
Noname manuscript No.
(will be inserted by the editor)

Minimap: An Interactive Dynamic Decision Making Game for Search

and Rescue Missions

Thuy Ngoc Nguyen · Cleotilde Gonzalez

Received: date / Accepted: date

Abstract Many aspects of humans’ dynamic decision-making (DDM) behaviors have been studied with

computer-simulated games called microworlds. However, most microworlds only emphasize specific el-

ements of DDM and are inflexible in generating a variety of environments and experimental designs.

Moreover, despite the ubiquity of gridworld games for Artificial Intelligence (AI) research, only some

tools exist to aid in the development of browser-based gridworld environments for studying the dynamics

of human decision-making behavior. To address these issues, we introduceMinimap, a dynamic interactive

game to examine DDM in search and rescue missions, which incorporates all the essential characteris-

tics of DDM and offers a wide range of flexibility regarding experimental setups and the creation of

experimental scenarios. Minimap specifically allows customization of dynamics, complexity, opaqueness,

and dynamic complexity when designing a DDM task. Minimap also enables researchers to visualize and

replay recorded human trajectories for the analysis of human behavior. To demonstrate the utility of

Minimap, we present a behavioral experiment that examines the impact of different degrees of structural

complexity coupled with the opaqueness of the environment on human decision-making performance

under time constraints. We discuss the potential applications of Minimap in improving productivity

and transparent replications of human behavior and human-AI teaming research. We made Minimap an

open-source tool, freely available at https://github.com/DDM-Lab/MinimapInteractiveDDMGame.

Keywords Dynamic decision making · Online experiments · Microworlds · Search and rescue tasks ·

Open source · Open science

1 Introduction

The world is full of dynamic decision-making (DDM) challenges, typically characterized by the need to

make sequential and interdependent decisions under uncertainty. Subsequently, the environment changes

Thuy Ngoc Nguyen · Cleotilde Gonzalez
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, 15213 PA, USA
E-mail: coty@cmu.edu

https://github.com/DDM-Lab/MinimapInteractiveDDMGame


2 Thuy Ngoc Nguyen, Cleotilde Gonzalez

as a consequence of these decisions and also evolves independently [7,9]. More concretely, an environment

is a DDM task if it possesses four characteristics, namely dynamics (the dependence of the environment’s

state on its state at an earlier time), complexity (the number of components in the environment, the

number of relationships among them and the nature of these relationships), opaqueness (the ambiguity,

invisibility of some aspects in the environment) and dynamic complexity (the inclusion of feedback delays

and interrelationships of decisions over time) [25].

Many naturalistic decision-making settings are DDM tasks [22,36,18]. One prominent example we

consider here is the domain of urban search and rescue. In such environments, one inevitably must cope

with multiple possibilities and alternatives and weigh multiple attributes (complexity) accompanied by

a great deal of uncertainty about the situation (opaqueness). The situation continuously changes (e.g.,

victims perish) independently of the human actions (dynamic). Furthermore, long feedback delays, which

often prevail, generate dynamic complexity, as it is challenging to associate outcomes with specific actions

over time [27]. In addition, time constraints and the interrelationships of decisions over time are inherent

in the search and rescue of victims in an environment that evolves in real time.

Making decisions in such DDM environments presents a considerable challenge for humans. Indeed,

previous findings suggest that humans generally have difficulty processing feedback delays [7,6] and

associating their actions with the results they observe over time [28]. Past research has also shown that

people’s performance deteriorates in situations involving time constraints [23,35] and workload [29].

Studying how people make decisions in naturalistic situations, such as urban search and rescue, is highly

complex, time-consuming, and expensive [36]. Therefore, a large body of research in the field of DDM has

employed computer-interactive simulations, often referred to as “microworlds” [9,30,26,46], to improve

our understanding of the process by which humans learn to make decisions in these situations of DDM.

Most existent microworlds expressly represent a subset of DDM characteristics, such as uncertainty or

complexity. They have yet to support the investigation of all essential features of most real-life decision

environments, including real-time decision processes, time constraints, and interdependence between

decisions over time [30]. Moreover, a large body of microworlds caters to specific scenarios, with little

consideration of offering the flexibility to generate various decision situations. The potential of browser-

based microworld for online data collection has also been limited. Finally, 2D gridworld environments

are the prevailing paradigm in the field of AI for studying diverse decision making problems, such as

navigation and exploration [51]. 2D gridworlds are simulation environments represented as a 2D grid

wherein each cell represents a state. Players can move from one state to another by taking specific

actions, such as moving up, down, left, or right. However, 2D gridworlds are mostly used as simulation

tools [3,11], and web-based gridworlds that can be used in experiments for the research of human DDM

have yet to be fully explored.



Minimap 3

To address these challenges, we introduce Minimap, a dynamic interactive web-based application

for studying decision-making behavior in search and rescue missions. Unlike most extant microworlds,

Minimap features all the essential characteristics of a DDM task. Specifically, it presents a decision maker

with a sequential decision problem in which the environment evolves autonomously and in response

to their decision (dynamics). The decision maker has to make decisions within time constraints in a

complex structure, and multiple rescue mechanism settings (complexity) coupled with uncertainty about

the environment (opaqueness) and long feedback delays with rewards happen over long time horizons

(dynamic complexity). Unlike existing simulated search and rescue tasks in the literature, Minimap

is an open-source project for 2D gridworld based research. Its design exploits the full capabilities of

modern browsers for interactivity for online data collection from humans and for behavioral analysis.

Importantly, Minimap provides scenario customization, in which the current task set can appropriately

adapt to the experimenter’s needs. That is, it is fully customizable and offers flexibility to experimenters

in defining experimental setups, manipulating experiment scenarios, varying aspects of DDM situations,

and collecting data.

2 Related work

Computerized microworlds. To date, many microworlds have been developed in an effort to investigate

human behavior in a large variety of tasks ranging from simple gambling games [14] to complex control

task settings, including dynamic stock and flow systems [26], military command and control [41], air traf-

fic control [39,20,10], resource allocation [46,24], and supply chain management [54,13]. However, most

developed microworlds focus exclusively on some aspects of DDM tasks by providing specific environ-

ments for specific problems. Furthermore, only a handful of studies offer flexibility in generating various

decision scenarios and experimental designs [46,26]. FireChief [46] was one of the computer-simulated

microworlds developed as a generic framework for use in different contexts requiring a complex task

situation. Nevertheless, it has yet to support the customization of all the features of DDM tasks. The

development of FireChief was about two decades ago without having the possibility of tapping into the

advances of web-based technologies. Recently, Minecraft video games have been employed as a source of

computer-simulated microworlds to study human-AI teaming in a search and rescue task environment [12,

38,38]. Relatedly, the Malmo project is a platform for AI experimentation and research built on top of

Minecraft [33]. Malmo exposes human participants and agents to complex 3D environments with varied

gameplay. Minerl [31] is another project designed to support AI research. Yet, as its name suggests, Min-

eRL is primarily built to improve the development of deep reinforcement learning agents rather than to

study human behaviors. Arguably, the structure of these 3D environments and video games-based simu-

lations are hard to readily adapt for the precise experimental study of complex decision-making behavior

since the functionality to modify experiment parameters is often unavailable. Aside from that, deploying



4 Thuy Ngoc Nguyen, Cleotilde Gonzalez

experiments in 3D environments with Malmo or Minerl projects require high resources and tech-savvy

skills, adding another complication to running behavioral research. Furthermore, video games are usually

so sophisticated that many hours of play are needed to achieve basic competency in the task, making

them unsuitable for addressing diverse research questions in various large-sample populations [46].

Online experiments for behavioral research. Online experiments are popular ways to study human decision-

making behavior, as they overcome the hurdles of setting a computer-simulated microworld in a labora-

tory environment with rapid and low-cost data collection. With the advances in web technology, creating

many different kinds of computer-based behavioral experiments in a web browser is now feasible. Thus,

online experiments have become a popular way to collect data in the social and behavioral sciences. A

variety of web-based libraries and platforms are available to facilitate the process of building, running,

and collecting experimental data, accommodating various needs such as jsPsych [15], PsychoPy [50,49],

lab.js [32], or PsyToolkit [55]. Even though the purpose of these tools is to provide a set of templates for

common research scenarios, they have yet to explicitly support 2D gridworld tasks that are ubiquitous

in the field of AI.

Gridworld games. A 2D gridworld environment is constructed based on a two-dimensional grid in which

each position (tile or cell) is uniquely identified by a coordinate tuple (x, y). The (x, y) coordinates are

nonnegative integers. Each tile is typically associated with an entity, such as a player, a door, a wall,

or an obstacle. The 2D environment can also contain rewards and other features, which are beneficial

for examining agents’ behavior, and hence numerous 2D gridworld environments for AI research have

been developed to study diverse problems such as navigation, imperfect information, exploration, and so

on [11,3,51]. However, these widely used task environments, such as those in Atari Learning Environment

Benchmark [4] appear to be tailored for a specific single environment without customization of the task,

making it difficult to change values, appearance, or integrated components in tasks. Consequently, other

recent work has focused on providing highly customizable gridworld settings, including MiniGrid [11],

DMLab2D [3], and GriddlyJS [2,1]. Nevertheless, these tools are simulation environments primarily

designed to provide a flexible and scalable framework that enables researchers to create and test the

robustness and generalization of reinforcement learning (RL) agents in varied simulated environments

rather than catering to human behavioral research.

In this work, we present Minimap, an open-source, interactive platform for studying human behav-

ior in DDM tasks that incorporates all essential characteristics of DDM, distinguishing it from existing

computerized microworld and RL-based research simulation tools. It is a 2D gridworld game and offers

flexibility regarding experimental setups and creating task scenarios. Minimap also streamlines the de-

velopment of web-based 2D gridworld environments for DDM research by allowing task customization

of graphical interfaces. Table 1 shows the comparison between our Minimap and other similar tools.



Minimap 5

Table 1: Comparison between Minimap and other similar tools. Minimap provides a broader range of
support regarding task customization of four DDM characteristics and the development of gridworld
environments, human behavior research, and browser-based interactivity.

Minimap FireChief [46] MiniGrid [11] DMLab2D [3] GriddlyJS [2]

Configurable

Dynamics ✓ ✓
Opaqueness ✓ ✓ ✓ ✓
Complexity ✓ ✓ ✓ ✓ ✓
Dynamic Complexity ✓ ✓ ✓ ✓ ✓

Gridworld environment ✓ ✓ ✓ ✓
Human behavior research support ✓ ✓ ✓
Browser-based interactivity ✓ ✓

In the next section, we present Minimap and describe all its highlights to study the characteristics of

DDM in search and rescue missions. We demonstrate the use of Minimap in an online experiment where

we investigate the effect of structural complexity in association with opaqueness (i.e., uncertainty about

the environment) on human decision behavior. We also discuss how Minimap can accommodate various

behavioral research questions, from human behavior studies to human-AI interaction.

3 Minimap: A Game to Study Search and Rescue Missions

Minimap is implemented to take into account all the characteristics of a DDM task with the purpose of

studying human learning and decision-making in a generic search and choice task. Search and rescue task

is selected as the default scenario because it is judged to be illustrative of a realistic DDM task, inherently

interesting, and readily understood by human subjects. Nevertheless, the development of Minimap aims

to be fully customizable and extensible, enabling experimenters to systematically manipulate or vary

different aspects of complex and dynamic situations.

3.1 A Search and Rescue Scenario: Generic Instructions

The generic version of the search and rescue task in Minimap is designed to simulate typical task con-

straints that a rescuer might encounter1. Presumably, the instructions will vary according to the specific

parameter values and features that have been selected.

The mission aims to obtain as many points as possible by finding and rescuing victims from inside

a building that collapses within a 5-minute time limit. The game’s layout is illustrated in Fig. 1. That

is, the rescuer must navigate through an environment and avoid obstacles to locate and save victims.

Throughout the mission, the rescuer is informed about the time left in an episode (i.e., five-minute

mission) and the accumulated points (i.e., “Points”) by rescuing the victims during each episode.

The environment of the Minimap task is a 93 x 50 grid, representing one floor of this building. In

each position in the grid or tile, the rescuer may encounter an obstacle, a door, a wall, a victim, or an

1 Demo of the game: http://janus.hss.cmu.edu:5701/demo/

http://janus.hss.cmu.edu:5701/demo/


6 Thuy Ngoc Nguyen, Cleotilde Gonzalez

Fig. 1: The graphical user interface of Minimap for a search and rescue task with the full view mode.
The red dot represents the current position of a player in the game. Green and yellow squares represent
unsaved victims, grey squares represent walls, light grey squares represent obstacles, and purple squares
are designated for doors. The wall and obstacle are not passable, while the empty blue squares are areas
in which the player can traverse.

empty tile. There are 34 victims scattered throughout the building, of which ten are severely injured

and need a more urgent evaluation, while the other 24 are not considered critically injured. This feature

is simulated as critical and regular victims, yielding high and low rewards. Concretely, regular victims

are worth ten points each, are represented by green tiles, take a shorter time (five button presses) to

save, and are available to be rescued throughout the entire mission. By contrast, critical victims are

worth thirty points each, are represented by yellow tiles, require a longer time (ten button presses) to

be rescued, and they disappear from the building (or die) one minute before the mission is over.

In addition, obstacles and walls are placed in the path of the victims, forcing the rescuer to look for

alternative routes. Moreover, rooms have closed doors requiring the rescuer to open them to enter. To

save victims or open doors, the rescuer must be in a tile adjacent to the victim or the door. See Figure A2

in the Appendix A for detailed game keyboard controls.

By default, the rescuer is able to see objects within a 5x5 square area around them called the “vision

area” or “field of view” (FoV). Depending on different degrees of environmental visibility, they may also

be able to observe the walls in the building.



Minimap 7

3.2 Characteristics of a DDM Task in Minimap

We now explain how Minimap features all four essential characteristics of DDM environments [30,25],

which is one of its main highlights. For a detailed walkthrough of how to customize these DDM features

in Minimap, see Appendix B.

3.2.1 Dynamics

Minimap embodies temporal dependencies among system states. The environment is dynamic with re-

spect to players’ activity. At each time t, the player takes action (e.g., open a door or save a victim), and

then the environment transitions to a new state. In other words, the situation with subsequent activity

taken in the environment (at time t) is partly dictated by previous activity (at time t− 1). This feature

is one of the fundamental characteristics of dynamic systems [17].

In the generic search and rescue mission, Minimap offers different dynamics wherein the environment

evolves not only in response to the player’s decision but also autonomously. That is, victims die and

disappear from the environment in the absence of any decision input from human players. Minimap also

enables the creation of sudden perturbations, which attributes to the dynamic degree of the task. The

sudden changes supported in the Minimap are structural in the environments in the middle of the game,

including adding obstacles, changes in the number of victims, as well as a player’s and victims’ locations.

These perturbations again take place regardless of any decision input from players.

Minimap’s dynamics degree can be easily varied by changing the environment continuously or at

specific intervals. For instance, the experimenter can study humans’ responses to the dynamics by ma-

nipulating the time victims die to make the disappearance (death) of victims occur quickly (e.g., every

second) or slowly (e.g., every two minutes). Minimap also has the ability to implement multiple classes

of perturbations and control the time when the perturbation happens during gameplay.

3.2.2 Complexity

Complexity is a relative term and can arise from various sources [53,27]. In cognitive and AI research,

complexity has mainly been studied as an issue wherein a task possesses a large number of interrelated

elements to be processed within a unit of time [40,47]. Complexity can also arise from the presence of

multiple alternative decisions with multiple attributes [53] or the tension between the costs and benefits

of the decision [44].

Minimap offers a wide range of flexibility in manipulating this kind of complexity. In particular, a

different number of components can be added to the environment, as well as their placement, called

structural or environmental complexity. In addition, time constraints to rescue victims are also variables



8 Thuy Ngoc Nguyen, Cleotilde Gonzalez

in Minimap. Taken together, one can quickly increase the complexity by adding more obstacles and

shortening the time to search for victims.

Fig. 2: Illustration of different levels of structural complexity with Minimap. The simple setting (on the
left) consists of two extra blocks (encircled in red) and critical victims in seven rooms. On the contrary,
the complex environment (on the right) has four additional blocks and critical victims scattered over
nine rooms.

A scheme of rewards and costs is readily configurable in Minimap. Take the generic version of the

search and rescue scenario as an example; the yellow and green tiles represent critical and regular victims

who give high and low rewards/costs, respectively. Saving critical victims is worth more points than saving

regular victims, as it requires a longer time (more effort) to be rescued. With that, one can create any

mission and scenario that controls not only structural complexity but also decision complexity determined

by a tension between benefit and cost in gridworld task [44].

As an example, Fig. 2 illustrates a search and rescue game with varying degrees of structural complex-

ity determined by the number of obstacles and the difficulty of reaching critical victims. First, additional

blockages (encircled in red) are placed in the middle of a path to restrict the individual from taking

the blocked route, forcing them to look for longer ways to bypass the blockage. Consequently, the struc-

tural complexity of the task increases when there are more blockages. Furthermore, different levels of

structural complexity differ in the placement of critical (yellow) victims. Critical victims in the complex

environment are scattered farther away from the player’s starting point, making them more challenging

to find. Concretely, the yellow victims are spread over nine rooms in the complex environment, while in

the simple setting, they are located in seven rooms. Therefore, it requires the rescuer’s ability to search

through the building.

3.2.3 Opaqueness

A task becomes challenging in the presence of uncertainty about the environment. Thus, the essential

element of DDM tasks is opaqueness which arises when some aspects of the environment are invisible

to a decision-maker. The opaqueness or ambiguity of the environment is typically represented by the

information available about the state of the world [56,43].



Minimap 9

Minimap fully incorporates this feature as it conceals the information on the number of components

in the environment from the players. Consequently, they must explore the environment by interacting

with it and gradually learn about these unknown parts of the environment. Importantly, Minimap allows

customization of the visibility variable at different levels of granularity. Concretely, the degree of opaque-

ness is configurable with three levels, namely the field of view (fov), map view (map), and full view (full).

With the field of view, the individual can only observe part of the environment within their restricted

vision area. In contrast, with the map view, they can see the overview structure of the map in addition to

their vision area. Conversely, the full view gives the player a complete view of the environment, including

where the victims are. Fig. 3 illustrates the two levels of opaqueness: Fov and map view.

Fig. 3: Illustration of the Minimap with two degrees of opaqueness from left to right: FoV and map view.

3.2.4 Dynamic Complexity

Dynamic complexity varies in their inclusion of delayed feedback [16] since the increase in feedback delays

between decision actions and the corresponding decision outcomes negatively affect human performance

in various dynamic tasks [8,25].

Feedback delays are inherent in Minimap, a sequential decision-making task. That is, the user has to

make a sequence of decisions without feedback, knowing the result only at the end of the sequence. For

example, in the search and rescue scenario, a decision maker must navigate the space by deciding which

actions to take while unaware of the locations of victims and obstacles. Also, the large dimension of the

environment space makes for long feedback delays, and rewards happen over long time horizons until the

end of the game duration.

Similar to the other characteristics, the feature of feedback delays is modifiable in Minimap. Techni-

cally, the delay in the individual’s action is defined by a variable configurable by the experimenters. The

variable adds a constant number of time intervals k to the effect of an action. In other words, the action

only takes effect after the time interval k has passed.



10 Thuy Ngoc Nguyen, Cleotilde Gonzalez

3.3 Overall Structure of Minimap

We now describe the Minimap technical architecture to give a basic idea of how it has been developed

and highlight additional features of Minimap.

3.3.1 Minimap’s Architecture

As illustrated in Fig. 4, Minimap follows a client-server architecture consisting of two parts: client

browsers and a Minimap web server. On the server side, Minimap is built on the FastAPI2 web framework

in Python. The Minimap client-side relies on open Web technologies (i.e., HTML5, CSS, JavaScript). It

also leverages third-party libraries such as jQuery3, p5.js4 for graphical design and socket-io client 5 to

facilitate real-time interaction with a web browser or other client applications.

Minimap adopts the RESTful API web service for communication between client and server. REST

APIs are well known for scalability and flexibility, such that an application using REST APIs can be

scaled quickly due to the separation between the client and the server. Minimap also uses WebSockets

as an additional protocol on top of HTTP to keep a long-running connection open so that a stream of

messages can be sent over a long period without having to set up a new connection for each request.

Fig. 4: Schematic representation of the Minimap architecture with two main components: Web server
and client. The client sends a request in the form of JSON data, and the server sends a response through
RESTful APIs methods.

Finally, Minimap uses the MySQL database management system to store data collected from human

subjects. Trajectories of humans playing during the game are recorded once human participants execute

2 a modern, high-performance, web framework for building APIs with Python 3.6+ (https://fastapi.tiangolo.com/).
3 JavaScript library designed to simplify the client-side manipulation of an HTML page (https://jquery.com/).
4 JavaScript library for drawing functionality using the HTML5 canvas element (https://p5js.org/).
5 Socket-io client library (https://socket.io/)

https://fastapi.tiangolo.com/
https://jquery.com/
https://p5js.org/
https://socket.io/


Minimap 11

1 {

2 "x": 26,

3 "y": 2,

4 "timestamp": 1667933847.90843 ,

5 "mission_time": "00:48",

6 "event": "triage green in-progress",

7 "score": {"green": 0, "yellow": 0}

8 }

Listing 1: Example of an object of the JSON array stored in a data file

an event occurrence. Otherwise, human trajectories are automatically saved in the database every 30 sec-

onds, regardless of any input from them. In addition, Minimap automatically records human trajectories

every second and saves them as a JSON file. These recorded trajectories can be replayed inside Minimap.

Overall, Minimap’s design aims at being cross-browser and platform agnostic. It can facilitate online

participation because users can join an experiment directly in the browser window without installing

additional software. This feature distinguishes Minimap from other search and rescue tasks simulated in

the Minecraft video game [12,38,21].

3.3.2 Human Trajectory Replay

Visualizing humans’ actions is crucial for DDM research that studies human decision behavior. By default,

Minimap automatically saves players’ data for each episode in a JSON format. Each object of the JSON

array stores information about the player’s action in a specific timestamp associated with mission time.

The information includes the position (x, y) coordinate of the player, the event that the player interacts

with the environment, and the score at the timestamp.

Minimap provides a point-and-click interface that allows experimenters to select a JSON data file that

will be useful to replay (see Fig. 5). During the replay, the experimenter can pause and resume replay

execution as desired. As such, the replay facility allows experimenters to identify strategies, strengths,

weaknesses, and unexpected behaviors. It also provides insight into any problems with data collection.

3.3.3 Task Scenario Customization

Flexibility and generality are integral in microworld-generating programs. Flexibility facilitates the de-

velopment of various microworlds to address a wide range of research questions in many scenarios. At the

same time, this generality enables researchers to validate the extent to which the obtained findings are

still applicable to other environments. Therefore, Minimap supports a quick design of new 2D gridworld

tasks or variations of an environment without the need for specialized technical knowledge.

Minimap, by default, features the environment as illustrated in Fig. 1. However, the environment

design is fully customizable. That is, one can entirely customize the Minimap layouts, including the



12 Thuy Ngoc Nguyen, Cleotilde Gonzalez

Fig. 5: Screeonshot of the replay function. It also allows different viewing modes (“Full view” or “Map
view”). One can pause and resume replay execution as desired using the toggle button “Playing/Pausing”.

environment size, objects’ location, and the number of entities presented on the map (e.g., victims, walls,

obstacles, and doors) to create diverse environments of task scenarios. Fig. 6 illustrates a new task design

with Minimap. As discussed earlier, generating a new task scenario in Minimap can be achieved without

requiring specialized programming knowledge. Remarkably, one can modify a base map designed in a

Excel format provided within the Minimap project by using the appropriate codebook (see Fig. 6a) and

then save it in the CSV format. Minimap will load the newly designed map in CSV to display it in the

game (see Fig. 6b). For a detailed and concrete example of how to customize a task and its interface

layout, see the Appendix B.7.

4 Proof of Concept: Experiment on Complexity and Opaqueness with Minimap

We demonstrate the utility of Minimap by conducting a behavioral experiment that varies in structural

complexity and opaqueness under time constraints to investigate its effects on human decision-making

behavior. More concretely, the structural complexity is determined by the number of additional obstacles



Minimap 13

(a) Map design in an Excel file (b) Map design rendered in Minimap

Fig. 6: Example of a new gridworld task generated by Minimap

Table 2: Summary of the independent variables

Variables Description

Complexity
Simple: two additional obstacles; critical victims are spread in seven rooms
Complex: four additional obstacles; critical victims are spread to nine rooms

Opaqueness
FoV: 5× 5 restricted vision area
Map: 5x5 vision area in addition to the view of the map’s structure

and the distance to critical victims from the player’s starting position, i.e., the farther away (spread out)

from critical victims to the player’s starting points, the more complex the setting is. The field of vision

area dictates the opaqueness the player can observe. We considered two levels of opaqueness called Field of

View (FoV ) and Map view of the building (Map), and two levels of structural complexity, namely Simple

and Complex. Table 2 describes the difference between each level of complexity and opaqueness considered

in the experiment. By following 2×2 factorial design, we created four experimental settings that result

from all possible combinations between the two levels of opaqueness and the two degrees of structural

complexity. Detailed instruction on replicating these four conditions is described in Appendix B.6.

Participants. A total of 195 participants completed the study and were roughly evenly distributed

under experimental conditions. All participants were recruited from Amazon Mechanical Turk for 30-45

minutes in a study pre-registered with the Open Science Framework6.

Procedure. Each participant was randomly assigned to one of the four conditions of the mission. After

giving their informed consent and receiving task instructions (see Figure A1 in the Appendix A), par-

6 https://osf.io/5gmsc/?view_only=b7b13bcae1da448e8c3a5d58ad976e34. According to the preregistration, we manip-
ulated another level of structural complexity, adding five extra blocks and critical victims were distributed in ten rooms.
We did not observe any results standing out in this condition compared to the complex setting; thus, we do not report
them in this work.

https://osf.io/5gmsc/?view_only=b7b13bcae1da448e8c3a5d58ad976e34


14 Thuy Ngoc Nguyen, Cleotilde Gonzalez

ticipants performed the study in two phases: (1) practice session and (2) main task. Subsequently, they

completed a post-survey and demographic questionnaire.

In the practice session, all the participants were required to complete one-minute training to familiar-

ize themselves with the controls. Then, they started the main task in which they were asked to complete

eight five-minute Minimap episodes (that is, eight opportunities to perform the mission, and each mission

episode lasted five minutes). The experimental conditions determined by the visibility and complexity of

the environment remained constant for each participant throughout the study. The participants started

at the exact location across the episodes.

Results. We measured human performance in terms of (i) effectiveness (the average proportion of

victims rescued in each episode); (ii) efficiency (the ratio between the points earned and the number

of steps taken to rescue the last victims); (iii) coverage (the ratio of the number of unique locations to

the total accessible locations on a given map); and (iv) redundancy (the proportion of the number of

revisited locations to the number of uniquely visited locations).

(a) Effectiveness (b) Efficiency

(c) Coverage (d) Redundancy

Fig. 7: Results in effectiveness, efficiency, coverage, and redundancy for each of the four experimental
conditions. We applied a non-parametric Mann-Whitney-Wilcoxon test with Bonferroni correction for
independent samples for statistical significance. The asterisk(*) indicates that the difference is statistically
significant, while “ns” denotes the difference is not significant. The more asterisks, the lower the p-value.
The small diamonds represent outliers of data points in the boxplot.

Fig. 7 shows the average effectiveness, efficiency, coverage, and redundancy of human participants

for each experimental condition of the task. We observe that, regardless of complexity, the effectiveness



Minimap 15

and efficiency of participants provided with more information about the environment (map view) are

significantly higher than those restricted to limited FoV. Interestingly, we did not find a significant effect

of complexity on human effectiveness and efficiency in performing the task, which is counter-intuitive

to the expected linear relation between environmental complexity and human performance. This result

suggests that the design of task complexity that relies on structural characteristics does not necessarily

lead to a more complex task that can impair human decision learning. Likewise, we did not find significant

main effects of opaqueness nor redundancy on the coverage and redundancy. That is, the increase in

ambiguity and structural complexity of the environment did not affect people’s ability to explore the

environment and their tendency to make redundant movements.

5 Discussion and Conclusions

In this paper, we introduced Minimap – an interactive browser-based microworld developed to help

researchers study many aspects of human behavior in dynamic decision-making (DDM) problems and

improve our understanding of how people make decisions in such environments. The primary motivation

behind its development was to provide behavioral researchers with a tool to systematically manipulate

or vary the different characteristics of a DDM task so that they can address specific research questions

in various research contexts. Minimap enables experimenters to simulate many real-world dynamic sit-

uations featured with navigation and exploration problems. Minimap itself integrates all four essential

characteristics of a DDM task: dynamics, complexity, opaqueness, and dynamic complexity. Such charac-

teristics are fully adjustable for DDM research needs within Minimap. For example, one can easily vary

the level of opaqueness using different visibility configurations offered in Minimap. Alternatively, the

length of feedback delays (dynamic complexity) is also adjustable by altering the periods that an action

takes effect (e.g., an action of rescuing a victim can take effect immediately or after a specific interval).

Furthermore, Minimap’s development gives experimenters control over creating various scenarios

and different structures of a task. For instance, Minimap, by default, is contextualized in an urban

search and rescue mission, but in general, one can turn it into any mission scenario featuring navigation

and exploration problems. The graphical design of the task is highly customizable without the need

for specialized technical knowledge. The extent of modifications can range depending on the analogies

between a new scenario and the search and rescue mission.

Crucially, unlike most existing microworlds, Minimap provides a programming framework to stream-

line the development of 2D gridworld games for online human behavior research. Its design exploits the

full capabilities of modern browsers for interactivity, furnishing flexibility to experimenters in the defi-

nition of experimental setups (i.e., study human interactions at different time intervals) and online data

collection with diverse subject populations. The Minimap source code is open and accessible for free at

https://github.com/DDM-Lab/MinimapInteractiveDDMGame.

https://github.com/DDM-Lab/MinimapInteractiveDDMGame


16 Thuy Ngoc Nguyen, Cleotilde Gonzalez

As a proof-of-concept, we used Minimap to examine the effects of structural complexity coupled with

the ambiguity of the environment on human decision-making performance. The study’s context is a sim-

ulated search and rescue mission, motivated by the fact that people in such a disaster environment often

have to deal with a complex topological structure of the setting, accompanied by uncertain conditions

when performing rescue operations. The results demonstrated that humans performed more effectively

and efficiently when provided with the Map view than with FoV. However, structural complexity does not

have a significant effect on human performance. Furthermore, people’s ability to explore the environment

(coverage) and their rate of making redundant movements were not affected even when the ambiguity

or structural complexity of the environment increased. These results suggest the challenge of designing

a complex, dynamic task at the human level. Hence, the features of Minimap benefit the generation of

different DDM task scenarios at varying levels.

5.1 Implications

The experiment results can inform the design of the complexity of tasks in decisions under uncertainty.

Concretely, we have learned from this work that complex structural characteristics per se do not ade-

quately determine the complexity of a task in practice. Other elements, such as high interconnectivity,

dynamically changing over time, or tension between the cost and benefits of each alternative (i.e., the

complexity of decision [44]) probably play a role in dictating the task complexity. These results, thereby,

highlight the utility of Minimap for designing and manipulating the DDM features at custom levels.

In addition to the ability to solve specific tasks autonomously, the ultimate objective of building

autonomous systems should be to develop interactive assistant systems where humans and machines work

together, taking advantage of their respective strengths [19,42]. Studies on human-autonomy teaming

(HAT), in which a team of humans and intelligent, autonomous agents must work interdependently to

achieve a common goal, have received ever-increasing attention in AI research [48,52]. Understanding

human behavior as insights from human subjects is integral in informing and providing suggestions

for autonomous system designs [37,5]. As such, Minimap facilitates the development of advisory support

systems that attempt to boost human performance in many fields in which they must cope with structural

complexity associated with environmental opaqueness.

Unlike existing tasks used for HAT research which focus primarily on command and control and

resource management tasks, such as NeoCITIES [34], Minimap applications can be advantageous to study

HAT in DDM tasks featured by navigation and space exploration problems. Furthermore, the existing

tools provide no additional functionality for customization. Minimap, by contrast, allows task scenario

customization. This feature facilitates the creation of environments and enables the investigation of

HATs in various settings involving collaboration, attacking, and defending requirements and navigation.



Minimap 17

Another advantage of Minmap over the extant HAT tasks is to provide an online platform for running

experiments.

Indeed, recent work has utilized Minimap to capture the team’s effort, appropriate use of mem-

bers’ task-related skills, and the quality of their task strategy [57]. Specifically, in this study, Minimap

was customized so that participants were paired with an ostensible teammate who, in reality, is a pre-

programmed agent (referred to as the “teammate”). The teammate and the participant played in the

same two-dimensional Minimap environment. This customization of Minimap also enables the investi-

gation of how participants collaborate with their teammates in various ways, including signaling their

teammate the position of special victims only the teammate could save, communicating whether a specific

location of victims was “cleared”, and activating gift boxes that would directly contribute to the bonus

of teammates. These observations are then used to build a model to predict how collective intelligence

will evolve, allowing agents to collaborate better. Furthermore, autonomous systems can leverage such

in-game process observations to make interventions by giving humans advice based on process metrics.

As a follow-up research, this observation also points to an opportunity to explore how autonomous agents

can adapt to humans as teammates in HAT.

Finally, the use of Minimap is aimed to transcend the scope of individual tasks, provided that mi-

croworlds in DDM research literature tend to present a decision-making problem of individuals rather

than teams [9,30]. Minimap is under active development to feature a team environment wherein multi-

ple human players with different roles simultaneously play the game7. Moreover, considering that many

off-the-shelf machine learning libraries and agent-based models [45] are in Python, Minimap’s architec-

ture relying on Python’s API framework makes it even easier to incorporate any of these libraries in

an attempt to connect and build a synthetic teammate. Given rapid research advancement in HAT, we

anticipate the use of Minimap will increase.

5.2 Future work

Minimap has yet to offer a visual interface that allows researchers to design environments and scenario

variables interactively, thus still requiring basic programming skills for task customization. Relatedly,

Minimap needs to provide a set of diverse scenario templates that researchers can select with a point-

and-click interface. Another limitation of this current work is that even though recent research has used

Minimap for collaborative tasks in which humans and AI agents are teammates [57], code templates for

this type of scenario have yet to be available in this current version of Minimap. We see these limitations

as opportunities to improve Minimap’s usability and versatility for DDM and AI research in the future.

7 Multiplayer version of Minimap: https://github.com/DDM-Lab/team-minimap-ted

https://github.com/DDM-Lab/team-minimap-ted


18 Thuy Ngoc Nguyen, Cleotilde Gonzalez

Transparency and Openness

Minimap is provided as a free open-source application, which can be accessed at https://github.com/

DDM-Lab/MinimapInteractiveDDMGame. All human data and all scripts used for the analyses presented in

this manuscript are also available on Github: https://github.com/DDM-Lab/HumanExperimentMinimap.

Acknowledgements

This research was sponsored by the Defense Advanced Research Projects Agency and the Army Research

Office and was accomplished under Grant Number W911NF-20-1-0006. (DARPA-ASIST program).

References

1. Bamford, C.: Griddly: A platform for ai research in games. Software Impacts 8, 100066 (2021)

2. Bamford, C., Jiang, M., Samvelyan, M., Rocktäschel, T.: Griddlyjs: A web ide for reinforcement learning. arXiv

preprint arXiv:2207.06105 (2022)

3. Beattie, C., Köppe, T., Duéñez-Guzmán, E.A., Leibo, J.Z.: Deepmind lab2d. arXiv preprint arXiv:2011.07027 (2020)

4. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: An evaluation platform for

general agents. Journal of Artificial Intelligence Research 47, 253–279 (2013)

5. Botvinick, M., Ritter, S., Wang, J.X., Kurth-Nelson, Z., Blundell, C., Hassabis, D.: Reinforcement learning, fast and

slow. Trends in cognitive sciences (2019)

6. Brehmer, B.: Feedback delays and control in complex dynamic systems. In: Computer-based management of complex

systems, pp. 189–196. Springer (1989)

7. Brehmer, B.: Dynamic decision making: Human control of complex systems. Acta psychologica 81(3), 211–241 (1992)

8. Brehmer, B.: Feedback delays in complex dynamic decision tasks. Complex problem solving: The European perspective

pp. 103–130 (1995)

9. Brehmer, B., Dörner, D.: Experiments with computer-simulated microworlds: Escaping both the narrow straits of the

laboratory and the deep blue sea of the field study. Computers in human behavior 9(2-3), 171–184 (1993)

10. Cegarra, J., Valéry, B., Avril, E., Calmettes, C., Navarro, J.: Openmatb: A multi-attribute task battery promoting

task customization, software extensibility and experiment replicability. Behavior research methods 52(5), 1980–1990

(2020)

11. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment for gymnasium (2018). URL https:

//github.com/Farama-Foundation/Minigrid

12. Corral, C.C., Tatapudi, K.S., Buchanan, V., Huang, L., Cooke, N.J.: Building a synthetic task environment to support

artificial social intelligence research. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

vol. 65, pp. 660–664. SAGE Publications Sage CA: Los Angeles, CA (2021)

13. Cronin, M.A., Gonzalez, C., Sterman, J.D.: Why don’t well-educated adults understand accumulation? a challenge to

researchers, educators, and citizens. Organizational behavior and Human decision Processes 108(1), 116–130 (2009)

14. Dancy, C.L., Ritter, F.E.: Igt-open: An open-source, computerized version of the iowa gambling task. Behavior research

methods 49(3), 972–978 (2017)

15. De Leeuw, J.R.: jspsych: A javascript library for creating behavioral experiments in a web browser. Behavior research

methods 47(1), 1–12 (2015)

https://github.com/DDM-Lab/MinimapInteractiveDDMGame
https://github.com/DDM-Lab/MinimapInteractiveDDMGame
https://github.com/DDM-Lab/HumanExperimentMinimap
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid


Minimap 19

16. Diehl, E., Sterman, J.D.: Effects of feedback complexity on dynamic decision making. Organizational behavior and

human decision processes 62(2), 198–215 (1995)

17. Edwards, W.: Dynamic decision theory and probabilistic information processings. Human factors 4(2), 59–74 (1962)

18. Elliott, T., Mills, V., et al.: Investigating naturalistic decision making in a simulated microworld: What questions

should we ask? Behavior Research Methods 39(4), 901–910 (2007)

19. Forbus, K.D., Hinrichs, T.R.: Companion cognitive systems: a step toward human-level ai. AI magazine 27(2), 83–83

(2006)

20. Fothergill, S., Loft, S., Neal, A.: Atc-labadvanced: An air traffic control simulator with realism and control. Behavior

Research Methods 41(1), 118–127 (2009)

21. Freeman, J., Huang, L., Wood, M., Cauffman, S.J.: Evaluating artificial social intelligence in an urban search and

rescue task environment. In: AAAI Fall Symposium on Theory of Mind for Teams (2021)

22. Funke, J.: Experimental research on complex problem solving. Complex problem solving: The European perspective

pp. 243–268 (1995)

23. Gonzalez, C.: Learning to make decisions in dynamic environments: Effects of time constraints and cognitive abilities.

Human Factors 46(3), 449–460 (2004)

24. Gonzalez, C.: Decision support for real-time, dynamic decision-making tasks. Organizational Behavior and Human

Decision Processes 96(2), 142–154 (2005)

25. Gonzalez, C.: Decision-making: a cognitive science perspective. The Oxford handbook of cognitive science 1, 1–27

(2017)

26. Gonzalez, C., Dutt, V.: A generic dynamic control task for behavioral research and education. Computers in Human

Behavior 27(5), 1904–1914 (2011)

27. Gonzalez, C., Fakhari, P., Busemeyer, J.: Dynamic decision making: Learning processes and new research directions.

Human factors 59(5), 713–721 (2017)

28. Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance-based learning in dynamic decision making. Cognitive Science 27(4),

591–635 (2003)

29. Gonzalez, C., Thomas, R.P., Vanyukov, P.: The relationships between cognitive ability and dynamic decision making.

Intelligence 33(2), 169–186 (2005)

30. Gonzalez, C., Vanyukov, P., Martin, M.K.: The use of microworlds to study dynamic decision making. Computers in

human behavior 21(2), 273–286 (2005)

31. Guss, W.H., Houghton, B., Topin, N., Wang, P., Codel, C., Veloso, M., Salakhutdinov, R.: Minerl: A large-scale dataset

of minecraft demonstrations. arXiv preprint arXiv:1907.13440 (2019)

32. Henninger, F., Shevchenko, Y., Mertens, U.K., Kieslich, P.J., Hilbig, B.E.: lab. js: A free, open, online study builder.

Behavior Research Methods 54(2), 556–573 (2022)

33. Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The malmo platform for artificial intelligence experimentation. In:

Ijcai, pp. 4246–4247 (2016)

34. Jones, R.E., McNeese, M.D., Connors, E.S., Jefferson Jr, T., Hall Jr, D.L.: A distributed cognition simulation involving

homeland security and defense: The development of neocities. In: Proceedings of the human factors and ergonomics

society annual meeting, vol. 48, pp. 631–634. SAGE Publications Sage CA: Los Angeles, CA (2004)

35. Kerstholt, J.H., Raaijmakers, J.G.: Decision making in dynamic task environments. In: Decision making, pp. 219–231.

Routledge (2002)

36. Klein, G.A.: Sources of power: How people make decisions. MIT press (2017)

37. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people.

Behavioral and brain sciences 40 (2017)



20 Thuy Ngoc Nguyen, Cleotilde Gonzalez

38. Lematta, G.J., Coleman, P.B., Bhatti, S.A., Chiou, E.K., McNeese, N.J., Demir, M., Cooke, N.J.: Developing human-

robot team interdependence in a synthetic task environment. In: Proceedings of the Human Factors and Ergonomics

Society Annual Meeting, vol. 63, pp. 1503–1507. SAGE Publications Sage CA: Los Angeles, CA (2019)

39. Loft, S., Hill, A., Neal, A., Humphreys, M., Yeo, G.: Atc-lab: An air traffic control simulator for the laboratory. Behavior

Research Methods, Instruments, & Computers 36(2), 331–338 (2004)

40. Madhavan, P., Gonzalez, C., Lacson, F.C.: Differential base rate training influences detection of novel targets in a

complex visual inspection task. In: Proceedings of the human factors and ergonomics society annual meeting, vol. 51,

pp. 392–396. SAGE Publications Sage CA: Los Angeles, CA (2007)

41. Marusich, L.R., Bakdash, J.Z., Onal, E., Yu, M.S., Schaffer, J., O’Donovan, J., Höllerer, T., Buchler, N., Gonzalez,

C.: Effects of information availability on command-and-control decision making: performance, trust, and situation

awareness. Human factors 58(2), 301–321 (2016)

42. McNeese, N.J., Demir, M., Cooke, N.J., Myers, C.: Teaming with a synthetic teammate: Insights into human-autonomy

teaming. Human factors 60(2), 262–273 (2018)

43. Mehlhorn, K., Newell, B.R., Todd, P.M., Lee, M.D., Morgan, K., Braithwaite, V.A., Hausmann, D., Fiedler, K.,

Gonzalez, C.: Unpacking the exploration–exploitation tradeoff: A synthesis of human and animal literatures. Decision

2(3), 191 (2015)

44. Nguyen, T.N., Gonzalez, C.: Effects of decision complexity in goal-seeking gridworlds: A comparison of instance-based

learning and reinforcement learning agents. In: Proceedings of the 18th intl. conf. on cognitive modelling (2020)

45. Nguyen, T.N., Phan, D.N., Gonzalez, C.: Speedyibl: A comprehensive, precise, and fast implementation of instance-

based learning theory. Behavior Research Methods (2022)

46. Omodei, M.M., Wearing, A.J.: The fire chief microworld generating program: An illustration of computer-simulated

microworlds as an experimental paradigm for studying complex decision-making behavior. Behavior Research Methods,

Instruments, & Computers 27(3), 303–316 (1995)

47. Osman, M.: Controlling uncertainty: a review of human behavior in complex dynamic environments. Psychological

bulletin 136(1), 65 (2010)

48. O’Neill, T., McNeese, N., Barron, A., Schelble, B.: Human–autonomy teaming: A review and analysis of the empirical

literature. Human factors 64(5), 904–938 (2022)

49. Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., Lindeløv, J.K.: Psychopy2:

Experiments in behavior made easy. Behavior research methods 51(1), 195–203 (2019)

50. Peirce, J.W.: Generating stimuli for neuroscience using psychopy. Frontiers in neuroinformatics 2, 10 (2009)

51. Rafols, E.J., Ring, M.B., Sutton, R.S., Tanner, B.: Using predictive representations to improve generalization in rein-

forcement learning. In: IJCAI, pp. 835–840 (2005)

52. Schelble, B.G., Flathmann, C., McNeese, N.J., Freeman, G., Mallick, R.: Let’s think together! assessing shared mental

models, performance, and trust in human-agent teams. Proceedings of the ACM on Human-Computer Interaction

6(GROUP), 1–29 (2022)

53. Schmid, U., Ragni, M., Gonzalez, C., Funke, J.: The challenge of complexity for cognitive systems (2011)

54. Sterman, J.D.: Misperceptions of feedback in dynamic decision making. Organizational behavior and human decision

processes 43(3), 301–335 (1989)

55. Stoet, G.: Psytoolkit: A novel web-based method for running online questionnaires and reaction-time experiments.

Teaching of Psychology 44(1), 24–31 (2017)

56. Todd, P.M., Hills, T.T., Robbins, T.W.: Cognitive search: Evolution, algorithms, and the brain. MIT press (2012)

57. Zhao, M., Eadeh, F.R., Nguyen, T.N., Gupta, P., Admoni, H., Gonzalez, C., Woolley, A.W.: Teaching agents to

understand teamwork: Evaluating and predicting collective intelligence as a latent variable via hidden markov models.

Computers in Human Behavior p. 107524 (2022)



21

Appendices

A Minimap: Generic Instructions

Fig. A1: Instructions on the structure and objective of the game



22

Fig. A2: Instructions on how to use the controls to play the game.

B Customizaing Experiments with Minimap

This section presents how to set up an experiment with Minimap as an introductory tutorial and web

service API methods in the current version of Minimap.

B.1 Preparation

Running the Minimap server requires MySQL database.

– Install MySQL for your operating system (Win/Mac/Linux)



23

– Check that MySQL are installed. Open a terminal or a command prompt and run:

1 mysql --version

– Connect to the MySQL server, run

1 mysql -u user -p

user represents the user name of your MySQL account. Substitute appropriate values for your setup.

MySQL will display a prompt to enter the corresponding password.

– From the mysql prompt, create a database:

1 CREATE DATABASE <db_name >;

– In a command shell, import the SQL script named script.sql provided in the project folder

1 mysql -u user -p db_name < script.sql

B.2 Installation/Quick start

– In a command shell, go to the main folder that contains the requirements.txt file.

– Create a virtual Python Environment is recommended by running the following commands in your

shell. (This may be different on your machine. If it does not work, look at how to install a virtual

python env based on your system):

1 python3 -m venv env

2 source env/bin/activate

– Install the required python libraries by running this command in your shell:

1 pip install -r requirements.txt

– In the file mission/db.py, update the database configuration according to the database setup in the

local machine, as in the following example:

1 user = "root"

2 password = ""

3 host = "localhost :3306"

4 db_name = "minimap_visibility_complex"

– To start the server, run:

1 python server.py

– While the server is running, navigate to: http://0.0.0.0:5700

– To stop the server, run Ctrl+C

http://0.0.0.0:5700


24

B.3 Running an experiment with Minimap

– After the server is started, launch the default search and rescue mission by connecting to:

1 http ://0.0.0.0:5700/ minimap?uid=XX

The port number can be configured in the server.py file.

– To check the replay interface, visit:

1 http ://0.0.0.0:5700/ replay

– Web service APIs for getting information about the playing score and the current game episode:

1 GET "/ score/{uid}/{ condition }"

2 GET "/ episode /{uid}/{ condition }"

B.4 Directory structure of an experiment

The experiment folder called mission contains the following fundamental sub-folders and files:

main folder

mission

static

data

js

style.css

templates

config.json

db.py

main.py

requirements.txt

script.sql

server.py

The mission/static folder contains all the static files the game will serve. In particular, the

mission/static/data folder includes all the base or new map template designs, while the mission/static/js

folder compriese of all the files defining the behavior of the game. The mission/templates folder contains

all the html files that define the game’s interface.

The database configuration is declared in the mission/db.py file while mission/main.py file controls

the web service APIs available for use. Importantly, as described earlier, all essential DDM features are

fully customizable in Minimap. One can configure the experiment settings by changing the appropriate

values in the mission/config.json file.



25

B.5 User modifiable configuration parameters

We now describe how experimenters can customize the game setting through Minimap configuration to

fit the scientific requirements of the scientific endeavor.

The experiment settings are specified in the file mission/config.json. This file contains the variables

needed to define the functioning of the experiment as follows:

1 {

2 "cond_name": "complex -full",

3 "load_new_map": 1,

4 "map_file": "map_design.csv",

5 "map_dir": "mission/static/data/",

6 "tile_width": 13,

7 "game_duration": 300,

8 "max_episode": 8,

9 "victim_die": 120,

10 "visibility": "full",

11 "complexity": "complex",

12 "delayed_time": 1000,

13 "perturbation_time": 120,

14 "map_perturbation": "map_perturbation.csv"

15 }

Condition Name. As it is likely that an experiment will be run under multiple conditions, the parameter

‘‘cond name’’ is used to identify each experimental condition. One can change the default condition

name, and make it short and descriptive.

Interface Modification. Minimap, by default, features the environment as illustrated in Fig. 1 provided

that the environment design is customizable. To create different environments, one can customize the Min-

imap layouts, including the location and the number of objects on the map (e.g., victims, walls, obstacles,

and doors). Technically, this can be achieved without requiring specialized technical knowledge: modify-

ing the base map designed in the Excel file, placed in the folder (mission/static/map design.xlsx),

and then saving it as a CSV file. Afterward, it is needed to specify in the config.json file that the newly

designed layout is used for the game (‘‘load new map’’: 1, 0 otherwise) together with the name of the

new map in CSV configuration (‘‘map file’’: ‘‘map design.csv’’). The width of each tile/cell in

the gridworld is set by the variable ‘‘tile width’’. One can increase or decrease this value to adjust

the size of the map. Detailed instructions on how to modify a task interface are presented in B.7.



26

Time Constraints. The variable ‘‘game duration’’ controls the duration of playing time within an

episode. The value is in seconds, so for a 5-minute mission, the duration is set to 300.

Complexity. Minimap provides two levels of structural complexity: simple and complex. For example, the

configuration file above makes the game environment complex with (‘‘complexity’’: ‘‘complex’’).

Structural complexity is determined based on the number of obstacles and the arrangement of critical

victims (see Fig. 2 and Section 3.2.2 for more details). One can freely create new maps with different

layouts and numbers of objects by following the steps described in the interface modification section.

Visibility. Minimap includes three levels of visibility to manipulate, namely the field of view (fov),

map view (map), and full view (full). This degree of visibility is specified by ‘‘visibility’’ in the

config.json file. With a field of view, the individual can only observe part of the environment within

their restricted vision area. In contrast, with a map view, they can see the overview structure of the map

in addition to their vision area (Fig. 3) for more details). Conversely, the full view gives the player a

complete picture of the environment, including where the victims are.

Time Victims Die. The moment victims die in the search and rescue task can be varied through the

variable ‘‘victim die’’. For example, in the above configuration file, critical victims die or disappear

from the building after two minutes (120 seconds) of the game.

Delayed Time. The delay in the individual’s actions, associated with the dynamic complexity, is inte-

grated into Minimap by the variable ‘‘delayed time’’, measured in seconds. The affected activities

include victim-saving and door-opening. In the example above, the delay period is set to one second,

meaning that after the player executes an action of rescuing a victim, it takes one second for the effort

to take effect. The action occurs immediately with a delayed time of zero.

Perturbation Time. The variable ‘‘perturbation time’’ controls when a perturbation or a sudden

change within an episode occurs measured in seconds. For example, during a 5-minute mission, if the

perturbation takes place after 2 minutes of gameplay, then the value to 120.

Perturbation Map. The variable ‘‘perturbation map’’ specifies the file associated with the new sce-

nario layout once a perturbation occurs. The file is in CSV format as in the map design file.

Number of Playing Episodes. The number of times an individual can perform the task is a variable in

Minimap. For example, ‘‘max episode’’ in the config.json file above controls the number of playing

episodes ‘‘max episode’’: 8 i.e., the default value is 8). This feature allows experimenters to run

experiments multiple times to examine the human learning process.



27

B.6 Reproducing the experiments on complexity and opaqueness with Minimap

To reproduce each experimental condition described in Section 4, one can configure the corresponding

parameters in the config.json file under folder mission as follows.

Condition 1. Simple FoV:

1 {

2 "cond_name": "simple -fov",

3 "load_new_map": 0,

4 "tile_width": 13,

5 "game_duration": 300,

6 "max_episode": 8,

7 "victim_die": 240,

8 "visibility": "fov",

9 "complexity": "simple",

10 "delayed_time": 0,

11 "perturbation_time": 0,

12 }

Condition 2. Simple Map:

1 {

2 "cond_name": "simple -map",

3 "load_new_map": 0,

4 "tile_width": 13,

5 "game_duration": 300,

6 "max_episode": 8,

7 "victim_die": 240,

8 "visibility": "map",

9 "complexity": "simple",

10 "delayed_time": 0,

11 "perturbation_time": 0,

12 }

Condition 3. Complexity FoV:

1 {

2 "cond_name": "complex -fov",

3 "load_new_map": 0,



28

4 "tile_width": 13,

5 "game_duration": 300,

6 "max_episode": 8,

7 "victim_die": 240,

8 "visibility": "fov",

9 "complexity": "complex",

10 "delayed_time": 0,

11 "perturbation_time": 0,

12 }

Condition 4. Complexity Map:

1 {

2 "cond_name": "complex -map",

3 "load_new_map": 0,

4 "tile_width": 13,

5 "game_duration": 300,

6 "max_episode": 8,

7 "victim_die": 240,

8 "visibility": "map",

9 "complexity": "complex",

10 "delayed_time": 0,

11 "perturbation_time": 0,

12 }

Start the server and launch the new task scenario by connecting to:

1 http ://0.0.0.0:5700/ minimap?uid=XX

B.7 An example of creating a task scenario

This section describes a step-by-step guide for creating a task scenario in Minimap. Suppose that in

this new scenario, a player is instructed to navigate the 19 × 19 environment to save three types of

victims: critical (red) victims, serious (yellow), and minor (green) victims. The player needs to play 10

episodes of a 3-minute game. A perturbation occurs after one minute of the game, which entails the

sudden appearance of rubble and an increased number of serious and critical victims. The serious and

critical victims vanish when two minutes elapse.



29

B.7.1 Step 1: Creating the environment layout

We create a map design file in the Excel configuration (e.g., ‘‘map design c.xlsx’’ as illustrated

in Fig. A3a). Afterward, we save it in the CSV (‘‘map design c.csv’’) and place it in the folder

mission/static/ (see Fig. A3b).

(a) Map design in an Excel file (b) Map design in a CSV format

Fig. A3: Illustration of map design (in the Excel and CSV format) for the new scenario

The code number of each object in the environment, together with their associated action and reward, is

described in Table A1. One can easily adjust the value of rewards and/or the number of button presses

needed to obtain each object. The reward for obtaining each object and the number of keystrokes required

for such action is defined in the column “Press” and “Reward”. For instance, change the values of the

two columns “Press” and “Reward” in the third row of the table to adjust the number of key presses

needed and the reward received by saving the green objects.

Table A1: Object codebook of Minimap. The column “Press” determines the number of required
keystrokes to obtain the object, while the column “Reward” dictates the received reward for each object.

Num Name Press Reward

1 wall 0 0
2 door 1 0
3 green 5 10
4 blue 10 15
5 red 20 60
6 yellow 10 30
7 other 0 0
8 agent 0 0
9 rubble 5 0



30

B.7.2 Step 2: Adding perturbations

We can intensify the task dynamic with sudden perturbation in the middle of the gameplay (within an

episode). To do that, we design a new setting when the perturbation happens in the Excel file. When one

minute elapses, the player will suddenly experience the appearance of rubble and an increase in critical

and serious victims. We name the file, e.g., ‘‘map perturbation c.xlsx’’ as illustrated in Fig. A4a.

We also save the design file in the CSV format and place it in the folder mission/static/ (see Fig. A4b).

(a) Perturbation design in an Excel file (b) Perturbation design in a CSV format

Fig. A4: Illustration of perturbation design (in the Excel and CSV format) for the new scenario

B.7.3 Step 3: Configurating experiment parameters

For the task described above, we adjust the file config.json in the folder mission as the following:

1 { "load_new_map": 1,

2 "map_file": "map_design_c.csv",

3 "map_dir": "mission/static/data/",

4 "tile_width": 20,

5 "game_duration": 180,

6 "max_episode": 10,

7 "victim_die": 120,

8 "visibility": "full",

9 "delayed_time": 1000,

10 "perturbation_time": 60,

11 "map_perturbation": "map_perturbation_c.csv"}



31

Since we use the newly designed interface for the task, the value of ‘‘load new map’’ variable is set

to 1 (true). We also increase the value of tile width variable to 20 to expand the size of the grid

environment. By default, the visibility (opaqueness) is set to full view (‘‘full’’). We can assign the

value of the variable visibility to ‘‘fov’’ or ‘‘map’’ for displaying the task with the field of view

or map structure, respectively.

B.7.4 Step 4: Running the task

We start the server by typing:

1 python server.py

Once the server is started, launch the new task scenario by connecting to:

1 http ://0.0.0.0:5700/ minimap?uid=XX

The interface of the new task with the full view and map view is illustrated in Fig. A6.

(a) New task with full view (‘‘full’’) (b) New task with map view (‘‘map’’)

Fig. A5: Display of the new task scenario in Minimap

Fig. A6a illustrates the environment when the disruption happens (i.e., rubble appears, and the num-

ber of critical (red) and serious (yellow) victims grows). Fig. A6b shows the setting after the time in

‘‘victim die’’ variable elapses (i.e., the critical and serious victims disappear).



32

(a) Environment when the perturbation happens (b) Environment after the critical and serious victim vanish

Fig. A6: Illustration of the task environment when the disruptions take place.

A-.7.5 Step 5: Replaying recorded data files

We can replay the recorded data files by entering

1 http ://0.0.0.0:5700/ replay

Then select the data file to display the playback illustrated in Fig A7.

(a) Interface of selecting the data file for the playback (b) Illustration of the replay with the new task

Fig. A7: Illustration of the replay function with the new task scenario


	Introduction
	Related work
	Minimap: A Game to Study Search and Rescue Missions
	Proof of Concept: Experiment on Complexity and Opaqueness with Minimap
	Discussion and Conclusions
	Minimap: Generic Instructions
	Customizaing Experiments with Minimap

