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Attacks on ECDSA “nonce”

• ECDSA/Schnorr: Most popular signature schemes relying on the hardness of
the (EC)DLP

• Signing operation involves secret randomness k ∈ Zq, sometimes called
“nonce”

• Long history of research on the attacks against k . . .
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Randomness in ECDSA/Schnorr-type Schemes

Alice Bob

Message Alice’s Secret key

Sign
Verify

Alice’s Public key

0/1
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101101 ・・・

• k is a uniformly random value satisfying

k ≡ z︸︷︷︸
public

+ h︸︷︷︸
public

·x mod q.

• k should NEVER be reused/exposed as x = (z− z′)/(h′ − h) mod q
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Risk of Biased/Leaky Randomness
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Bias

• What if k is slightly biased ?
• Secret key x is recovered by solving the hidden number problem (HNP)
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Randomness Failure in the Real World

• Poorly designed/implemented RNGs
• Predictable seed (srand(time(0))
• VM resets ; same snapshot will end up
with the same seed

• Side-channel leakage
• and many more. . .

BBC news. 2011. https://www.bbc.com/
news/technology-12116051
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How to solve the HNP

More bias/leakage
& 

Fewer signatures

Less bias/leakage 
& 

More signatures

Lattice

Fourier
Analysis
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How to solve the HNP

More bias/leakage
& 

Fewer signatures

Less bias/leakage 
& 

More signatures

Lattice

Fourier
Analysis

Not applicable to 
small bias !

Too much data 
complexity !
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Questions

• Can we reduce the data complexity of Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

• Can we obtain such a small leakage from practical ECDSA implementations?

YES!
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Summary of results

1. Novel class of cache attacks against the Montgomery ladder scalar
multiplication in OpenSSL 1.0.2u and 1.1.0l, and RELIC 0.4.0.

• Affected curves: NIST P-192, P-224, P-256 (not by default in OpenSSL), P-384,
P-521, B-283, K-283, K-409, B-571, sect163r1, secp192k1, secp256k1

2. Improved theoretical analysis of the Fourier analysis-based attack on the
HNP (originally by Bleichenbacher)

• Significantly reduced the required input data
• Analysis in the presence of erroneous leakage information

3. Implemented a full secret key recovery attack against OpenSSL ECDSA over
sect163r1 and NIST P-192.
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New attack records for the HNP!

Comparison with the previous records of solutions to the HNP: Fourier analysis vs Lattice

< 1 1 2 3 4

256-bit — — [TTA18] [TTA18] [Rya18, Rya19, MSEH19, WSBS20]
192-bit This work This work — — —

160-bit This work This work (less data), [Ble00][LN13] [NS02] —[AFG+14, Ble05]

• Require fewer input signatures to attack 160-bit HNP with 1-bit leak!
• First attack records for 192-bit HNP with (less than) 1-bit leak!
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How to acquire ECDSA nonce



ECDSA signing

Scalar multiplication is critical for performance/security of ECC.

Algorithm 1 ECDSA signature generation

Input: sk ∈ Zq, msg ∈ {0, 1}∗
Output: A valid signature (r, s)
1: k←$ Z∗

q
2: R = (rx, ry)← [k]P
3: r← rx mod q
4: s← (H(msg) + r · sk)/k mod q
5: return (r, s)

Critical: [k]P should be constant time to avoid timing leakage about k.
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LadderLeak: Tiny timing leakage from the Montgomery ladder

Algorithm 2 Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: k′ ← Select (k + q, k + 2q)
2: R0 ← P, R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕ R1; R1 ← 2R1
6: Swap (R0, R1) if k′i = 0
7: end for
8: return Q = R0

Conditions for the attack to work:

• Accumulators (R0,R1) are in
projective coordinates, but
initialized with the base point in
affine coordinates.

• Group order is 2n − δ

• Group law is non-constant time
wrt handling Z coordinates ;
Weierstrass model

Experiments were carried out with
Flush+Reload cache attack technique

; MSB of k was detected with > 99 %
accuracy. 10



Software countermeasures & coordinated disclosure

There are at least three possible fixes:

1. Randomize Z coordinates at the beginning of scalar multiplication.
2. Implement group law in constant time, for example using complete addition

formulas (no branches).
3. Implement ladder over co-Z arithmetic to not handle Z directly.

Coordinated disclosure: reported in December 2019 (before EOL of OpenSSL
1.0.2), fixed in April 2020 with the first countermeasure.
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How to exploit ECDSA nonce bias



Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the modular bias of randomness k← K
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution-1 Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: collision search of integers h
• Detect the bias peak correctly and efficiently
• Contribution-2 Established unified time-memory-data tradeoffs by applying
K-list sum algorithm for the GBP!
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Tradeoff Graphs for 1-bit Bias
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Figure 1: Time–Data tradeoffs when memory is fixed to 235.

* Optimized data complexity by solving the linear programming problem
* Paper has various tradeoff graphs and improved complexity estimates for 2-3
bits bias
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Experimental Results on Full Key Recovery

Target Facility Error rate Input Output Thread Time RAM LFFT Recovered
(Collision) (Collision) (Collision) MSBs

NIST P-192 AWS EC2 0 229 229 96 × 24 113h 492GB 238 39
NIST P-192 AWS EC2 1% 235 230 96 × 24 52h 492GB 237 39
sect163r1 Cluster 0 223 227 16 × 16 7h 80GB 235 36
sect163r1 Workstation 2.7% 224 229 48 42h 250GB 234 35

• Attack on P-192 is made possible by our highly optimized parallel
implementation.

• Attack on sect163r1 is even feasible with a laptop.
• Recovering remaining bits is much cheaper in Bleichenbacher’s framework.
• Attacks on P-224 with 1-bit bias or P-256 with 2-bit bias are also tractable.
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Main takeaways

• Securely implementing brittle cryptographic algorithms is still hard.

• Don’t underestimate even less than 1-bit of nonce leakage!

• Interesting connection between the HNP and GBP (from symmetric key
crypto)

• Open questions:
• More list sum algorithms and tradeoffs?
• Improvements to FFT computation?
• Other sources of small leakage?

Thank you! & Questions?
More details at https://ia.cr/2020/615
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