, a downstream worker
always receives an ECM before processing any tuples not reflected
in its upstream worker’s state. By sending DCMs, this approach
ensures that reading the state is also fast in most cases because
DCMs typically reach workers faster due to the direct channel. This
approach offers the benefits of both consistency and low latency,
but at the cost of transmitting additional control messages.

ReadState C ]

ReadState

(a) Worker A reports its state
before processing tuple t.

(b) A ReadState message is em-
bedded before tuple t.

Figure 6: Combining ECMs and DCMs to read states.

Recall that we pause workflows with only DCMs. After the work-
flow is fully paused, DCMs can also ensure reading a consistent state
of operators. As no data is sent and processed in the paused state, a
downstream worker cannot process any data not yet reflected in
its upstream workers’ states when paused.

Many systems support reading the state of operators, especially
in streaming settings [8, 9, 19]. These systems support taking a
consistent snapshot of the workflow state and allow users to read
the snapshot, but this process is slow. Another method [28] supports
querying the live state by maintaining each operator’s state in an
external state backend, which can be queried directly. Such direct



reading is similar to DCMs since it does not follow the order of data
as in ECMs. However, this method faces the same issue of potentially
reading an inconsistent state as DCMs do. Texera ensures reading
a consistent state using the hybrid approach.

3.4 Modifying Workers’ Logic

Texera supports modifying the logic of workers during an execu-
tion, also referred to as “reconfigurations,” allowing users to correct
loopholes or integrate new logic for unexpected data formats. We
discuss two real-world use cases: one where the user performs a
reconfiguration on the fly, and another where the workflow exe-
cution is paused due to an error, prompting the user to modify the
logic to fix the issue. We examine scenarios where multiple workers
are modified, focusing on the possibility of processing a tuple with
a mix of old and new logic. Additionally, we discuss the associated
consistency levels, their semantics, and implementation.

3.4.1 Reconfiguration without pausing. Consider a scenario where
Alice and Bob have a data science pipeline. An upstream encoder
worker X encodes a tweet for a machine learning model, followed
by a corresponding downstream decoder worker Y to decode it
back to the original format. After investigating the cause of the
slow execution, Bob decides to modify the logic of both workers to
use a faster implementation. He aims to accomplish this without
pausing the workflow to minimize disruption.

To perform a reconfiguration, the coordinator sends a Modify-
Logic message to each target worker. The ModifyLogic message
contains the new tuple-processing function to replace the old logic,
and optionally a state-transfer function to convert the old internal
state of the worker to the new state required by the new logic. After
receiving the message, a worker applies the state-transfer function
and updates its logic. Depending on the arrival order of the Modify-
Logic messages, there are four possible scenarios (marked as 1 - 4)
for an input tuple processed by both workers X and Y, as shown in
Table 1. This can be generalized to any reconfiguration involving
two workers, with X being the upstream worker of Y. We consider
different consistency levels based on which scenarios are allowed.
Strict consistency: At this level, an input tuple can be processed
by operators X and Y using either both old versions or both new
versions. This level is the strictest and the least error-prone. It is
equivalent to pausing the workflow, stopping the ingestion of new
tuples from the source, waiting for all the operators to finish pro-
cessing all in-flight tuples, and then performing the reconfiguration.
To support this level, the reconfiguration request can be carried
out using ECMs. A ModifyLogic message is sent to each source
operator and then propagated downstream following the order of
data. The ECM acts as a barrier that separates tuples processed by
the old logic versus the new logic: tuples arriving at the source
before the ModifyLogic message will use the old logic of the entire
workflow, and tuples arriving after will use the new logic.
Backward-compatible consistency: This level additionally al-
lows an input tuple to be processed by the upstream operator X
using its old logic but processed by the downstream operator Y
using its new logic. This level is acceptable if Y’s logic is “backward-
compatible,” i.e., it can gracefully handle tuples processed by the old
logic of X. It is equivalent to first pausing the workflow, allowing
some in-flight tuples between operators when paused, and then
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Table 1: Consistency levels and allowed scenarios for modi-
fying the logic of worker X and its downstream worker Y.

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
Consistency Levels X Y X Y X Y X Y
new | new | old | new | new | old | old | old
Strict Consistency v v
Backward-Compatible v v v
Forward-Compatible v v v
No Consistency v v v v

performing the reconfiguration. To implement this level, we can
use the same hybrid mechanism that combines ECMs and DCMs
in Section 3.3, with the ReadState message replaced by the Mod-
ifyLogic message. This mechanism applies control messages on
top of a consistent snapshot of the workflow, which might contain
in-flight tuples between operators. For instance, the in-flight tuples
between X and Y are processed by X using the old logic and are
processed by Y using the new logic.

Forward-Compatible Consistency: This level allows a tuple to
be processed by the new version of the upstream worker X and the
old version of the downstream worker Y. This requires Y’s code to
be “forward-compatible,” meaning that its old version can handle a
tuple processed by the new version of X. Texera does not support
this level, as we believe it is rare in real-world scenarios to permit
only forward-compatibility without backward-compatibility.

No Consistency: This level has no restrictions and allows all sce-
narios to occur. Texera supports this level by sending ModifyLogic
messages using DCMs. While users must carefully ensure their
logic updates are correct, this approach is the fastest and has the
lowest overhead due to the use of only DCMs.

3.4.2  Reconfiguration when encountering an error. Consider an-
other scenario where the workflow is paused due to an error. Sup-
pose a problematic tuple with an unexpected format arrives. The
tuple is first processed by encoder X. When decoder Y processes it,
Y raises an exception, e.g., due to an integrity-check failure. The
coordinator then pauses all workers, allowing Bob to inspect the
problematic tuple. Bob then wants to update the logic of both work-
ers to properly re-process this tuple and any subsequent tuples.
In this scenario, using the strict consistency level is not ideal,
because the workflow must be restarted. The problematic tuple can-
not be handled using the old versions of both X and Y, as Y would
raise an exception. To process the problematic tuple using the new
version of X, the workflow must either roll back to the last check-
point before this tuple was processed by X or be completely rerun
with the new logic. On the other hand, backward-compatible con-
sistency is preferred as the user can provide a backward-compatible
implementation of decoder Y, which can properly handle the prob-
lematic tuple processed by the old version of X. Because this level
avoids restarting the workflow, it can significantly improve the
interactivity during the workflow execution and allow users to
seamlessly fix the bug in an iterative process without any wait.
Supporting reconfiguration in dataflow systems has recently
gained popularity. One method is stopping and restarting the work-
flow with new logic [12], but it is disruptive and hinders inter-
activity. Our prior work [29] studied the strict consistency level,
provided a formal definition based on conflict serializability, and
proposed an optimized algorithm that uses ECMs on a sub-region of



the graph to enhance performance. This paper extends the previous
study beyond strict consistency to explore other consistency levels,
which are also useful in the scenarios described above.

4 HANDLING USER INTERACTIONS AT THE
WORKER LEVEL

In this section, we discuss how a worker handles a control message
after receiving it. For ECMs, their processing naturally follows the
sequence of the data. Prioritizing DCMs is more challenging, as the
worker is actively performing its computation when a DCM arrives.
We discuss two approaches to interrupting a worker’s execution:
forcibly interrupting its execution, and letting the worker voluntar-
ily check for DCM messages. We use pausing and reading worker
states as examples to discuss these methods and their trade-offs,
which can be generalized to other interactions.

4.1 Forcibly Interrupting the Worker Execution

One approach is to use thread-level interruptions, such as Java’s
Thread.suspend() function. Each worker employs two threads: a
data-processing (DP) thread responsible for running the computa-
tion, and a control-processing (CP) thread, which listens to user
requests. As shown in Figure 7, upon receiving a message, the
CP thread invokes the Thread.suspend() function to halt the DP
thread’s execution. This approach provides a quick and efficient
way to pause and resume a worker’s execution without terminating
it. It also allows a user to read the internal state of a worker while
it is paused, as the request can be served by the CP thread.

Control Processing Inspection

Thread

Thread.resume()

Thread.suspend()i l T

Shared Variables

Read/Write Read/Write

5 6

Data Processing
Thread

Figure 7: Using thread-level interruptions to pause a worker.

This approach has a significant drawback: users cannot decide
the precise moment to pause the execution. The process could stop
at any random instruction, possibly during a series of function calls
in third-party libraries that are not of interest to the user. Thus this
approach is not suitable for the Texera system.

4.2 Our Solution: Voluntarily Checking
Interruptions at Pre-determined Points

Texera employs a design that avoids forcibly interrupting the ex-
ecution of a worker. A key insight is that data-processing tasks
can be broken down into discrete steps (e.g., processing a single
tuple can be one discrete step), and the execution point after a step
is more meaningful for users’ interactions. Our approach allows
workers to voluntarily check for interruptions at pre-determined
stopping points in their execution. We start by discussing stopping
points that occur between the processing of two tuples, and then
extend to having stopping points of even finer granularity.

Checking interruptions between tuples. It is natural to conduct
voluntary interruptions between the processing of two tuples. Our
design for a worker incorporates two main components: the control

o

3585

processor and the data processor, which operate within the same
thread. The two components take turns to execute in a loop: after
the data processor processes one tuple, the control processor gets
an opportunity to execute. As shown in Figure 8, the data processor
first takes the turn to process one tuple. Then, the control processor
voluntarily checks if there is a Pause control message. If so, the
control processor pauses the data processor by removing it from
the execution loop. When the user sends a Resume control message,
the control processor resumes the data processor by adding it back
to the execution loop.

Control Check Check Pause Inspect Resume Check
Processor

Data
Processor Process Process

tuple tuple

Figure 8: The control processor voluntarily checks for inter-
ruptions between the processing of two tuples.

One challenge in this method involves dealing with workers
with different execution speeds. While the processing of a single
tuple is typically fast for relational operations, some customized
logic such as UDFs can be computationally expensive. For example,
consider a sentiment analysis worker with an expensive machine
learning model to classify a tuple. If the worker can only pause
between processing two tuples, the user may have to wait a long
time before the system pauses.
interface Operator {

def processTuple(t Tuple, port int): Iterator[Tuple]
def onFinish(port int): Iterator[Tuplel]

Figure 9: Operator interface in Texera.

Checking interruptions with a finer granularity. We want to
ensure a low latency in handling control messages, even for slower
operators. A key observation is that a worker’s processing of a tuple
can be further divided into multiple mini-steps, with each mini-step
performing a portion of the worker’s computation. Texera provides
the following operator interface for processing a single tuple, which
returns an iterator of multiple mini-steps.

class SentimentAnalyzer extends Iterator {

var next_step: String = "tokenize";
def has_next(): Boolean = {return next_step != "end";}
def get_next(tuple: Tuple): Double = {

if (next_step ==
this. tokens tokenize (tuple);
next_step = "tag"; return null;

} else if (next_step == "tag") {
this.tagged tag(this. tokens);
next_step = "infer"; return null;

} else if (next_step == "infer") {
this.sentiment infer(this. tagged);
next_step "end"; return this.sentiment;

"tokenize") {

i38;

Figure 10: An iterator-based sentiment analysis operator that
decomposes the computation into three mini-steps.

Consider the following sentiment analysis operator implemen-
tation: invoking the process_tuple function generates an iterator
that implements two functions, has_next and get_next, as shown



in Figure 10. This iterator comprises three sequential mini-steps: to-
kenization, tagging, and inference. It runs as a state machine using
the next_step variable tracking the current mini-step. To process a
single tuple, the engine first acquires this iterator from the worker,
and then consumes the iterator to go through each mini-step of the
computation. The engine performs voluntary checks for control
messages between each mini-step iteration.

Despite such fine-granularity checks being very fast, having too
many of them can still lead to a noticeable overhead. Experiments
in Section 5.1 show that frequent checks on a simple filter operator
can have up to 25% overhead. To solve this problem, developers
can leverage their knowledge of worker semantics and execution
speed to define mini-steps that ensure responsiveness and provide
meaningful stopping points. The system can also automatically
adjust frequency, reducing it for fast operators such as filters.

Another consideration is the burden on developers to manually
convert programs into state machines. Fortunately, some languages
such as Python, R, JavaScript, and C# can alleviate this complexity
with the yield keyword, which transforms a regular function into
an iterator. Figure 11 shows the same logic in Figure 10 (14 lines)
implemented in Python with only 6 lines. The yield keyword trans-
forms the sentiment_analyzer function into an iterator. Unlike
a regular function that runs to completion, this iterator suspends
execution each time yield is encountered and resumes from there
when get_next is called again. The execution states, e.g., local vari-
ables and the current line, are managed by the language runtime.

def sentiment_analyzer (tuple: Tuple) -> Iterator:

tokens = tokenize(tuple)

yield # returns null, perform voluntary check
tags = tag(tokens)

yield # returns null, perform voluntary check

yield infer(tags) # return final result
Figure 11: Sentiment analyzer with Python’s yield keyword.

5 EXPERIMENTS

Datasets. We used four datasets: (1) a geolocation dataset, with each
row containing a geolocation ID and its longitude and latitude; (2) a
tweet dataset consisting of 700K tweets (100MB), each containing
the ID, text, and geolocation ID of a tweet; (3) a review dataset with
two tables: one with 67,000 user reviews, and another with 4,500
cleaned reviews; and (4) a stock dataset containing daily closing
prices of stocks from April to July 2017, and a table with synthetic
trading history for 68 traders.

Workflows. We used three workflows. Workflow W; joined the
tweet dataset with the geolocation dataset, filtered the results using
keywords, calculated the sentiment of each tweet, and calculated the
average sentiment. Workflow W, used the review dataset, removed
nulls and duplicates in the uncleaned user reviews, then added the
result to the cleaned reviews. Workflow W3 used the stock dataset
to compute the total return by aggregating the return for each trade
after joining the trading history with the daily closing prices.
Computing environment. The experiments were conducted on a
cluster of 10 virtual machines (VMs) hosted on the Google Cloud
Platform (GCP). Each VM was of type e2-highmem-4, had a 100GB
SSD persistent disk, and ran Ubuntu 20.04. All source and sink
operators had one worker and were placed in the same VM. All
other operators had two workers per VM.
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5.1 Methods to Pause a Worker

We evaluated Texera’s pause latency for a worker by comparing
forced interruption and voluntary-check methods, and assessed the
overhead of voluntary checks at different frequencies.

Comparing voluntary-check and forced interruption. We eval-
uated the latency of interrupting a single worker by comparing the
forced-interruption and the voluntary-check methods described in
Section 4 with workflow W;. We used 1 VM and every operator
had a single worker. The latency was measured from the moment
when the worker received a Pause request to when the worker’s
computation was paused. Figure 12 shows the results. With thread-
level forced interruption, all workers were paused within 1 ms.
The computation-heavy workers required more time to pause. For
example, the Sentiment Analysis worker was the slowest at 0.4 ms.

4
10

3 I Scan (Tweets) [ Keyword Search [ Partial Aggregate
10 I Hash Join [ Sentiment Analysis [ Global Aggregate
10°

Pause Time (Milliseconds)

JVM Forced Interrupt

Voluntarily Check

Figure 12: Comparison of interruption latency between the
thread interruption and the voluntary check method.

For Texera’s voluntary-check method, the pause latency de-

pended on the execution duration of each mini-step of the operator
logic. The Sentiment Analysis implementation was divided into
four mini-steps, resulting in an average pause latency of roughly
126 ms. Though longer than the forced-interruption method, the
voluntary-check method still delivered a responsive user experience.
In summary, the thread-level forced interruption method had very
low pausing latency but paused at random, potentially meaningless
points. Texera uses the voluntary check method, with predefined,
user-meaningful stopping points. Despite a slightly higher latency,
this method achieved a latency of less than 200 ms.
Effect of voluntary-check frequency. We evaluated the overhead
of the voluntary-check method using a filter worker comparing a
field in a tuple to an integer, and a sentiment analysis worker im-
plemented with Stanford NLP [18]. We varied the check frequency
by adjusting the number of tuples between checks from 1, 10, 100,
1,000, to 10,000, with a baseline of no checks. Figure 13 shows the
results. The filter worker had up to 25% overhead for checking
every tuple, and the overhead decreased as check frequency re-
duced. The sentiment analysis worker had no noticeable overhead
from fine-grained checks due to its much slower processing speed
(100 ms per tuple vs. less than 0.7 ms for the filter). For example,
in one minute, the filter operator processes around 100K tuples;
checking every tuple results in 100K checks. As a result, the impact
of the constant-time voluntary checks is more pronounced. For
filter, checking every 10 tuples results in around 10,000 checks, sig-
nificantly lowering the overhead. The sentiment analysis operator
processes around 600 tuples, resulting in about 600 checks even at
the highest check frequency, thus its overhead is always low.
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Figure 13: Overhead for different check frequencies in W;.

5.2 Methods to Pause a Workflow

We compared the latency to pause workflows Wj, W, and W3 us-
ing the two methods described in Section 3.1. During execution,
a Pause request was sent every 10 seconds. We recorded the time
from sending each request till the workflow was completely paused
as the pause latency. We varied the cluster size from 1 VM to 10
VMs. Figure 14 shows the results. As the number of VMs increased,
the latency increased for both methods. For workflow W, the DCM
method had a low latency, peaking at around 1.2 seconds with 10
VMs. The ECM method had a high latency (from 5 seconds with
1 VM to 13.7 seconds with 10 VMs). For workflow W>, the ECM
method initially had a latency comparable to the DCM method
because all operators in this workflow were inexpensive. Thus the
ECM marker quickly passed to downstream workers. However, the
ECM method had a high latency with more VMs. For workflow
W3, the ECM method consistently exhibited a similar latency be-
cause the join operation produced a large number of output tuples,
which blocked the processing of the ECM marker. Overall the DCM
method achieved a much lower latency because it did not require
the control messages to wait for data processing.

10t

10°

1071

Latency (seconds)

1072

5
Number of VMs

Figure 14: Comparing two methods to support Pause inter-
actions on workflows Wy, W;, and Wj.

We compared the memory overhead of pausing with the DCM
approach, which left in-flight tuples in channels between operators,
versus the ECM approach, where there were no in-flight messages.
Table 2 shows the total size of in-flight messages after each work-
flow was paused. The size of in-flight messages for the DCM method
increased with the cluster size. This was because a shuffling opera-
tion between two operators created a full many-to-many channel,
e.g., with 10 machines, there were 100 channels to shuffle the data.
Workflow W; has two operators that require shuffling, join, and
aggregate, resulting in a higher size of in-flight tuples when paused.
Workflows W, and W5 had fewer in-flight tuples but followed a
similar trend.
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Table 2: In-flight message sizes in megabytes for DCM and
ECM across different workflows and number of VMs

1VM | 2VMs | 5VMs | 10 VMs
W1w/DCM | 0.07 0.1 1519 17183
W1 w/ECM 0 0 0 0
W2w/DCM | 148 4 19 407
W2 w/ ECM 0 0 0 0
W3 w/DCM | 1.01 1.32 8.16 92
W3 w/ ECM 0 0 0 0

5.3 Methods to Read and Modify Operator States

In this experiment, we evaluated handling user interactions using
the DCM approach and the hybrid approach. Both reading state
and modifying logic could be implemented using the same mech-
anism, differentiated only by the control messages (ReadState or
ModifyLogic). We sent dummy control messages that performed
no action to simulate the handling of ReadState and ModifyLogic
messages. The dummy messages were sent every 10 seconds, and
we measured the average latency to process them. We showed
the results in Figure 15. For W, and W5, the latency of the DCM
approach (around 100 ms) was lower compared to the hybrid ap-
proach (around 1 second). This was expected because the DCM
approach transmits far fewer control messages. However, it was
important to note that the DCM approach offered no consistency
in reading state or modifying logic, whereas the hybrid approach
guarantees a consistent state and provides backward-consistency
when modifying logic. For Wj, the latency of both the hybrid and
DCM approaches were similar. This was due to the higher num-
ber of shuffling operations in Wj, where the additional latency of
control messages was dominated by data-processing overhead.

—— DCM
Hybrid
w1
W2
W3

10°

107t

Latency (seconds)

102

10

Number of VMs
Figure 15: Latency of a user interaction to read and modify
states of operators in workflows W;, Wy, and Ws.

6 CONCLUSIONS

In this paper, we gave a holistic view of the design principles in the
open-source Texera system to support collaborations and a variety
of interactions throughout workflow execution. We presented differ-
ent methods of sending control messages to running workers, and
trade-offs of using these methods to support three common types
of interactions, namely pausing an execution, reading an operator’s
state, and modifying an operator’s logic. We reported experimental
results on real-world datasets to evaluate these techniques.
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