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Abstract—The tracking and labeling of multiple objects in
multiple cameras is a fundamental task in applications such as
video surveillance, autonomous driving, and sports analysis. In
an ad-hoc multi-camera network without a fusion center nodes
can benefit from local cooperation to solve signal processing
tasks, such as distributed image enhancement. A crucial first
step for the successful cooperation of neighboring nodes is
to answer the question: Who observes what?. In this paper,
an adaptive algorithm is proposed that enables cameras with
different view points to assign the same identity to the same
object across time frames without assuming the availability of
camera calibration information or requiring the registration of
camera views. Information which is extracted directly from the
videos and is shared in the network via a diffusion algorithm
is exploited to jointly solve multi-object tracking and labeling
problems in a multi-camera network. A real-data use case of
pedestrian labeling is provided, which demonstrates that a high
labeling accuracy can be achieved in a multi-object multi-camera
setup with low video resolution and frequent object occlusions.

I. INTRODUCTION

Distributed and adaptive signal processing is a rapidly
growing field of research, which enables the development of
novel paradigms for signal and parameter estimation. One
such paradigm is the multiple devices multiple tasks (MDMT)
paradigm where multiple devices cooperate to solve multiple
complex signal processing tasks [1]–[3]. A distributed camera
network containing multiple heterogeneous devices, such
as smart phones, tablets and/or handheld cameras, which
neither has a pre-defined network structure nor a centralized
computing unit can make use of the MDMT paradigm. Nodes
in a distributed camera network can be interested in, e.g.,
image enhancement, object detection, pose analysis, and
object tracking. In most real-world applications, the signal
received by these nodes is contaminated by noise, contains
frequent object occlusions, and lacks visibility in densely
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crowded scenes. Under the MDMT paradigm, such nodes
can benefit from cooperation with their immediate neighbors
to solve their signal processing task of interest. The answer
to the question “who observes what?” holds the key to the
successful cooperation of neighboring nodes in a distributed
network. Recently, some generic clustering and classification
algorithms have been proposed for distributed sensor networks
[4]–[6]. The research question addressed in this paper is
to develop a distributed and adaptive multi-object labeling
algorithm for a multi-camera network without assuming
any form of camera calibration or utilizing a centralized
computing unit that fuses all information collected from
different cameras. The advantage of such an approach is
that it is applicable to ad-hoc networks of mobile cameras.
Furthermore, the approach is robust against a single node
failure and since it is based on the diffusion principle [7] it
is adaptive and scalable.
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Fig. 1. A wireless camera network [8], [9] observing a scene of interest.
The top image shows a camera network with J = 3 nodes continuously
monitoring a scene of interest from different observation angles. The bottom
images show frames captured at the same time instant by cameras 2, 1, and
3, respectively.

The tracking and labeling of multiple objects in multiple
cameras is fundamental, e.g. for applications such as video
surveillance, autonomous driving, and sports analysis. Multi-
object multi-camera tracking systems must maintain consistent
labels of objects of interest across camera views and over time
to take advantage of the information available from different
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camera views in the network. Previous approaches to the la-
beling of multiple objects across views include principal axis-
based integration of multi-camera information [10], nonlinear
manifold learning and system dynamics identification [11], and
approaches that either use homography or camera calibration
information to register stationary camera views on top of a
known ground plane [8], [9], [12]–[14]. These state-of-the-art
methods are centralized approaches in the sense that camera
views are aggregated into a ground plane to make sure that
unique and consistent labels are assigned to the objects in the
scene of interest.
In this paper, we propose a new fully distributed algorithm
which does not require camera view registration to ensure that
the same object is provided with the same identity in a multi-
camera network. The information available in a neighborhood
of cameras is exploited to provide unique and consistent labels
to multiple objects across multiple camera views and time
frames. Each node solves a regularized cost function during
the assignment of a label to a particular object to exploit both
the information obtained from a local (single node) Kalman
filter-based tracker and a diffusion-based labeling algorithm.
The paper is organized as follows. Section II formulates the
distributed and adaptive multi-object multi-camera labeling
problem and Section III presents the proposed algorithm in
detail. A numerical evaluation of the proposed algorithm using
a real multi-camera network example is provided in Section
IV. Finally, conclusions are drawn and future work is briefly
discussed in Section V.

II. PROBLEM FORMULATION

Consider a wireless camera network with J nodes dis-
tributed over some geographic region as the one shown in
Fig. 1. The set of nodes that communicates directly with node
j ∈ {1, . . . , J} , J is called the neighborhood of node j
and is denoted by Bj ⊆ J . Let Xjn ∈ Rq×mjn represent the
q-dimensional feature vectors extracted at the jth node from
the mjn objects that are observed by the camera of node j at
time instant n. Each feature vector belongs to a certain cluster
Ck, k ∈ {1, . . . ,Kn}, where k is the cluster label. The total
number of objects (clusters) Kn at time instant n is assumed
to be known or estimated a priori, e.g. using [15]. Due to the
different view points of the cameras, even at the same time
instant, the number of objects observed by different cameras
differs. Our research goal is to adaptively estimate cluster
centroids and enable cameras with different view points to
assign the same identity to the same object in the scene of
interest.

III. PROPOSED ADAPTIVE DIFFUSION-BASED TRACK
ASSISTED MULTI-OBJECT LABELING ALGORITHM

A distributed and adaptive track assisted multi-object la-
beling algorithm for multi-camera networks, which is based
on the Adapt Then Combine (ATC) diffusion principle [7],
is proposed and depicted in Fig. 2. The general procedure
involved in the proposed framework for node j ∈ J is
summarized as follows.
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Fig. 2. An overview of the distributed and adaptive diffusion-based track
assisted multi-object labeling algorithm.

1) Record: the camera at node j captures framejn from
scenejn at time instant n.

2) Detect and extract: if there are objects of interest in
framejn, then each node j extracts feature vectors from
the detected bounding boxes of the objects and collects
them in Xjn. Otherwise, the camera at node j continues
to record at time instant n+ 1.

3) Exchange features: each node j exchanges its feature
vectors Xjn within its neighborhood Bj . The own and
received feature vectors are stored in the matrix X̃jn ∈
Rq×

∑
b∈Bj

mbn , where mbn represents the number of
objects detected by node b ∈ Bj at time instant n.
Next, each node j accumulates X̃ji, i = 1, . . . , n, inside
the matrix Sjn ∈ Rq×Njn , where Njn = Nj(n−1) +∑

b∈Bj
mbn is the total number of feature vectors at

node j at time instant n.
4) Estimate and cluster: each node j performs K-means

to minimize the `2 distance between the feature vectors
in Sjn and the cluster centroids w0

jkn ∈ Rq×1

arg min
w0

jkn

Kn∑
k=1

Njn∑
i=1

‖Sjn(:, i)−w0
jkn‖2, (1)

where Sjn(:, i) denotes the ith column of Sjn and
the initial cluster centroids are obtained using the K-
means++ initialization algorithm [16]. This results in
a unique cluster label Ĉ0jkn for each feature vector in
Sjn. The feature vectors that belong to the same cluster
k ∈ {1, . . . ,Kn} are saved in Vjkn ∈ Rq×Njkn , where∑Kn

k=1Njkn = Njn. Then, the row-wise mean of Vjkn

is computed as

ψ̂0
jkn = mean (Vjkn) , (2)

where ψ̂0
jkn ∈ Rq×1. The minimization of the `2 dis-

tance using w0
jkn in Eq. (1) is performed only if Kn >

Kn−1. Otherwise, w0
jkn is replaced with ψ̂jk(n−1) in

Eq. (1).
5) Exchange estimates: each node j exchanges its inter-

mediate centroid estimates ψ̂0
jkn within its neighborhood

Bj . Synchronization of ψ̂0
bkn, b ∈ Bj , is necessary

because the order of ψ̂0
jkn is random at different nodes.
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The reordering of the intermediate centroid estimates is
performed by computing the Euclidean distance relative
to an arbitrarily chosen neighborhood head in Bj .

6) Combine estimates: each node j adapts its centroid
estimates using

ψ̂jkn = α · ψ̂0
jkn + (1− α) ·

∑
b∈Bj\{j}

abj · ψ̂0
bkn, (3)

where α controls the tradeoff between the weight given
to the own and neighborhood estimates. In this paper,
uniform combination weights are used which are given
by

abj = 1/|Bj \ {j}|, (4)

where |Bj \ {j}| represents the cardinality of the set Bj
without node j.

7) Assign: at this step, each node j assigns unique labels
Ĉjkn to objects of interest in framejn. We propose a
regularized cost function that aggregates the information
obtained from a local Kalman filter-based tracker and a
diffusion-based labeling algorithm. In particular,

Zjn(t,m) = λ · ‖d̂jnm − p̂jnt‖2+
(1− λ) · ‖Xjn(:,m)− ψ̂jtn‖2,

(5)

where λ is the regularization parameter, d̂jnm and p̂jnt
are detected and predicted bounding box center positions
for m = 1, . . . ,mjn and t = 1, . . . , tjn, respectively.
The total number of open tracks in the jth node at
time instant n is denoted by tjn and ψ̂jtn represents the
cluster centroid that belongs to the tth track. The two `2
distances in Eq. (5) are normalized by their respective
maximum to make sure that they are comparable. Then,
the Hungarian algorithm [17] is applied on Zjn to assign
unique labels Ĉjkn to feature vectors in Xjn.

Algorithm 1 summarizes the adaptive diffusion-based track
assisted multi-object labeling algorithm.

IV. REAL-DATA APPLICATION: MULTI-CAMERA
NETWORK FOR PEDESTRIAN LABELING

In this section, we first describe the multi-camera network
setup and the pedestrian detection algorithm with the as-
sociated feature extraction method. Then, the network-wide
performance measures used to evaluate the labeling perfor-
mance of the proposed algorithm are explained. Finally, real-
data results of the diffusion-based track assisted multi-object
labeling algorithm are provided.

A. Multi-Camera Video Sequence

We use an outdoor video sequence that was recorded by
three unsynchronized digital video cameras on the campus of
École Polytechnique Fédérale de Lausanne in Switzerland [8],
[9]. The cameras were mounted at head level (' 1.80m),
observing the scene of interest from different angles, and
the captured videos were synchronized by hand. Each video
sequence contains 2000 frames and up to five people are seen
entering and exiting the scene of interest at different times. The

Algorithm 1 Distributed and adaptive diffusion-based track
assisted multi-object labeling in multi-camera networks

1: for n = 1, 2, . . . do
2: for j = 1, 2, . . . , J do
3: record framejn
4: if objects are detected then
5: extract feature vectors Xjn

6: else
7: proceed with record step at n+ 1
8: end if
9: end for

10: for j = 1, 2, . . . , J do
11: exchange Xjn within Bj
12: store own and received feature vectors in X̃jn

13: accumulate X̃ji, i = 1, . . . , n, in Sjn

14: end for
15: for j = 1, 2, . . . , J do
16: perform K-means according to Eq. (1)
17: calculate ψ̂0

jkn via Eq. (2)
18: end for
19: for j = 1, 2, . . . , J do
20: exchange ψ̂0

jkn within Bj
21: synchronize ψ̂0

bkn, b ∈ Bj
22: end for
23: for j = 1, 2, . . . , J do
24: combine ψ̂0

bkn, b ∈ Bj via Eq. (3)
25: end for
26: for j = 1, 2, . . . , J do
27: solve Eq. (5) using Hungarian algorithm
28: end for
29: end for

multi-camera video sequence is challenging in the sense that
the videos have low resolution, the cameras monitor pedes-
trians from different angles, and there are frequent pedestrian
occlusions.

B. Pedestrian Detection and Feature Extraction

To detect pedestrians in the scene of interest, we use an
already trained MATLAB c© implementation of the Aggregated
Channel Features (ACF) pedestrian detector [18]. The ACF
pedestrian detector uses boosting to train decision trees over
features and a multiscale sliding window approach to distin-
guish objects of interest from background.
We consider the extraction of two types of color features for
the purpose of unsupervised labeling of detected pedestrians
across the camera network. For the first color feature, the
image patch (detected pedestrian) is subdivided into three
concentric rings and a 10-bin histogram per color channel
is computed for every region in a cumulative manner. The
resulting feature vector is the concatenation of the three color
channels, which correspond to red, green, and blue (RGB),
resulting in a 90 dimensional feature vector per detected
pedestrian. For the second color feature, the detected image
patch is cut horizontally into four equal parts and the average
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of the pixel values inside each part is computed for each color
channel. The concatenation of the features for the three color
channels results in a vector of dimension 12. Finally, these
two color features are concatenated to create a feature vector
of dimension 102.

C. Network-Wide Performance Measures

We define two network-wide performance measures, i.e.,
the average labeling rate Lk,k and the average mislabeling
rate Mk,h as follows

Lk,k =
1

J

J∑
j=1

(Ĉjk == Ck)
Njk

(6)

Mk,h =
1

J

J∑
j=1

(Ĉjh 6= Ck)
Njk

, (7)

where Lk,k indicates if object k is provided with the correct
label k, Mk,h indicates if object k is provided with a wrong
label h, Ck is the set of ground truth labels, and Njk is the
number of times the kth object was detected. To evaluate
the performance of the proposed algorithm, Lk,k and Mk,h

are placed in the diagonal and off-diagonal, respectively, of
a confusion matrix. In the confusion matrix, both Lk,k and
Mk,h are given in percentage.

D. Real-Data Results

The multi-camera video sequence contains J = 3 stationary
cameras and a neighborhood size of |Bj | = 3 is considered.
The weight parameter is set to α = 0.5 and the regularization
parameter is λ = 0.4. The number of pedestrians seen until
the nth time instant, Kn, is assumed to be known.
The labeling performance of camera 3 on pedestrian 1 is
depicted in Fig 3. A zero label indicates that either the
pedestrian is not detected in the current frame or he/she is
no longer in the scene of interest. For this particular multi-
camera video sequence, the ACF pedestrian detector has a
high misdetection rate and the position of the bounding boxes
is unstable. In some frames, multiple bounding boxes are
detected for a single pedestrian in the scene. These problems
affect the performance of the Kalman filter-based tracker and
the diffusion-based labeling algorithm. The red spikes in Fig.
3 indicate mislabels and result due to multiple detections for
a single pedestrian. However, even under such conditions,
the proposed diffusion-based multi-object labeling algorithm
performs reasonably well.
Fig. 4 shows an example of the network-wide labeling results
of the proposed algorithm using ACF pedestrian detector.
The bounding box of each pedestrian is provided with a
unique color and number. We define the multi-object labeling
algorithm to be performing well if the same pedestrian is
provided with the same color of bounding box and number
across different camera views and time frames. The proposed
algorithm is able to provide unique and consistent labels to
pedestrians in the scene even when there are partial occlusions.
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Fig. 3. A comparison of the estimated and true labels for pedestrian 1 in the
video sequence captured by camera 3.

Table I shows the confusion matrix of the proposed al-
gorithm averaged over all cameras and all time frames. The
confusion matrix shows the average labeling rate Lk,k in the
diagonal and the average mislabeling rate Mk,h in the off-
diagonal as defined in Section IV-C. The proposed algorithm
performs well in providing unique and consistent labels to the
first four pedestrians in the scene. Lower labeling performance
is exhibited for the fifth pedestrian because he is only visible
for a short time and is not well detected by the ACF pedestrian
detector. Table II shows the confusion matrix of the proposed
algorithm when we replace the ACF pedestrian detector with
the ground truth pedestrian detections which provides the best
achievable performance of our algorithm. If a good pedestrian
detector is used, the proposed algorithm achieves a very high
labeling performance even when the color features have strong
similarities, which is the case when pedestrians are dressed
similarly.

TABLE I
CONFUSION MATRIX IN PERCENTAGES WITH Lk,k IN THE DIAGONAL AND
Mk,h IN THE OFF-DIAGONAL USING ACF PEDESTRIAN DETECTOR.

Estimated Labels

1 2 3 4 5

Tr
ue

L
ab

el
s 1 88.75 3.56 0.93 0.96 5.80

2 0 95.12 1.56 0.07 3.18
3 0.79 3.36 83.66 4.57 8.12
4 0 3.89 5.03 91.08 0
5 4.66 8.65 48.59 18.33 19.77

TABLE II
CONFUSION MATRIX IN PERCENTAGES WITH Lk,k IN THE DIAGONAL AND
Mk,h IN THE OFF-DIAGONAL WHEN ACF PEDESTRIAN DETECTOR IS

REPLACED WITH GROUND TRUTH PEDESTRIAN DETECTIONS.

Estimated Labels

1 2 3 4 5

Tr
ue

L
ab

el
s 1 96.25 0.79 1.31 0.10 1.55

2 0.54 97.26 1.11 0.85 0.24
3 1.24 1.80 89.44 1.48 6.05
4 0 0.21 1.88 97.92 0
5 0 0 0.29 1.11 98.60
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Fig. 4. An example of the network-wide labeling results of the proposed algorithm using ACF pedestrian detector. Each row displays several views coming
from different cameras at the same time frame. The color of each bounding box and the number displayed on it show the identity that is given to the particular
pedestrian.

V. CONCLUSION

We proposed a distributed and adaptive diffusion-based
track assisted multi-object labeling algorithm for multi-camera
networks. The presented algorithm is able to provide unique
and consistent labels to multiple objects across camera views
and time frames without camera view registration. The per-
formance was tested on a real multi-camera network use-case.
Good labeling performance was achieved given the number of
pedestrians in the scene of interest. In future work, we will
extend our multi-object multi-camera labeling framework by
automatically estimating the number of objects in the scene of
interest. The approach can also be extended to the case where
information from heterogeneous sensor modalities is used to
consistently label objects across the network.
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