Security of Hedged Fiat-Shamir Signatures under Fault Attacks

Eurocrypt 2020 ePrint https://ia.cr/2019/956

Diego F. Aranha¹ Claudio Orlandi¹
Akira Takahashi¹ Greg Zaverucha²
May 14, 2020

¹Aarhus University, Denmark

²Microsoft Research, United States

Goal of Our Work

- Formally analyze the fault-resilience of existing Fiat-Shamir signatures
 - · Provable security methodology.
 - Motivated by actual fault attacks on concrete schemes.

1. Randomized signature : $r \leftarrow \mathsf{RNG}(\cdot)$

- · Nonces don't need to be uniform: low-quality RNG or counter should suffice.
- \cdot Randomness r doesn't repeat on the same message.

1. Randomized signature : $r \leftarrow RNG(\cdot)$

Risk of randomness bias!

- · Nonces don't need to be uniform: low-quality RNG or counter should suffice.
- \cdot Randomness r doesn't repeat on the same message

- 1. Randomized signature : $r \leftarrow RNG(\cdot)$ © Risk of randomness bias!
- 2. Deterministic signature : $r \leftarrow H(sk, m)$

- Nonces don't need to be uniform: low-quality RNG or counter should suffice.
- \cdot Randomness r doesn't repeat on the same message

- 1. Randomized signature : $r \leftarrow RNG(\cdot)$ © Risk of randomness bias!
- 2. Deterministic signature : $\underline{r} \leftarrow H(sk, m)$ \odot Vulnerable to fault attacks!

- Nonces don't need to be uniform: low-quality RNG or counter should suffice.
- \cdot Randomness r doesn't repeat on the same message.

- 1. Randomized signature : $r \leftarrow RNG(\cdot)$ © Risk of randomness bias!
- 2. Deterministic signature : $\underline{r} \leftarrow H(sk, m)$ \odot Vulnerable to fault attacks!
- 3. Hedged signature : $r \leftarrow \mathsf{H}(sk, m, nonce)$ \odot Seems secure?

- · Nonces don't need to be uniform: low-quality RNG or counter should suffice.
- \cdot Randomness r doesn't repeat on the same message.

Contributions

- Formal attacker model and security notions to capture the corrupted nonces and previous fault attacks.
- Proved that hedged FS schemes in general are secure against single-bit fault attacks on many intermediate wire values in the signing algorithm.
 - + Negative results for a few wires.
- Application to concrete instantiations.
 - · XEdDSA: Hedged variant of EdDSA used in Signal
 - Picnic2: NIST PQC competition round 2 candidate

Overview of Our Results

If $\mathcal A$ doesn't query the same (m,n) pair more than once

- ✓ secure against single-bit flip/stuck-at faults.
- **X** insecure against single-bit flip/stuck-at faults.
- ★ security only holds for signatures from subset-revealing ID (e.g., Picnic).
- ▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).

Overview of Our Results

If $\mathcal A$ doesn't query the same (m,n) pair more than once

- ✓ secure against single-bit flip/stuck-at faults.
- insecure against single-bit flip/stuck-at faults.
- ★ security only holds for signatures from subset-revealing ID (e.g., Picnic).
- ▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).

Overview of Our Results

If ${\mathcal A}$ doesn't query the same (m,n) pair more than once

- ✓ secure against single-bit flip/stuck-at faults.
- X insecure against single-bit flip/stuck-at faults.
- * security only holds for signatures from subset-revealing ID (e.g., Picnic).
- ▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).

Conclusion

- · Hedged FS is provably more resilient than the randomized/deterministic FS!
 - Negative results show where practitioners pay the most attention.
- Open questions
 - · Extension to more advanced fault attacker model.
 - Multi-bit/position faults. Partially handled by Fischlin and Günther (CT-RSA'20) for generic signatures.
 - · Fault within Com, Resp or public parameters.
 - Model for instruction skipping faults.
 - · Fault + QROM.
 - · Lattice signatures from FS with aborts.

Thank you!

More details at https://ia.cr/2019/956