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Risk of randomness failure in ECDSA-type signatures
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k is a uniformly random value saধsfying

k ≡ z︸︷︷︸
public

+ h︸︷︷︸
public

·x mod q.

k should NEVER be reused/exposed as x = (z − z′)/(h′ − h) mod q

What if k is biased or parধally leaked? ; Aħack possible by solving the hidden number problem (HNP)!

Two different approaches to HNP: Fourier analysis vs laষce aħack.

Challenges

Can we reduce the data complexity of Fourier analysis-based aħack?

Can we aħack even less than 1-bit of nonce leakage (i.e., top-most bit of nonce k is only
leaked with prob. < 1)?
Can we obtain such a small leakage from pracধcal ECDSA implementaধons?

Our contributions

1. Novel class of cache aħacks against the Montgomery ladder scalar mulধplicaধon in OpenSSL
1.0.2u and 1.1.0l, and RELIC 0.4.0.

Affected curves: NIST P-192, P-224, P-256 (not by default in OpenSSL), P-384, P-521, B-283, K-283, K-409,

B-571, sect163r1, secp192k1, secp256k1
2. Improved theoreধcal analysis of the Fourier analysis-based aħack on HNP (originally

established by Bleichenbacher)

Significantly reduced the required input data

Analysis in the presence of erroneous leakage informaধon

3. Implemented a full secret key recovery aħack against OpenSSL ECDSA instanধated over

sect163r1 and NIST P-192.

Comparison with previous HNP records

< 1 1 2 3 4

256-bit — — [TTA18] [TTA18] [Rya18, Rya19, MSEH19, WSBS20]

192-bit This work This work — — —

160-bit This work
This work (less data),

[Ble00][LN13] [NS02] —
[AFG+14, Ble05]

LadderLeak: Tiny timing leakage from the Montgomery ladder

Algorithm 1Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)
Output: Q = [k]P

1: k′ ← Select (k + q, k + 2q)
2: R0 ← P , R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕R1; R1 ← 2R1
6: Swap (R0, R1) if k′i = 0
7: end for

8: return Q = R0

Condiধons for the aħack to work:

1. Group order is 2n − δ with small δ.

2. Accumulators (R0, R1) are in projecধve coordinates,

but iniধalized with the base point in affine

coordinates.

3. Group law is non-constant ধme wrt handling Z
coordinates ; Weierstrass model

Cache-timing attack experiments

Experimentswere carried outwith Flush+Reload cache aħack technique;MSB of kwas detected

with > 99 % accuracy.
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Figure 1. Paħern in traces collected by FR-trace for
the binary curve case.
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Figure 2. Paħern in traces collected by FR-trace for
the prime curve case.

How to quantify the nonce bias

Bias funcধon

The sampled bias of a set of points K = {ki}i∈[1,M ] in Zq is defined by

Biasq(K) = 1
M

∑
i∈[1,M ]

e2πiki/q.

Re

ImUniform ki ∈ Zq

Re

ImBiased ki ∈ [0, q/2)

Bleichenbacher’s Fourier analysis-based attack

Step 1. Quanধfy the modular bias of randomness K by defining a bias funcধon Biasq(K).
Improvement 1 Analyzed the behavior Biasq(K) when k’s MSB is biased with probability < 1!

Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by compuধng FFT)

Criধcal intermediate step: collision search of integers h
Detect the bias peak correctly and efficiently

Improvement 2 Established unified ধme-memory-data tradeoffs by applying K-list sum algorithm for the GBP!

Tradeoff graphs for 1-bit bias
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Figure 3. Time–Data tradeoffs when memory is fixed to 235.

Opধmized data complexity obtained by solving the linear programming problem.

Paper has various tradeoff graphs and improved complexity esধmates for 2-3 bits bias.

Experimental results on full key recovery

Target Facility Error rate Input Output Thread Time RAM LFFT Recovered

(Collision) (Collision) (Collision) MSBs

NIST P-192 AWS EC2 0 229 229 96× 24 113h 492GB 238 39

NIST P-192 AWS EC2 1% 235 230 96× 24 52h 492GB 237 39

sect163r1 Cluster 0 223 227 16× 16 7h 80GB 235 36

sect163r1 Workstaধon 2.7% 224 229 48 42h 250GB 234 35

Aħack on P-192 is made possible by our highly opধmized parallel implementaধon.

Aħack on sect163r1 is even feasible with a laptop.
Recovering remaining bits is much cheaper in Bleichenbacher’s framework.

Aħacks on P-224 with 1-bit bias or P-256 with 2-bit bias are also tractable.

Main takeaways

Securely implemenধng briħle cryptographic algorithms is sধll hard.

Don’t underesধmate even less than 1-bit of nonce leakage!

Interesধng connecধon between the HNP and GBP (from symmetric key crypto)

Future work:
More list sum algorithms and tradeoffs?

Improvements to FFT computaধon?

Other sources of small leakage?

More details at https://ia.cr/2020/615
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