A Dynamic Communication Algorithm for Digital Halftoning

Philip F. Hingston
School of Computer & Information Sci,
Edith Cowan University
Western Australia 6050
email: p.hingstonQecu.edu.au

Abstract

We present a novel algorithm for digital halftoning. The algo-
rithm combines a technique based on error diffusion with the
use of a cost function to determine termination. Its chief ad-
vantages include the use of randomness to avoid visual artifacts
in the binary image and its amenability to parallel execution.
The algorithm is a member of the class of “dynamic communi-
cation algorithms” which make novel use of dynamically-routed
messages to structure the execution of a program.

Keywords: digital halftoning, image analysis, parallel
algorithms, algorithm design.

1 Introduction

We propose a new algorithm for digital halfton-
ing which belongs to the recently-discovered class
of “dynamic communication algorithms”, or DCAs!.
Algorithms in this class are designed specifically
to exploit the communication capabilities of (logi-
cally) fully-interconnected memory-passing architec-
tures with large numbers of processors. Dynamic
communication algorithms differ from traditional par-
allel algorithms in that they use communication in a
constructive manner to minimise the computational
requirements of applications. The communication
pattern of a DCA is determined at run-time using
data local to the sending processors. This allows pro-
cessors to derive information (beyond that contained
in the message itself) from the mere existence (or, in-
deed, non-existence) of messages. The propagation of
messages as the algorithm proceeds leads to an expo-
nential growth in such derived information. Previous
studies of the class of dynamic communication algo-
rithms have resulted in new algorithms in a diverse
range of important application areas. DCAs can be
emulated efficiently on sequential architectures using
offset-addressing to simulate communication between
processors, an operation for which all stock hardware
is heavily optimised.

The remainder of the paper is structured as fol-
lows. Section 2 introduces the problem of digital
halftoning and describes some previous algorithms.
Section 3 introduces the class of dynamic communi-
cation algorithms in more detail. Section 4 describes
our new algorithm, Algorithm Y. Section 5 illustrates
the results of applying Algorithm T to some sample
images and also discusses a hybrid of Algorithm Y

Copyright ©2001, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-Fifth Australasian Computer Sci-
ence Conference (ACSC2002), Melbourne, Australia. Confer-
ences in Research and Practice in Information Technology, Vol.
4. Michael Oudshoorn, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

This class of algorithms has previously been called

“communication-intensive, massively-parallel algorithms”.

R. Lyndon While
Dept of Computer Sci & Software Eng,
The University of Western Australia
Western Australia 6009
email: 1yndon@cs.uwa.edu.au

with an existing algorithm to combine their best fea-
tures. Section 6 concludes the paper.

2 Digital Halftoning

The digital halftoning problem may be described as
that of approximating a greyscale image with a bi-
level black-and-white image. This is important both
for displaying images on monochrome screens and for
printing them as hard copy. The aim of halftoning
is to produce a binary image that is “visually simi-
lar” to the greyscale original. The interpretation of
whether two images are visually similar is necessar-
ily a subjective one, different people having differ-
ing opinions on the relative merits of the results of
halftoning algorithms. The level of “similarity” re-
quired will also depend on the expected use of the
final image. Other, more objective properties of an
algorithm include some measure of the “difference”
between the original and final images, the perfor-
mance of the algorithm on sequential machines and
its amenity to parallel execution. In this paper we
consider only the case where the images are repre-
sented by pixel arrays of the same dimensions.

Many halftoning algorithms are designed to match
the average intensity in the neighbourhood of a pixel
in the binary and greyscale images. As many of these
methods tend to produce a blurred effect, edge en-
hancement methods may be used to sharpen the re-
sulting images. In this paper we prefer not to imple-
ment edge enhancement so that the basic algorithms
may be more readily compared.

One of the most widely used methods is ordered
dither [Bayer, 1973]. This uses a small n x n dither
matriz of threshold values, D, to tile the image. Pixel
P;; is set to white if the corresponding greyscale value
is greater than D[i mod n][j mod n] and to black
otherwise. Ordered dither is highly parallel, as each
pixel in the image is treated separately. Unfortu-
nately, this simple method produces annoying visual
artifacts, such as contouring and patterning, espe-
cially in large uniform areas of an image.

The Floyd-Steinberg algorithm
[Floyd and Steinberg, 1976] and the JJN algo-
rithm [Jarvis et al., 1976] are examples of error
diffusion techniques. These algorithms perform a
single linear pass over the image: each pixel is set
to either black or white and the resulting error is
distributed to neighbouring pixels. These methods
sacrifice parallelism in order to overcome some of
the aliasing effects of ordered dither. However,
they introduce some artifacts of their own, such as
snake-like patterning in some areas of an image.

An elaboration on error diffusion is
the wuse of approximations of space-filling
curves, such as Hilbert curves, rather
than linear scans [Witten and Neal, 1982,

Cole, 1991, Velho and Gomes, 1991,

Wyvill and McNaughton, 1991]. Once
these methods are inherently serial in nature.

Knuth [Knuth, 1987] introduces the method of dot
diffusion, which attempts to combine the advantages
of ordered dither and error diffusion. The image is
tiled with a fixed matrix as in ordered dither, and the
image pixels are assigned classes based on the matrix
value. The pixels in a class are then handled simulta-
neously, with errors from one class being distributed
to neighbouring pixels with higher matrix numbers.
The algorithm is more parallel than the error diffusion
methods but still suffers from visual artifacts.

The space diffusion method
[Zhang and Webber, 1993] combines dot diffu-
sion with the use of space-filling curves. In this
method, the image is tiled along an approximation to
a space-filling curve rather than a linear scan. This
aims to preserve the parallel nature of dot diffusion
whilst improving its visual attractiveness.

Recently, researchers have cast the problem in
terms of finding a binary image that minimises a
suitable cost function. Gotsman’s Algorithm HT
[Gotsman, 1993] uses a cost function that matches
average intensities in the original and final images.
The term “average” is used here to mean a weighted
average, i.e. a low-pass filter. Algorithm HT per-
forms multiple linear scans over the binary image, at
each step changing the pixel if doing so reduces the
value of the cost function. The process continues until
no further improvement is found. This algorithm has
the virtue that it can be adapted for halftoning se-
quences of images from an animation with little tem-
poral aliasing and very good compressibility. To do
this, the binary image from the previous frame is used
as an initial image to be refined by the algorithm for
the next frame in the sequence. It is not clear to what
extent this algorithm could be parallelised.

Geist, Reynolds and Suggs [Geist et al., 1993] use
a cost function that includes a term measuring how
well average intensities match plus a term that re-
flects spectral information. Their algorithm uses a
neural network or simulated annealing to search for
minima of the cost function. While this method pro-
duces impressive images, it is very computationally
expensive and therefore most suited for production of
high quality images where execution speed is not a
concern. On the other hand, it can be implemented
as a parallel algorithm.

again,

3 Dynamic Communication Algorithms

Programming parallel computers is notoriously diffi-
cult. Factors contributing to this difficulty include the
complexity of concurrency, the need for explicit re-
source management and the current diversity of paral-
lel machine models. One important question is how to
partition a program so that it makes good use of the
resources available for its execution: this is commonly
known as load-balancing. The standard approach to
load-balancing is to statically divide up the work to
be performed into a number of tasks, each of which is
then assigned a particular processor for its execution.
Inevitably, as a result of this division, results calcu-
lated on one processor will be needed by a task on an-
other processor. Communication is thus required to
send results from where they are calculated to where
they are needed. This communication is purely an
overhead of the load-balancing algorithm: because its
source and destination are determined statically by
the division of work, it conveys no information other
than the value contained within it. We can compare
this type of communication to that which results from
a manager assigning a task to a worker: at the com-
pletion of the task, the worker passes the results back
to the manager.

But we know from human interaction that there
are other forms of communication, ones which carry
implicit information additional to their actual con-
tent. We identify two forms of such communication,
which we illustrate by examples.

In the first case, imagine a lottery in which there
is one prize of known size. The entrants know which
day the winner is to be notified: therefore simply to
receive a letter from the lottery organisers on that day
will be enough to convey the good news, irrespective
of the content of the letter. The letter might in fact
be empty! Moreover, and often more importantly,
not to receive a letter on that day will be enough to
convey the bad news to the losers: they receive in-
formation without any communication taking place.
This situation corresponds to processors sending dy-
namic communications to each other in synchronous
fashion: the mere existence or non-existence of a mes-
sage in a particular cycle can impart information to
the destination (or non-destination!) processor.

In the second case, imagine a worker who is up for
promotion receiving a dinner invitation from the Head
of his company. It may be possible for the worker to
infer potential good news about his future with the
company simply from the presence of such an invi-
tation, without such news being explicitly mentioned
by the Head. This situation corresponds to processors
inferring information from dynamic communications
by knowing how the destination was decided, and us-
ing that knowledge to deduce the values of data local
to the sending processor.

The distinguishing feature of these forms of com-
munication is that their destinations are not deter-
mined statically by the structure of the situation, they
are determined dynamically using information which
comes to light after that structure is created. This
means that the receiver (or non-receiver) of the com-
munication can infer something about the data or in-
tentions of the sender, beyond what is contained in
the actual message. The communication has ceased
to be simply an overhead: it has become an impor-
tant part of the situation. This allows us to construct
new algorithms which are based around their commu-
nications in an entirely novel fashion.

Previous studies of the class of dynamic commu-
nication algorithms have resulted in new algorithms
in a diverse range of important application ar-
eas, including sorting [Sharp and Cripps, 1989],
tessellation [Sharp, 1990], fractal image genera-
tion [Sharp and Cripps, 1991], pattern recognition
[Sharp and While, 1993b] and pitch detection in
speech [Sharp and While, 1993a]. In all of these ar-
eas, a DCA has been discovered which out-performs
previously-known algorithms in some respect.

DCAs can also be emulated efficiently on sequen-
tial architectures. The operation of a parallel machine
is modelled by an array of records, one representing
each processor. Point-to-point communications are
modelled by array-indexing operations and broadcast
operations are modelled by assignments to global vari-
ables. Note that offset-addressing is an operation for
which all stock processors are heavily optimised: this
means that, often, emulated DCAs out-perform other
styles of algorithms on sequential machines.

4 Algorithm Y
Algorithm Y combines the technique of error diffusion
with the use of a cost function to determine termina-
tion. Assume the following definitions.

i s apixel, 1 <i<Imaz,1<j5 < Jmaz

ij is the original greyscale value of P;

P
G
Ci; is the current binary value of P;;
N

ij 18 the set of pixels in the neighbourhood of Pijels randomly chosen from N,

Using these we define the following quantities.

N = [Ny |

Bij = {Pij [Piy €Ny A Cyjr =0}
B;; is the set of black pixels in the
neighbourhood of P;;

Wi; = {Pijy | Pijr € Nij A Cijr =1}
W;; is the set of white pixels in the
neighbourhood of P;;.

Note that B;; U W;; = Ny;
Eij = b, en; Cirs

E;; is the “estimated” current intensity
vaiue in the neighbourhood of P;;.

Note that Ez] = | W,’j |

We first describe the basic outline of Algorithm T, to
highlight the dynamic properties of its communica-
tion structure. We then go on to discuss the options
available to make the outline concrete.

We assume a machine which has at least as many
processors as there are pixels in the greyscale im-

age. We assign one processor to each pixel in the
image. The processors execute the following steps
synchronously.

1. The processor calculates T;;. T;; is the “target”
intensity value in the neighbourhood of P;;. Sec-
tion 4.1 describes the possible definitions of Tj;;.

2. The processor generates the initial value of C;;.
It generates a random real r, 0 < r < 1, and sets
Ci; to white if » < G;; and to black otherwise.

3. The processor calculates the initial value of E;;.

4. The processors iterate through the following
steps synchronously until termination.

(a) If E;; > T;;, the processor randomly
chooses some pixels in W;; and sends them
messages requesting that they turn black.
Otherwise, if E;; < T;;, the processor ran-
domly chooses some pixels in B;; and sends
them messages requesting that they turn
white. Otherwise the processor is “happy”
and communicates this to the other proces-
sors.

(b) If enough processors are happy, the algo-
rithm terminates and the processor returns
the value C;; as its result. Otherwise, if the
processor receives enough messages request-
ing a change of colour, it changes the value

of C;; and sends a message to each pixel in
N;; informing it of the change?®.

(c) The processor updates the value of E;; with
the information from incoming messages.

Algorithm Y involves communication at every step
except Step 2 and Step 4(c). At Steps 1, 3 and 4(b),
the processor sends a message to each pixel in Nj;.
Assuming that the definition of N;; does not vary
during one execution of the algorithm, the pattern
of these communications is determined statically. At
Step 4(a) the processor sends messages to some pix-
Randomness is im-
portant here as it ensures that systematic patterns of
noise do not arise in the binary image. The desti-
nations of these messages cannot therefore be known
in advance: they are determined dynamically by the
random-number generator.

The three issues which are not specified in the
above description of Algorithm Y are the definition of
T;; and how the processors determine whether they
are “happy”, how unhappy processors communicate
their desire for change to one another and how happy
processors indicate their happiness and co-operate to
detect termination.

4.1 The definition of T;; and the pursuit of

happiness

T;; is the “target” intensity value in the neighbour-
hood of P;;. There are at least three possible defini-
tions of T”

1. Tz'j = N x Gij
2' TZ] = EpiljleNij Gil.jl
3. Tz] = ZPinIENij f(i,l",j,jl) X Giljl

The first definition makes T;; depend only on the
value of G;;, i.e. the intensity in the centre of the
neighbourhood. The second definition makes T;; de-
pend on all of the values Gy in the neighbourhood.
This definition tends to make the final binary image
slightly more “blurred” than does the first definition.
The third possibility is a generalisation of the second,
where T;; is defined to be a weighted sum of the val-
ues Gy in the neighbourhood, the weighting being
specified by the function f. We have conducted no
experiments with this definition of T;; as yet.

A processor determines whether it is happy by
comparing the values of E;; and T;;. The strictest
definition of happiness is

E,’j > Tij iff Eij — Tij > 0.5

E,’j < T,’j iff T,’j — Ez'j > 0.5

Happy(Pi;)

Thus P;; is happy if E;; is within 0.5 of T;;, i.e. if E;;
is the best possible estimate of T;;.

There is a further enhancement available using
this definition of happiness. From the initial value of
T;;, the processor can uniquely determine the integer
number of pixels for which it is aiming. For example,
if the initial value of T;; = 4.3, the processor will be
happy only if E;; = 4. The processor can therefore
round the value of T;; to the nearest integer at Step 1
of the algorithm. The principal effect of this rounding
is to make the values C;; converge more quickly.

iff Ez'j » T,’j A Ei]‘ 5(Tij

2We assume that P;; € Nyrji = Purjr € Nij.

However, this definition of happiness may in fact
be too deterministic. The effect of such a strict defi-
nition is similar in some ways to thresholding over a
neighbourhood instead of over a single pixel: areas in
the greyscale image with continuously varying inten-
sity tend to be divided up in the binary image into
distinct regions with integer intensities.

We overcome this problem by relaxing the defini-
tion of happiness somewhat. Each processor deter-
mines the initial value of T;; according to whichever
of the above definitions is in use. It then uses the
fractional part of T;; to decide randomly whether to
round T;; down or up to the nearest integer. For ex-
ample, if the initial value of T;; is 4.3, the processor
generates a random real 7, 0 <r <1, and sets T;; to
5 if r < 0.3 and to 4 otherwise. This technique gives
the advantage of good convergence which arises from
the use of integer targets, whilst avoiding the disad-
vantage of neighbourhood thresholding which arises
from a totally deterministic definition of happiness.

So, to recap, the definition of T;;, >, < and Happy
which we have (so far) found which give the best re-
sults in Algorithm T is

Tij [t |, iffr <ty — [t]
| ti; |, otherwise
where ti; = N x Gij

E,’j < T,’j iff Ez'j < T,’j
Happy(Pi;) iff Eij =Ty

where 7 is a random real with 0 <r < 1.

4.2 Communication for change

An unhappy processor tries to increase its own happi-
ness by convincing some processors in its neighbour-
hood to change their pixel colours. If it convinces too
few of its neighbours, it will take too long to achieve
happiness. If it convinces too many, it will remain
unhappy, its intensity alternating between being too
high and being too low. Striking a balance between
these extremes is therefore critical to the correct func-
tioning of the algorithm.

We have constructed a simple voting scheme
that balances the (potentially) conflicting desires of
processors whose neighbourhoods overlap. In this
scheme, a processor changes its pixel’s colour if a ma-
jority of its neighbours send messages requesting it to
change. Thus global happiness will increase.

There are two cases to consider where processors
are unhappy. The first case is where E;; > T;, i.e.
the processor considers its neighbourhood to be too
white. The second case is where E;; < T;, i.e. the
processor considers its neighbourhood to be too black.

Case 1: Eij > Ti]’

This is the case where there are too many white pixels
in P;;’s neighbourhood. P;; calculates a probability,
p, and sends a message requesting change to each pro-
cessor in W;; with probability p.

Assuming that every neighbour of the receiving
processor chooses the same p, we can calculate a value
for p so that the expected number of neighbours that
will change is neither too high nor too low. Although
this assumption is not strictly valid, it has the virtue
that the calculation can be done locally so that there
is no communication overhead. The calculated value
of p works well in practice.

The calculation is as follows. The unhappy pro-
cessor wants E;; — T;; neighbours to turn black on
average, i.e. it wants

Prob(White neighbour P; ; turns black)
E.. —T:
=4 Y >] (1)
ij

But, by supposition,
Prob(White neighbour P; ; turns black)

= Prob(Py j receives > & requests) (2)
We can calculate

Prob(P; j receives k requests)
N
=(k) X x (1—)N+ 3)

so, combining equations (2) and (3), we get

Prob(White neighbour Py j turns black)

3 (]Z) x p* x (1—p)N*

| I
] st]

1-B(: Y, N) (4)

where B(p; k,n) is the cumulative density function of
the binomial distribution. Thus we see from equa-
tions (1) and (4) that P;; should choose p such that

N E;i — Ty
B(p:—,N) = 1—--49_ "4
(p; 5) E,

_ Ty

Case 2: Eij << Tij

This is the case where there are too many black pixels
in P;;’s neighbourhood. The calculation is similar to
that of Case 1: P;; should choose p such that

N N-Ty
SN = : ©)

B .
(p; N_E,

4.3 The detection of termination

Algorithm Y iterates until “enough processors” are
happy with the state of their neighbourhood. This
statement leaves open two questions: how does a pro-
cessor indicate its happiness to other processors, and
how many processors is “enough”.

4.3.1 Communication for termination

Algorithm Y, as described so far, is an extremely well-
distributed algorithm: indeed, that is one of its princi-
pal strengths. All communication is between proces-
sors in the same neighbourhood: as a consequence,
the execution time of the algorithm is independent
of the number of processors participating (given one
processor per pixel).

The detection of termination, however, clearly re-
quires a global decision about the state of the pro-
cessors. On a machine with a combining network

[Gottlieb et al., 1983], this would present no problem:
the processors could concurrently increment a global
variable H if they were happy, and the happiness level
could be determined by examining the value of H. On
a machine supporting combining operations, the value
of H could be accumulated by this simple technique
in time independent of the number of processors.

On a machine without combining, the fastest way
to calculate the value of H is to connect the proces-
sors into a tree structure and accumulate the values
from the processors at the leaves up to the “central
processor” at the root of the tree. This accumulates
the value of H in O(logn) time. The central processor
then broadcasts its decision via the same route.

The detection of termination is clearly the most
expensive aspect of Algorithm T, in terms of com-
plexity. It is therefore beneficial to execute several
iterations of the main algorithm between calculating
values of H. The actual number of iterations will de-
pend on the number of processors participating in the
execution. It may also be varied dynamically: as more
processors become happy with their state, it may be
beneficial to test for global happiness more often.

Note, finally, that in a sequential implementation
of Algorithm T, the simple technique of accumulating
a global value H will suffice.

4.3.2 How much happiness is enough?

In general, it will not be possible for all processors
to be happy. A simple termination criterion is to
stop if the value of H remains unchanged for several
iterations. In practice, we have found that such a
stage is always reached. However, a safer option is
to stop if the value of H fails to improve by some
small, predetermined amount over several iterations.
Although this may result in premature stopping in
some cases, in practice true convergence may require
several hundred further iterations, and it is all but
impossible to tell the difference in the final images.

5 Results

In this section we present some examples show-
ing the binary images obtained by applying
Algorithms T and HT and the Floyd-Steinberg algo-
rithm to two test images. We have chosen a natural
image, a portrait of Albert Einstein, and a synthetic
image, a circle shaded with smoothly varying inten-
sities, to highlight the strengths and weaknesses of
the three algorithms. For Algorithms Y and HT,
3 x 3 neighbourhoods were used and the intensity
for each neighbourhood was calculated using a simple
(unweighted) average.

5.1 Circle

This image is 256 x 256 pixels, containing a circle with
intensity smoothly varying from 0.0 to 1.0 around the
circle. The background intensity is set at 0.5.

Figure 1 shows that the Floyd-Steinberg algorithm
produces distinct distracting regions shaded with reg-
ular textured patterns. The shape of the circle is
entirely lost near the right hand edge of the image.
Algorithm HT does much better, but exhibits a faint
but noticeable artifact—there are definite jumps in
intensity at several points around the circle. This is
most noticeable on the left of the circle, in the areas
of maximum and minimum intensity. Algorithm HT
renders these as solid white and solid black respec-
tively. This is because the best approximation to the
proper intensity for each individual neighbourhood is
indeed a solid colour. However, the global effect of
these locally correct decisions is wrong, and the hu-
man visual system is sensitive to this error.

Algorithm Y is free from such artifacts and the
slightly grainy overall effect is not unpleasant.

5.2 Einstein

This image is 487 x 345 pixels, containing a 5 bit
greyscale picture of Albert Einstein. Figure 2 shows
the original image. Note that the dithering process
used to print Figure 2 is from a different class to the
halftoning algorithms that we are considering here:
the greyscale and binary pixel arrays have different
dimensions.

Figure 3 shows that the Floyd-Steinberg algorithm
produces a result with some texturing evident, and
a rather unnatural, patchy facial appearance. Fig-
ures 4 and 5 show that Algorithms HT and Y pro-
duce more natural results, with Algorithm HT per-
haps having an edge in preserving detail (for example
in the pattern on the chair on which Professor Ein-
stein is seated). This extra detail is the tradeoff for
the aliasing problems seen in the circle image.

5.3 Combining HT and T

Algorithm Y progresses ever more slowly as it nears
convergence. Typically, one thousand iterations are
required for full convergence. This would still be very
fast in a fully parallel implementation, but in a se-
rial implementation it is slower than other algorithms
(except, we expect, the neural network or simulated
annealing approaches). By contrast, Algorithm HT
reliably converges in about a dozen iterations.

As well as the aliasing problem mentioned earlier,
Algorithm HT has the problem that it can only find
an image that represents a local minimum of its cost
function. It cannot find a solution with a lower cost
if finding that solution requires changing more than
one pixel at one step. Algorithm Y, however, is not
so restricted, and can even sometimes take a step
that temporarily produces an inferior image, allow-
ing a more thorough coverage of the search space.
This ability arises from the use of randomness in the
search, as in simulated annealing.

In this study, we have not necessarily been con-
cerned to produce the best possible quality picture,
but only to demonstrate the feasibility of the DCA
approach to solve a computer graphics problem that
is inherently a large-scale parallel problem. Nonethe-
less, we were led to wonder whether we could combine
the fast convergence of Algorithm HT with the better
searching of Algorithm Y.

The images in Figure 6 were produced by a pro-
gram combining Algorithm HT and Algorithm Y.
The program ran Algorithm HT to convergence, then,
using the resulting image as the initial image, ran al-
gorithm Y for several iterations. The resulting image
was then used as the initial image for Algorithm HT,
and this cycle was repeated until no further lowering
of the value of the cost function was obtained.

This reduced the cost for the circle from 2284 to
1950 (15% lower), and for the Einstein picture from
11471 to 9380 (10% lower). Notice in Figure 6(a)
that the aliasing problem is accentuated, as we would
expect in a lower cost solution.

inberg

-Ste

Floyd

):

a

1

1

in origina,

inste

Albert E

Figure 2

le

varying Ccirc

ly

1nuous

The cont

1

igure

F

inberg

Ste

ith Floyd

Einstein w

3

Figure

le

C1rc

):

a

(

6

ith HT

instein w

E

Figure 4

instein

E

)

b

(

6

thm

i

ined algor

Images from the comb

6

Figure

ith T

instein w

E

Figure 5

6 Conclusions

We have described a new parallel algorithm for digital
halftoning. Algorithm Y is based on the technique of
error diffusion, whereby a pixel which is not happy
with the state of its neighbourhood requests one or
more of its neighbours to change colour to increase
its happiness level. The algorithm also uses a cost
function to determine when it should terminate: a
simple count of the number of pixels which are happy.

The figures in Section 5 show that Algorithm Y is
competitive with the best of previous halftoning al-
gorithms. The images produced by Algorithm Y are
free from the texturing and patterning produced by
ordered dither, error diffusion and dot diffusion meth-
ods. Algorithm Y also avoids the thresholding prob-
lem exhibited by Algorithm HT. Being an iterative al-
gorithm, it should share Algorithm HT’s advantages
for animation. The algorithm is highly parallel and
uses randomness to avoid becoming stuck at solutions
that are only locally optimal.

Algorithm Y is a member of a novel class of algo-
rithms called “dynamic communication algorithms”.
Algorithms in this class differ from other parallel algo-
rithms in that the pattern of their communication is
determined at run-time using data local to the source
processor. This permits the constructive use of com-
munication to reduce the computational requirements
of algorithms. Dynamic communication algorithms
have previously been discovered in a diverse range of
important application areas, including sorting, tessel-
lation of the plane, fractal image generation, pattern
recognition and pitch detection in speech. We ex-
pect that such algorithms will increase in importance
as the use of massively-parallel machines based on
message-passing becomes more widespread.

Acknowledgement

We would like to acknowledge the support received
from the Digital Equipment Corporation through
their External Research Programme.

References

[Bayer, 1973] BAYER, B.E. (1973). An Optimum
Method for Two-level Rendition of Continuous-
tone Pictures. IEEE International Conference on
Communication, New York, 26-11-26-15.

[Cole, 1991] CoLE, A.J. (1991). Halftoning without
Dither or Edge Enhancement. The Visual Com-
puter 7:232-46.

[Floyd and Steinberg, 1976] FLOYD, R. AND STEIN-
BERG, L. (1976). An Adaptive Algorithm for Spa-
cial Greyscale. SID 17:75-7.

[Geist et al., 1993] GEIST, R., REYNOLDS, R. AND
Sucas, D. (1993). A Markovian Framework
for Digital Halftoning. Transactions on Graphics
12(2):136-59.

[Gotsman, 1993] GoTsMAN, C. (1993). Halftoning of
Image Sequences. The Visual Computer 9:255—
66.

[Gottlieb et al., 1983] GOTTLIEB, A
LuBACHEVSKY, B.D. aAnND RubpoLPH, L.
(1983). Basic Techniques for the Efficient
Co-ordination of Very Large Numbers of
Co-operating Sequential Processors, ~ACM
Transactions on Programming Languages and
Systems, Vol. 5, No. 2, pp. 164-89.

[Jarvis et al., 1976] JARvis, J., JuDICE, C. AND
Ninke, W. (1976). A Survey of Techniques for
the Display of Continuous-tone Pictures on Bi-
level Displays. Computer Graphics and Image
Processing 5:13-40.

[Knuth, 1987] KNUTH, D.E. (1987). Digital
Halftones by Dot Diffusion. ACM Transac-
tions on Graphics 6(4), 245-73.

[Sharp, 1990] SHARP, D.W.N. (1990). Functional
Language Program Transformation for Parallel
Computer Architectures. University of London
doctoral thesis.

[Sharp and Cripps, 1989] SHARP, D.W.N. AND
Cripps, M.D. (1989). A Parallel Implemen-
tation Strategy for Quicksort. International
Symposium on Computer Architecture and
Digital Signal Processing, Hong Kong, Vol. 1.

[Sharp and Cripps, 1991] SHARP, D.W.N. AND
Crrpps, M.D. (1991). Parallel Algorithms
that Solve Problems by Communication. 3rd
IEEE Symposium on Parallel and Distributed
Processing, Dallas, Texas, 87-94.

[Sharp and While, 1993a] SHARP, D.W.N. AND
WHILE, R.L. (1993). Determining the Pitch

Period of Speech using no Multiplications. 18"
International Conference on Acoustics, Speech
and Signal Processing, Minneapolis, Minnesota.

[Sharp and While, 1993b] SHARP, D.W.N. AND
WHILE, R.L. (1993). Pattern Recognition

using Fractals. 22"? International Conference
on Parallel Processing, St. Charles, Illinois,
IT1:82-9.

[Velho and Gomes, 1991] VELHO, L. AND GOMES,
J. (1991). Digital Halftoning with Space-filling
Curves. Computer Graphics 25(4):81-90.

[Witten and Neal, 1982] WITTEN, I.H. AND NEAL,
R.M. (1982). Using Peano Curves for Bi-level
Display of Continuous-tone Images. IEEE Com-
puter Graphics Applications 2(3):47-52.

[Wyvill and McNaughton, 1991] WyviLL, G. AND
McNAUGHTON, C. (1991). Three Plus Five
Makes Eight: o Simplified Approach to Halfton-
ing. Computer Graphics International, New
York, Springer Verlag, 379-92.

[Zhang and Webber, 1993] ZHANG, Y. AND WEB-
BER, R. (1993). Space Diffusion: an Improved
Parallel Halftoning Technique Using Space-filling
Curves. Proceedings of SIGGRAPH 93, Ana-
heim, California. In Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIG-
GRAPH, New York, 305-12.

