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Abstract

The Block Sorting process of Burrows and Wheeler can
be applied to any sequence in which symbols are (or might
be) conditioned upon each other. In particular, it is possi-
ble to parse text into a stream of words, and then employ
block sorting to identify and so exploit any conditioning
relationships between words. In this paper we build upon
the previous work of two of the authors, describing sev-
eral further recency rank transformations, and considering
also the role of the entropy coder. By combining the best
of the new recency transformations with an entropy coder
that conditions ranks upon gross characteristics of previ-
ous ones, we are able to obtain improved compression on
typical text files.

Keywords: Burrows Wheeler transformation, text com-
pression, word-based modelling, recency ranking, arith-
metic coding.

1 Introduction

The Burrows Wheeler transform (BWT) is a surprisingly
simple, but surprisingly elegant, mechanism for permut-
ing a block of characters so as to reveal any inter-character
dependencies that might be present. Its use in text com-
pression programs is now well known (see, for example,
Witten et al. [1999, page 65]), and implementations such
as BZIP2 [Seward, 1999] are in wide use for general pur-
pose compression.

What is less widely appreciated is that the BWT can be
applied to any sequence of symbols, and if there are condi-
tioning dependencies, will assist in making them obvious.
In previous work we have shown that text interpreted as a
stream of word numbers can also benefit from the use of
the BWT [Isal and Moffat, 2001a,b], with the result being
improved compression effectiveness for text files.

In this paper we continue our exploration of word-
based parsing in conjunction with the use of the BWT. We
focus on two particular aspects of the compression chain:
the ranking transformation used to convert the BWT output
into a low-entropy stream of ranks that can then be entropy
coded; and on the entropy coder itself. Several new rank-
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File Size (in MB) Symbols
asyoulik.txt 0.119 51,463
world192.txt 2.359 658,212
bible.txt 3.860 984,495
E.coli 4.424 4,510,733
wsj20 20.000 4,794,109

Table 1: Test files and sizes, in MB and in terms of sym-
bols created by the spaceless words parsing process.

ing transformations are described for use in large-alphabet
situations, and their implementation merits (or otherwise)
discussed. We also show that a coder that conditions upon
gross characteristics of previous ranks can obtain slightly
better compression.

By combining the best of the new recency transforma-
tions with the conditioning coder, we are able to obtain
improved compression on typical text files.

The paper is organised as follows. In the remainder
of this section we briefly remark upon some of the re-
lated literature. Section 2 then summarises the previous
work of the first two authors with regard to the word-based
parsing regime used, approximate MTF transformations,
and the structured arithmetic coder SINT. Section 3 ex-
tends the approximate ranker, and describes several other
transformations that have the required properties. Entropy
coding is then considered in Section 4, and a condition-
ing coder introduced that exploits gross properties of the
ranked symbol stream.

In related work, Grabowski [1999] proposes that text
files be preprocessed by converting capital letters to lower
case equivalents coupled with a flag to indicate the conver-
sion. Space stuffing – or prepending with a space symbol
– is used to handle symbols which are hard to predict, such
as newline characters and punctuation marks. Grabowski
also suggests assigning unused symbols in the alphabet
to static phrases, primarily frequently used 2-, 3-, and 4-
grams in English. The objective of these preprocessing
techniques is to increase the skewness of the distributions
of letters while keeping the set of symbols small, and they
result in slightly better compression.

In a somewhat parenthetical remark, Sadakane [1999,
page 93] also proposes that block sorting and word-based
modelling be coupled. Our work can be regarded as being
an elaboration of that observation.

Finally in this section we describe the five test files
we have used in this investigation. Table 1 summarises
their attributes. The first file is taken from the Canterbury
Corpus (see http://www.corpus.canterbury.ac.nz for



a description of the Canterbury Corpus files, and compres-
sion results relating to them); the next three comprise the
Large Canterbury Corpus (LCC, available from the same
location); and the fifth file – wsj20 – consists of 20 MB
of SGML-tagged text taken from the Wall Street Journal.
While file E.coli is not a text file, it is included so that
the complete LCC is covered by our tests.

Where experimental times are reported, they represent
the CPU time required on an unloaded 650 MHz Pen-
tium III with 256 MB RAM and 256 kB on-die cache.

2 Spaceless Words and the BWT

The spaceless words parsing model we use throughout this
paper is due to de Moura et al. [2000]. They use the model
in a semi-static manner to build an external dictionary of
words that is separately transmitted, whereas here we use
the same model adaptively, transmitting the dictionary im-
plicitly by “spelling out” each new word the first time it
occurs.

In the spaceless words model the tokens are based upon
alphanumeric and non-alphanumeric character types.
Contiguous strings of like characters are isolated, and
transformed into integers via the use of the dictionary of
strings; with the additional proviso that if the non-word
string between two word strings consists of a single blank
character, it is elided. Isal and Moffat [2001b] give an ex-
ample showing the action of the parsing strategy.

Using this first transformation, a message of text is re-
duced to a stream of integer values, some of which (the
ones with values less than ����� ) represent primitive charac-
ters, and the remainder of which represent either alphanu-
meric strings (the “words”) or strings of punctuation and
white space characters (“non-words”). The original mes-
sage can be uniquely reconstructed from this stream of in-
tegers. For example, when file bible.txt is processed,
it is reduced to a sequence of �����
	 ����� four-byte integers
(which, by coincidence, is almost the same size as the ini-
tial file), of which ���
	 ����� or �
� � % are less than ����� and
represent primitive characters rather than longer strings.

This process is not suited to non-text files. For exam-
ple, on file E.coli, which contains no white space charac-
ters, the parsing process generates a sequence of “words”
in which there are almost no repetitions, meaning that each
word is spelt out in full and never reused. That is, the
stream of symbol identifiers generated is dominated by the
characters of the original file as words are spelt out. This
is why (Table 1) the number of symbols generated for this
file is disproportionately large.

The second stage of the process is the BWT. The trans-
form permutes the set of symbols in the input message,
and has the effect of bringing into physical proximity the
symbols following like prior contexts. Hence, if some
prior context – as a very simple example, the single letter
“q” – is typically followed by one of just a small number of
symbols, then the BWT output will include a segment that
includes those possible following symbols. For example,
if the integer stream contains � “q” characters (that is, in-
teger “ ����� ”), then after the BWT there will be a contiguous
section in the permuted message that contains all of the �
integer symbols that follow the � “q”s.

The same is also true for longer conditioning strings,
and if there are � appearances in the integer stream of
the four-integer string “ �
��	�������	����
��	����
� ” (representing
“Quee”), then there will be a contiguous section of length

� characters in the permuted message that contains the set
of following integers. In the case of the latter example,
we would imagine that all � following symbols would be
either “ ����� ” (for “n”) or “ ����� ” (for “r”), and that coding
that segment could be economically accomplished by list-
ing which of the two appears using perhaps just one bit
per symbol.

The examples in the previous paragraph were charac-
ter based and motivated. But at a word-level, the same
relationships continue to hold. Once a word has been en-
countered for the first time and spelled out as a character
string, subsequent appearances are represented by an inte-
ger word number. Hence, if integer “1615” is the word
“Burrows”, and integer “2795” is the word “Wheeler”,
then after the BWT all of the different words that follow
integer “1615” will form a contiguous segment, and, at
least in this paper, we would expect that segment to be
dominated by the integer “2795”.

Again, we refer the reader to other sources for a de-
tailed description of the process involved, and the compu-
tation of the inverse transform.

Because the BWT output can be thought of as being
the concatenation of segments, each of which has a dis-
tinctive nature because of conditioning, it makes sense to
condense each segment down to a small set of distinct
symbols, and use a specific entropy code within each seg-
ment. Hence, in the segment corresponding to a prior
context of “q”, the probability of a “u” might be deter-
mined to be very high, and its resulting codeword very
short. While such direct post-BWT coding techniques are
possible [Wirth and Moffat, 2001], they suffer from the
considerable difficulty that the segments are not explicitly
known while the inverse BWT is being carried out.

As an alternative, the subalphabets within each seg-
ment can be left implicit, and the segments themselves
allowed to segue seamlessly through the use of the third
transformation in the standard chain – recency ranking.

The simplest ranking technique is the well-known MTF

transformation, in which each value is replaced by one
plus the count of the number of distinct symbols encoun-
tered since the last appearance of that symbol. For exam-
ple, the integer sequence

����	�����	�����	����
��	����
��	�����	����
��	�������	�������	����
��	�����	�������	������

would be replaced by

����� ��!�	���	���	��"�#��$&%'$�	���	��
	��
	��"�#�#$�$(!�	���	��
	��
	��
	��

where �*) indicates the number of distinct symbols coded
since the immediately preceding occurrence of + . As can
be seen, when a segment of like symbols is encountered –
in the case of the example, a segment containing only the
letters “a”, “e”, and “u” (“97”, “101”, and “117” respec-
tively) – the MTF transformation reduces the sequence of
initially large integers to a sequence of very small ones.

On the same bible.txt file discussed above, after
the MTF transformation fully ����� � % of the integers in the
stream are less than ����� . Indeed, ���
� � % of the integers
in the post-MTF sequence are “1”, a strong corroboration
of the effect of the BWT, and of the extent to which both
characters and words are conditioned upon their predeces-
sors.

Figure 1 shows graphically the probability distribution
of symbols on file bible.txt (the grey bars) and the corre-
sponding distribution of MTF ranks (the dotted line). The
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Figure 1: Probability distribution of symbols, MTF ranks, and SSEG ranks for bible.txt. All of the probability distri-
butions were smoothed for presentation, by generating buckets each � % larger than the previous one, and reporting the
average probability for the symbols in each bucket.

graph was created by averaging over frequency buckets,
with each bucket approximately � % larger than the previ-
ous one. For example, all symbols in the range ������� to
������� inclusive were collected into one bucket, and their
average frequency plotted on the graph. Note the gap be-
tween symbol ����� and ����� , which arises because the first
word number allocated is always ����� , in case any non-
ASCII characters appear as primitives in the input file.

As can be seen, the rather chaotic distribution of in-
teger values in the BWT sequence is reduced to a much
smoother – and lower entropy – sequence by the MTF. But
note also that there is a definite trend amongst the word
numbers, and that is that the greater the word number (and
hence the later in the text it is first encountered), the lower
its probability. This effect will be exploited below. The
solid line in Figure 1 will also be discussed shortly.

To implement the MTF transformation for character-
based BWT streams is easy – a simple array or linked list
will suffice. But for large-alphabet applications, linear
search in an array or linked list is hopelessly inefficient,
and a better structure is required. In our earlier work a
Splay tree [Sleator and Tarjan, 1985] is used to implement
the MTF transformation, a possibility originally noted by
Bentley et al. [1986]. Use of a Splay tree allows the item
of rank � to be identified in �������	�
��� amortised time (com-
pared with the ������� time required in a linked list imple-
mentation) and makes the process tractable. For details of
the implementation, see Isal and Moffat [2001b].

Once the MTF transformation has been applied, an en-
tropy coder is used to reduce the new sequence into a bit-
stream. Any coder can be used, with the usual assumption
being that all conditioning has now been recognised, and
that there is no remaining correlation between consecutive
symbols. In the case of a character-based parser, BWT,
and MTF, the post-MTF sequence will again be over an
alphabet of ����� symbols, so a zero-order character-based
coder can be used. In the case of the word-based model a
larger alphabet must be handled, but this poses few prob-
lems from a coding point of view, and either minimum-
redundancy (Huffman) or arithmetic coding can be used.
The subject of entropy coding will be returned to in Sec-
tion 4 below.

3 Approximate Ranking

In their original paper on block-sorting compression, Bur-
rows and Wheeler [1994] noted that a slight improvement
on compression might be achieved if symbols that had not
been seen in a very long time are moved only part-way to
the front rather than into position number one. Other vari-
ants on the MTF strategy – such as moving the symbol to
the second location in the list, unless it was already in the
second location, have also been explored [Balkenhol et al.,
1999, Chapin, 2000]. These variations illustrate an impor-
tant freedom – any reversible transformation may be used
to convert the BWT sequence into an equivalent sequence,
and there is nothing sacrosanct about the use of the MTF.

One alternative that we have explored is based upon
the use of a forest 
������ of search trees. The � th tree in the
forest contains � � values, with the most recently accessed
items being stored in tree � % , the next most recently ac-
cessed items being stored in � $ , and so on. Within each
tree the items are stored in the usual key-based ordering
(that is, based upon the integer value being represented);
but within each tree the items are also doubly threaded
in a conventional MTF list. Figure 2, taken from Isal and
Moffat [2001b], shows this arrangement.

To calculate a rank for an item, its tree is determined,
and then its ordinal location within that tree used as an
offset. For example, if the tree sizes are � %�� � , � $�� � ,
����� � , and so on, then a search for the � th most re-
cently accessed item will generate a rank of between �
and ��� , depending upon the key values of the other items
in tree � � .

A pseudo-MTF transformation can then be achieved if,
once an item is accessed, it is removed from its tree and
inserted into � % , with the oldest item in each intervening
tree being “bumped” down one tree, to become the newest
item in the next tree.

If the tree depths double from one to the next, with
� ��� � ���� $ , then ����� �!�
��� time per operation can be
achieved. We call this approach the DSEG transformation.

However, this double-powers sequence results in a rel-
atively small number of trees ( �#"$� � $�%�& � , and ��%'�
�!( �)& � ), and the movements of items between trees can
be quite dramatic. Use of a slower-growing sequence
���*� � � + $�& � in which ���,� �	����� $ & � increases the
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Figure 2: Recency computation using a forest of trees of increasing size (from Isal and Moffat [2001b]).

execution time to �������	� � ��� per operation, but results in
a more accurate approximation to the exact MTF mecha-
nism.

We call this latter option the SSEG transformation [Isal
and Moffat, 2001b]. The sawtooth line in Figure 1 shows
effect of applying the SSEG transformation to the file
bible.txt. The repeated pattern shown in the graph arises
because, within each tree, objects are stored (and thus as-
signed ranks) in their integer order. The triangular grey re-
gion of Figure 1 already demonstrated that there is a strong
correlation between symbol number and frequency, and
this relationship is partially preserved by the SSEG trans-
formation, with each tooth of the pattern corresponding to
one of the trees in the ranking forest.

In the remainder of this section we consider a num-
ber of variations of the SSEG approach, and consider the
implementation advantages of each. Experimental results
comparing the various methods are given at the end of this
section.

To allow an accurate comparison between alternative
methods, and to insulate our results (at this stage) from
any vagaries of the particular coders used, we calculate the
zero-order self-entropy of the transformed streams. That
is, for a stream in which symbol � appears � � times, we
calculate �

� &���
��� $

� ��	� � �!� � � �� 	
where

� ��
 �� � $ � � , as the average number of bits per
symbol required to represent that message, assuming an
ideal coder and no cost for the coding prelude. The re-
sultant values are somewhat idealised and possibly not at-
tainable; nevertheless, the numbers so computed provide a
basis for comparing ranking methods, since in all cases the
alphabet size is approximately the same, and the eventual
probability distribution similar.

Neighbour

In our quest to balance compression effectiveness and
compression efficiency, the simplest technique is to only
partially promote the item accessed. For example, if the
symbol is currently in tree � � , removing it from � � and
inserting it as the newest item in tree � � � $ , while simulta-

neously pushing the least recently used object in tree � � � $
into tree � � , will only require ����� �!� ��� time when the sym-
bol in question has rank � . Indeed, any variant of this strat-
egy that cycle objects within a fixed number of the trees in
the forest has the same asymptotic cost.

Because each tree is ordered by integer symbol num-
ber, promoting an object from � � to � � � $ on average
halves its rank. While this is a substantial decrease, it is
possible that symbols will move too slowly towards � % and
its low-rank high-probability zone compared to MTF and
SSEG, and that compression effectiveness will degrade.

We call this first approach the “neighbour” strategy,
and denote it as SSEG-N.

Halfway

A more balanced compromise between the slow shuffle
of SSEG-N and the rapid response of the base SSEG ap-
proach is to promote each accessed item from its current
tree � � to tree ��
 ��� ��� , reducing its rank to approximately
the square root of what it was prior to being accessed. The
least recently accessed symbol in each of the interven-
ing trees is then percolated downward to restore the tree
sizes, and so total execution time is �������	� � ��� to process
the symbol ranked in position � . Nevertheless, the num-
ber of trees handled is halved compared to SSEG, and a
practical speedup might result.

We call this approach the “halfway” strategy, and de-
note it as SSEG-H. Because we number the trees from
zero, this strategy (as does the neighbour heuristic) only
allows symbols in tree � $ to move into � % and rank 1,
and has the useful benefit of mirroring the “move-one-
from-front” strategy, in which the only symbol that can
displace the one currently in rank 1 is the symbol currently
ranked 2.

Skipping

The halfway strategy also suggests another, in which the
trees between � � and ��
�� � � $�� � ��� are skipped over rather
than transitted. Extending this idea, we have the “skip-
ping” mechanism, in which the accessed item is promoted
into � % , the least recent item in � % demoted into � $ , the
least recent symbol in � $ moved into either � � or � ( , and



File Ranking method Variations
None MTF DSEG SSEG SSEG-N SSEG-H SSEG-S SSEG-T SSEG-C

asyoulik.txt 7.34 6.46 6.55 6.40 6.39 6.31 6.62 6.40 6.34
world192.txt 9.12 5.65 5.78 5.62 5.95 5.63 5.82 5.62 5.71
bible.txt 8.46 6.50 6.60 6.39 6.41 6.28 6.66 6.39 6.33
E.coli 2.06 2.08 2.08 2.08 2.05 2.05 2.09 2.07 2.05
wsj20 10.21 7.52 7.66 7.37 7.40 7.22 7.69 7.37 7.28

Table 2: Zero-order self-entropy of test files using different recency ranking techniques, after conversion using the
implicit dictionary spaceless words approach, and after the BWT transform is applied. All values are in bits per symbol,
where each symbol is an integer generated by the parsing transformation. The parameter � used in SSEG-T was set at� � ��� .

so on, following the binary path back down to � � . For ex-
ample, if an object is � $�$ is being promoted, it is inserted
into � % , then the oldest symbol in � % moved to � $ , the
oldest symbol in � $ moved to ��� , the oldest object in ���
moved to ��" , and the oldest symbol in ��" moved to � $�$ ,
to complete the cyclic update.

Because ���	� � ��
 ��� ��� � ��� �!� � � � � � � when ��� � � ��+ $ &
� , the total running time for the � �!� ��� tree insertions
and deletions is ����� �!� ��� , and asymptotic efficiency is re-
gained.

In the results below this approach is denoted as the
SSEG-S technique.

Threshold

If the objective is to reduce the number of trees affected by
each symbol promotion, another obvious method is to pre-
sume that high-numbered symbols will not reappear soon,
even in the BWT sequence, and so not promote them. That
is, the forest of trees, and the symbols therein, is separated
into two parts. In the first part, in trees numbered up to and
including a threshold � , symbol occurrence is followed by
a promotion to tree � % , and percolation back down of the
least recent item in each tree until stability is regained.
But in the second part of the forest, occurrence of a sym-
bol in a tree numbered greater than � is not followed by
promotion, and the forest is left unchanged. Because the
symbols are assigned to trees in order of discovery, this
approach effectively means that symbols guessed to occur
frequently are always promoted, while symbols guessed
(by virtue of their high ordinal symbol number) to be in-
frequent are never promoted. Hence, a stable one-to-one
entropy code will be used in the second part of the forest.

We call this strategy the “threshold” approach, and de-
note it by SSEG-T.

Counting

Another possibility is to realise that we do in fact know
something about each of the symbols being ranked – its
frequency in the stream to date can easily be monitored
and used as a guide to how far or quickly it should be
promoted. For example, there might be little benefit to
be gained by promoting into tree � % after the very first
occurrence of a symbol.

Our proposal here is that, if the symbol accessed has
frequency � � in the section of the sequence processed so
far, then it should be promoted from tree � � to tree � ��� ,
where ��� �

� � �
	 � & � �!� � �
� �!� ����


and
�

is the total number of symbols processed so far. For
example, if this is the symbol’s first occurrence, then it is
promoted to tree � � � $ . On the other hand, when a symbol
in � $ is processed, or when a very common symbol from
another tree is processed, it is promoted to tree � % .

We denote this “counting” approach as SSEG-C.

Results

Table 2 shows, for each of the five test files, and each of
the recency ranking methods, the zero-order self-entropy
of the ranked sequence.

As can be seen, there is a considerable variation in
effectiveness. Overall the best method appears to be
SSEG-H. It slightly outperforms SSEG-C on all of the
files and is also consistently better than the original SSEG

heuristic. Compared to SSEG-H, it appears that promot-
ing symbols all the way to the front (SSEG) is too dra-
matic; promoting them by just one tree (SSEG-N) too slow
to adapt; demoting by skipping down the forest (SSEG-S)
insufficiently smooth; and SSEG-C perhaps just too com-
plex. With the exception of SSEG-S, all of the SSEG-family
methods outperform both the standard MTF ranking rule,
and the DSEG heuristic, which uses tree sizes that grow as
double powers of two.

Figure 3 plots compression effectiveness on file wsj20

as a function of the cost of the recency transformation for
the various mechanisms discussed. The fastest transfor-
mation is MTF, which makes use of just a single tree and
is asymptotically efficient; the slowest is SSEG, which re-
quires ����� �!� � ��� time per update. Between these extremes,
the different heuristics listed above offer varying compro-
mises in terms of execution speed, and (measured by the
self-entropy of the streams) do not necessarily trade away
compression effectiveness to attain that speed. The thresh-
olding approach SSEG-T can be made very fast by setting
a small part of the symbol set in which promotions are
permitted, but compression effectiveness suffers consid-
erably. The best choices appear to be MTF, if speed is
paramount; SSEG-H if compression is more important than
speed; and SSEG-N if a balance is required between effi-
ciency and effectiveness.

We also experimented with a version of SSEG-N that
promoted by one tree if the accessed symbol was in � $
or ��� , and by two trees otherwise. For file wsj20 the
self-entropy of the ranked stream was slightly lower than
shown in Table 2, at ��� ��� bits per symbol. It requires
slightly more time than SSEG-N.
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Figure 3: The relationship between time spent undertaking
the transformation (average of forwards and reverse trans-
formation time, in CPU seconds) and the zero-order self-
entropy of the transformed sequence, for different recency
ranking transformations, and for file wsj20 when parsed
using the spaceless words mechanism. The parameter �
used in SSEG-T was varied between � � ��� and � � ���
in steps of � . Two versions of SSEG-N were tested, that
promoted by either one tree or two trees.

4 Entropy Coders

The symbol stream produced by the ranking transforma-
tion must still be entropy coded, and we now turn our at-
tention to this step.

Fenwick [1996] showed that better compression could
be obtained if a structured arithmetic coder was used in
preference to a uniform one. Both types of coder are nom-
inally zero-order, and as such should not be able to obtain
compression effectiveness better than the zero-order self-
entropies described in Table 2.

But the streams generated by the BWT and then rank-
ing process are not completely random, and having a fur-
ther level of adaptation is beneficial. To understand why,
recall that the ranks that are being coded correspond to
segments in the BWT sequence representing the follow-
ing symbols of like contexts in the source text. Some of
these segments have localised alphabets that are relatively
large. Others are very small. For example, of the exactly
��� occurrences in wsj20 of the word “Margaret”, there
are only ��� different successors, and of those ��� , eleven
only appear once. There are, of course, ��� occurrences
of the word “Thatcher”. In this case the set of follow-
ing symbols is essentially of size � . The next segment
in the BWT output may well correspond to the successors
of the word “Thatcher”, but in this case the segment is
��� symbols long, and contains ��� different symbols (the
most common successor is the “is”, which still only ap-
pears � times). It clearly makes no sense to code the ranks
in these two segments using the same probability distribu-
tion – markedly different distributions are required.

In the structured arithmetic coder each rank is broken
into two components. The first is a selector, which indi-
cates the magnitude of the rank. The probability distribu-
tion for the selector is set so that adaptation at the selec-
tor level is fast, and that localised patterns in the selector
statistics will be rapidly absorbed, over sequences of just a
handful of consistently small or consistently large selector
values. The second component of each rank is an offset

within the bucket of values corresponding to the selector.
In most of the buckets there is a much greater range of
values than there is at the selector level, and the adapta-
tion is much more conservative, so that accurate statistics
are maintained within each bucket.

In our structured coder SINT [Isal and Moffat, 2001a]
the buckets are determined by a geometric sequence with
radix ��� � . Rounded to integers, this puts symbols � and �
in buckets of their own; � �
	���� in the third bucket; � �
	��
	 ���
in the fourth; � �
	��
	����
	������ in the fifth, and so on.

Another way to understand the benefits of the struc-
tured coder is to consider the effect of coding (say) the
symbol with rank ����� – when the selector that covers the
bucket containing rank ����� is used, its frequency count
is adapted, and all symbols in that bucket get an effective
boost to their probabilities. This makes sense, since (Fig-
ure 1) the ranks form a continuous distribution.

Balkenhol et al. [1999] have also worked with selec-
tors and secondary distributions in their BWT implemen-
tation. One critical difference between their work and that
of Fenwick is that they condition each selector upon pre-
vious selectors. It is that thread of development that we
exploit in this section, as we describe three versions of a
conditioning structured arithmetic coder CINT.

Full conditioning

In seeking to condition ranks it was clear that a full first-
order compressor for ranks would be ineffective, as there
would be a large number of conditioning states in use, and
in the majority of the states the statistics gathered would,
of necessity, be imprecise. Instead, we conditioned the se-
quence of selectors, in the same manner as proposed by
Balkenhol et al. [1999]. That is, the bucket offsets con-
tinued to be coded as zero-order values, conditioned only
upon knowledge of the bucket to be used, while the selec-
tor component of each rank is conditioned on the selector
component of the immediately preceding rank. This al-
ternative is shown in Figure 4, and is denoted by CINT-F.
For the non-E.coli test files, the largest number of selec-
tor values was ��� , and so the selector matrix (that is, a
vector of states, each of which involves a vector of integer
probability estimates) required only just a few kilobytes of
memory.

We denote this alternative as CINT-F.

Quintuple conditioning

Even if only the selector component is conditioned, there
are still a non-trivial number of conditional probabilities to
be maintained, and it is hard to arrange for the adaptation
to be as speedy as required.

To further reduce state dilution, we also experimented
with a reduced version, in which just five classes of selec-
tor value were considered: selector � (which only repre-
sents rank � ) as class A; selectors � and � (which together
account for ranks � to � ) as class B; selectors � to � (ranks
� to ��� ) as class C; selectors � to ��� (ranks starting at ��� )
as class D; and all other selectors (ranks ����� and greater)
as class E.

Use of the class associated with the previous rank – in
a sense, a value calculated as � �!� � � �!� $�� " � for a given rank
� – then gave five conditioning states and a more compact
set of statistics to be maintained.

We denote this strategy as CINT-Q, where the “Q”
stands for “quin”.
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Adaptive conditioning

Having obtained a slight gain through the use of first order
conditioning on selectors, our thoughts naturally turned
to second and higher order predictions, to see if further
slight gains could be garnered. But we were also wary
of state explosion, even if selector classes were used as
the control rather than selectors or raw ranks. While a
long context might be more effective for commonly used
values, a short context is to be preferred for less frequently
occurring items so that the probability estimates converge
appropriately.

To balance these concerns, we implemented an adap-
tive context splitting mechanism that has some parallels
to the DMC compression mechanism [Witten et al., 1999,
page 69]. Initially five selectors are used, one for each of
the selector classes A, B, C, D, and E. Each state tracks the
number of times it has been used, and if its usage reaches
some threshold, it is split into five new states, the exist-
ing frequency counts are split five ways amongst the new
states, and coding continues as before, except that an ad-
ditional quantum of prior history is used for some subset

of the states.
Figure 5 shows the process of state cloning. In the fig-

ure, the state corresponding to a previous context of class
B is assumed to have reached the cloning threshold, and
so is split to make five new states representing prior class
contexts of AB, BB, CB, DB, and EB. State BB might then
continue to be heavily used, and subsequently cloned to
make further new states ABB, BBB, CBB, DBB, and EBB.

After preliminary trials we settled on a threshold of � $ %
to control the cloning. It appeared to represent a plausi-
ble balance between over-aggressive cloning, which is too
busy to settle down and be useful; and more conservative
cloning, which is too sluggish in its adaptation.

This adaptive approach is designated in the results be-
low as CINT-A.

Results

Table 3 summarises the compression effectiveness of the
various coders at our disposal. Each compresses a se-
quence of integer values to a bitstream. The SHUFF pro-
gram is a minimum-redundancy(Huffman) coder included



File Self Zero-order Conditioned
Entropy SHUFF UINT SINT CINT-F CINT-Q CINT-A

asyoulik.txt 2.59 2.67 2.70 2.48 2.49 2.48 2.48
world192.txt 1.50 1.51 1.52 1.42 1.38 1.38 1.37
bible.txt 1.53 1.55 1.54 1.49 1.49 1.48 1.48
E.coli 1.99 2.20 2.06 2.01 2.00 2.00 2.01
wsj20 1.65 1.67 1.66 1.56 1.55 1.55 1.55

Table 3: Compression results using different entropy coders. In all cases the spaceless words model, followed by BWT,
followed by SSEG-H is used. The second column shows the zero-order self-entropy from Table 2, converted to bits
per character relative to the original source file; other columns show the performance of actual entropy coders, again
expressed in bits per character.
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Figure 6: The relationship between time spent coding
(average of encoding and decoding times, in CPU sec-
onds) and actual compressed size of the output file (bits
per character of the original file) for different entropy
coding mechanisms, and for file wsj20 when parsed us-
ing the spaceless words mechanism and ranked using
SSEG-H. The dotted horizontal line shows the zero-order
self-entropy of the transformed file in bits per character.

for completeness; the others are all arithmetic coders.
The UINT program is an adaptive uniform coder with
a long and stable “memory”, and so is unable to flex-
ibly distinguish between the distributions required for,
say, “Margaret”-like symbols and “Thatcher”-like sym-
bols. Program SINT is the coder used in the results pre-
viously reported [Isal and Moffat, 2001a].

As can be seen, the use of CINT-A yields a very slight
gain in compression effectiveness compared to SINT.

Figure 6 shows how compression efficiency and effec-
tiveness are related during the coding phase. The arith-
metic coders are slower than the minimum-redundancy
coder, but give better compression. The structured and
conditioning coders are the same speed as the uniform
coder – they require a little more memory space during
execution, but use of that space does not slow them down.

Table 4 summarises the cost of encoding file wsj20 us-
ing the four transformations necessary to a word-based
BWT implementation. None of our programs are espe-
cially well tuned, and there is probably scope for speed
improvements. On the other hand, it is unlikely that we
would be able to match the speed of BZIP2, which em-
ploys an elegant BWT implementation [Seward, 2000] and
a minimum-redundancy coder. Note that we deliberately
do not compare our final compression effectiveness with

Transformation Time (CPU seconds)
Encoding Decoding

Word parsing 11.6 4.6
BWT 18.0 2.8
SSEG-H 50.3 41.0
CINT 6.8 6.7
Total 86.7 55.1

Table 4: Overall cost of forwards and inverse transfor-
mations on file wsj20. All times are CPU seconds on a
650 MHz Pentium III with 256 MB RAM and 256 kB on-
die cache. As a benchmark, on the same file the highly
tuned [Seward, 2000, 2001] character-based BWT imple-
mentation BZIP2 requires ���
� � seconds for encoding and
��� � seconds for decoding.

BZIP2 – the comparison would be unfair, as BZIP2 op-
erates on blocks of 900 kB at a time and within a total
memory allocation of around 5 MB, whereas our process
uses more than 30 MB during its BWT stage. A fairer com-
parison is with the PPMD mechanism (Witten et al. [1999,
page 61]), which, when constrained to execute in 32 MB
and allowed to build a fifth-order model, attained ��� ��� bits
per character. On the small file asyoulik.txt BZIP2 at-
tains �
� ��� bits per character, and the fifth-order PPMD at-
tains ��� ��� bits per character, compared with the best result
obtained in this paper of �
� ��� bits per character.

5 Conclusion

We have experimented with a number of variations on
the four-phase word-based compression mechanism de-
scribed by Isal and Moffat [2001a,b]. Compared to the
previous results, we have described further approximate
ranking heuristics that provide improved compression ef-
fectiveness in reduced time; and have also slightly im-
proved the effectiveness of the coding stage. Overall, we
have improved our previous best result of ��� ��� bits per
character for file wsj20 [Isal and Moffat, 2001a] by ap-
proximately � %, and can now report compression of ��� ���
bits per character, with similar gains also being achieved
for the other four test files. In the grand scheme of things
these improvements are admittedly small; nevertheless
they reflect a better understanding of the processes in-
volved, and represent the attainment of what to a sports-
person would certainly be valued as a “personal best”.

We still have a number of aspects of this project to ex-
plore. One area not yet considered is the use of heuristics
based upon a single Splay tree. The promotion mechanism



need not assign to the current symbol the next timestamp,
and can employ any re-weighting it likes when re-inserting
the accessed symbol. It may thus be possible to implement
an SSEG-H-like strategy for promotion, but with the speed
of the current MTF process (see Figure 3).

Another obvious exploration path is to combine the
logarithmic selector used for the coding and the logarith-
mic tree index used in ranking into a single purpose. That
is, the ranking process should be organised so that an input
stream of symbol numbers is converted to an output stream
of “(tree number, rank within tree)” tuples that are coded
by a tailored coder. The adaptive conditioning would then
apply to the tree number stream, while the “rank within
tree” component would be coded in a single set of states,
one for each tree number. Such an arrangement would
almost certainly execute faster, even if there was no com-
pression gain.
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