
Statistically Rigorous Testing of
Clustering Implementations

Xin Yin Vincenzo Musco Iulian Neamtiu Usman Roshan
Department of Computer Science
New Jersey Institute of Technology

Newark, NJ, USA
{xy258, vincenzo.a.musco, ineamtiu, usman}@njit.edu

Abstract—Clustering is a widely-used and well-studied AI
branch, but defining clustering correctness, as well as verifying
and validating clustering implementations, remains a challenge.
To address this, we propose a statistically rigorous approach that
couples differential clustering with statistical hypothesis testing,
namely we conduct statistical hypothesis testing on the outcome
(distribution) of differential clustering to reveal problematic
outcomes.

We employed this approach on widely-used clustering algo-
rithms implemented in popular ML toolkits; the toolkits were
tasked with clustering datasets from the Penn Machine Learning
Benchmark. The results indicate that there are statistically signif-
icant differences in clustering outcomes in a variety of scenarios
where users might not expect clustering outcome variation.

Index Terms—Clustering, Machine Learning, Testing, Statistics

I. INTRODUCTION

Clustering – an AI branch concerned with partitioning sets
into subsets whose elements are related – is a well-established
area with research going back to the 1950s. However, there is a
stringent and urgent need for approaches to testing Clustering
implementations due to several converging factors.

First, supervised and unsupervised learning have started to
permeate software products, from “smart” home devices [1] to
self-driving platforms [2] and predictive analytics [3]. These
implementations make critical decisions themselves or are
used to aid decision-making (e.g., autonomous driving or
financial fraud detection).

Second, there has been a proliferation of clustering im-
plementations, mostly in the form of software toolkits (e.g.,
MATLAB and R each offer more than 100 clustering pack-
ages [4], [5]). These implementations are run by millions of
users [6], [7] including non ML-experts (from life scientists
to medical professionals) who should be able to assume that
the implementations are correct.

Third, software engineers are under pressure to incor-
porate/adopt Machine Learning into software products and
processes [8]–[10]; engineers should be able to (reasonably)
assume that clustering implementations are reliable and inter-
changeable, i.e., for a given algorithm, its implementation is
correct and has no negative impact on the clustering outcome.

However, ensuring clustering correctness, or even specifying
clustering correctness, remain distant goals. Therefore, we

propose an approach that can expose substantial and system-
atic issues with clustering algorithms’ actual implementations,
e.g., wide variations across runs for theoretically-stable, deter-
ministic algorithms, widely different outcomes for different
implementations of the same algorithm, or consistently poor
performance in specific implementations.

Our approach leverages the wide availability of clustering
implementations and datasets with ground truth, coupled with
a statistics-driven approach to help developers (or toolkit
testers) find statistically significant clustering accuracy differ-
ences.

To evaluate our approach and conduct our study, we
chose 7 popular clustering algorithms, 4 nondeterminis-
tic (K-means, K-means++, Spectral Clustering, Expectation
Maximization-GaussianMixture); and 3 deterministic (Hier-
archical clustering-Agglomerative, Affinity Propagation, DB-
SCAN).1 For uniformity and brevity, we use the following
shorthands for the algorithms: kmeans, kmeans++, gaussian,
spectral, hierarchical, dbscan, apcluster. We chose 7 widely-
used clustering toolkits: MATLAB, mlpack, R, Scikit-learn,
Shogun, TensorFlow, and WEKA. For uniformity and brevity,
we use the following shorthands for the algorithms: matlab,
mlpack, R, sklearn, shogun, tensorflow, weka. Our clustering
inputs are 162 datasets from the Penn Machine Learning
Benchmark; the datasets are described in Section II-B. 60% of
the datasets come from sciences (medicine, biology, physics)
with clusters crafted by domain experts.

Our basic metric of clustering similarity and accuracy is the
versatile adjusted Rand index (ARI) [11], described in detail
in Section II-A. The ARI measures the similarity between two
partitions U and V of the same underlying set S. The ARI
varies between −1 and +1, where ARI = +1 indicates that
U and V are identical; ARI = 0 is tantamount to random
assignment; ARI = −1 corresponds to strong disagreement.
We use the term accuracy to refer to the ARI in the case
when U is a clustering produced by an algorithm and V is the
Ground Truth (as labeled in PMLB) for that dataset.

Examples: clustering accuracy in promoters. The clustering
accuracy is measured by ARI between clustering results and
ground truth. The promoters [12] dataset essentially contains

1Deterministic clustering algorithms should, in theory, produce the same
clustering when run repeatedly on the same input. For nondeterministic (aka
randomized) algorithms, the clustering might vary.



Fig. 1. Kmeans++: Accuracy distributions for 11 toolkits on dataset promot-
ers (WN = WEKA with default normalization).

two clusters that partition the underlying E.coli DNA (gene)
sequences into “promoters” 2 and “non-promoters”. We ran
our statistical approach on clustering outcomes of algorithm
K-means++ in 11 toolkit configurations (sample size = 30,
corresponding to the 30 repeated runs of that configuration
on the same dataset). The resulting accuracy range is shown
in Figure 1. Note that 10 toolkits achieve identical, perfect
clusterings in each of the 30 runs, i.e.,

minAccuracy = maxAccuracy = 1

However, the toolkit WEKA’s accuracy across 30 runs varied:

minAccuracy = −0.01;maxAccuracy = 0.4

This allows us to make two observations: (1) WEKA’s ac-
curacy varies substantially across re-runs on the same input
dataset; and (2) all toolkits achieve perfect clusterings in every
run, whereas’s WEKA’s best run has accuracy 0.4. This clearly
indicates a clustering implementation issue.3

Our approach exposes such issues (and more) in a sta-
tistically rigorous way. This is the first statistically rigorous
approach to testing clustering implementations.

Our approach has 4 components; we present each compo-
nent in the context of using that component to test a null
hypothesis:

1) How different runs of the same algorithm in the
same implementation lead to different clusterings (Sec-
tion III).

2) How different implementations of the same algorithm
in different toolkits lead to different clusterings (Sec-
tion IV).

3) The toolkit’s impact when comparing algorithms (Sec-
tion V).

4) How different toolkits “disagree” (Section VI).

2A promoter sequence marks the DNA region where the transcription of
that gene into RNA should begin.

3WEKA developers were able to attribute this low accuracy to WEKA’s
default normalization setting.

TABLE I
CATEGORIES FOR THE PMLB DATASETS.

Category Percentage
Medical/Health 24%
Biology, Biochemistry, Bioinformatics 15%
Physics, Math, Astronomy 11%
Social, Census 10%
Sports 7%
Financial 7%
Image recognition 6%
Synthetic datasets 6%
IT, AI 4%
Linguistics 3%
Miscellaneous 7%

II. BACKGROUND

A. Definitions

Clustering. Given a set S of n points (d-dimensional
vectors in the Rd space), a clustering is a partitioning of S
into K non-overlapping subsets (clusters) S1, . . . , Si, . . . , SK

such that intra-cluster distance between points (that is, within
individual Si’s) is minimized, while inter-cluster distance (e.g.,
between centroids of Si and Sj where i 6= j) is maximized.

Accuracy. The adjusted Rand index (ARI) is a versatile,
widely used [13] clustering comparison metric. Let us assume
a set D and two partitionings A and B on it: PA, QA (where
PA ∪ QA = D and PA ∩ QA = ∅) and respectively PB ,
QB (where PB ∪ QB = D and PB ∩ QB = ∅). We can
measure these two clustering’s similarity using the ARI. When
ARI = +1, we have PA = PB and PB = QB . When ARI 6=
+1, the two partitioning schemes differ. The case ARI = 0
corresponds to D elements being assigned randomly across
PA/PB and QA/QB , respectively. The case −1 < ARI < 0
is defined as “worse-than-random”, because it in worse than
randomness clustering. Technically, the ARI of A and B is
defined:4

ARI(A,B) =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

B. Datasets

We chose 162 datasets from the 166-dataset PMLB (Penn
Machine Learning Benchmark) [15], a benchmark suite
that includes “real-world, simulated, and toy benchmark
datasets” [15].5 PMLB was designed to benchmark ML imple-
mentations and avoid imbalance across meta-features (which
often plagues handpicked datasets). The geometric means
across the dataset collection – roughly, the chracteristics of
the typical dataset – were 809 instances, 15.41 features, and
3.18 clusters.

4Where “N11 is the number of pairs that are in the same cluster in both
A and B; N00 is the number of pairs that are in different clusters in both A
and B; N01 is the number of pairs that are in the same cluster in A but in
different clusters in B; and N10 is the number of pairs that are in different
clusters in A but in the same cluster in B” [14].

5For efficiency, we set aside four large datasets: connect-4, poker, mnist,
kddcup.



C. Clustering Algorithms

We now present a brief overview of each algorithm.
K-means. The algorithm aims to cluster the observations

(points in S) into K distinct clusters, where observations
belong to the clusters with the nearest mean. The goal is to
minimize the sum of all intra-cluster distances. The algorithm
starts from K selected initial points as “centroids” (cluster
centers). These centroids play a crucial role in the algorithm’s
effectiveness: the algorithm is not guaranteed to converge to
a global minimum, so with “bad” centroids the algorithm can
“fall” into local minima.

Variation due to starting points: the algorithm requires
“starting points”, that is, initial centroids. To ensure consis-
tency across toolkits, we fed all toolkits the same starting
points. We explored the variation in outcome by randomly
picking different starting points from the datasets. That is, if a
dataset has K = 2, for each run we pick two different points
in S, s1 and s2 as centroids, and run the algorithm from there,
with all toolkits starting with s1 and s2.
K-means++ was designed to improve K-means by choos-

ing the starting points more carefully so they are farther apart.
Theoretically, this improved version ensures that the algorithm
is less likely to converge to local minima.

EM/Gaussian. Gaussian mixture clustering is a model-
based approach: clustering is first done using a model (i.e.,
a parametric distribution such as a Gaussian). Each cluster is
defined by an initial random model and the dataset is com-
posed of the mixture of these models. Then, the model/data
fitness is optimized – a common optimization is Expectation-
Maximization.

Spectral clustering computes eigenvalues of the similarity
matrix between the data points to reduce the dimensionality of
the original data. After the reduction, a clustering algorithm,
e.g., K-means, is applied on the reduced-dimensionality data.

The aforementioned 4 algorithms were nondeterministic; we
now discuss the 3 deterministic algorithms.

Hierarchical clustering is a deterministic algorithm, based
on building a hierarchy of clusters using one of two ap-
proaches: (i) a bottom-up approach named “agglomerative”:
each observation is initially put in its own cluster and then
they are merged, (ii) a top-down approach named “divisive”:
all observations are initially placed in the same cluster and
then they are split. We use the first variant.

DBSCAN is a deterministic algorithm based on density,
that is, high density regions of data are grouped together in a
neighbor graph and form a data cluster.

Affinity Propagation (AP) is based on propagation on a
graph in which each data point is a node. The algorithm builds
clusters by iteratively passing messages from a node to another
until determining which one is part of a specific cluster.

Some toolkits do not support all 7 algorithms; Table II
shows the supported algorithm/toolkit combinations; in all,
there were 27 algorithm-toolkit configurations.

TABLE II
TOOLKIT/ALGORITHM CONFIGURATIONS

M
A

T
L

A
B

m
lp

ac
k

R Sc
ik

it-
le

ar
n

Sh
og

un

Te
ns

or
Fl

ow

W
E

K
A

kmeans++ X X X X X X X
kmeans X X X X X X
spectral X X
hierarchical X X X
gaussian X X X X
dbscan X X X
apcluster X X

TABLE III
LEVENE’S TEST RESULTS: THE NUMBER OF DATASETS, OUT OF 162,

WITH SIGNIFICANT VARIANCE (p < 0.05)

Algorithm Toolkit # Datasets
kmeans++ sklearn 126
kmeans++ R 111
kmeans++ mlpack 144
kmeans++ matlab 125
kmeans++ shogun 143
kmeans++ tensorflow 144
kmeans++ weka 157
spectral sklearn 93
spectral sklearnfast 97
spectral R 113
kmeans sklearn 148
kmeans R 153
kmeans mlpack 146
kmeans matlab 141
kmeans shogun 146
kmeans tensorflow 145
hierarchical sklearn 71
hierarchical R 63
hierarchical matlab 63
gaussian sklearn 136
gaussian matlab 153
gaussian tensorflow 151
gaussian weka 123

D. Runs

Our analysis is based on clustering results achieved by each
algorithm-toolkit configuration on each of the 162 datasets 30
different times (i.e., more than 160,000 clustering tasks; for
all toolkits default settings were used).

Specifically we analyzed the distribution of accuracy (i.e.,
ARI when comparing the resulting clustering with ground
truth) achieved in these 30 different clustering runs. Hence
for our subsequent statistical analyses we have sample size
n = 30 for one-sample tests (and n1 = n2 = 30 for two-
sample tests). Note that K-means requires “starting points” –
initial centroids. Hence in configuration kmeans each of the
30 runs used a different, randomly-picked, different starting
points from the dataset.

III. VARIATION ACROSS RUNS

This testing procedure is shown in Figure 2: a single toolkit
is run on a single dataset multiple times (30 in our case), and
a statistical analysis is performed on the resulting accuracy
distribution.



TABLE IV
TOP-10 WIDEST DIFFERENCES IN ACCURACY ACROSS RUNS

Algorithm Toolkit Dataset Min Max
gaussian tensorflow prnn crabs -0.005 1
gaussian matlab prnn crabs -0.005 0.979
gaussian matlab analcatdata cr. -0.024 0.958
gaussian tensorflow twonorm 0 0.908
gaussian matlab twonorm 0.003 0.910
gaussian tensorflow ionosphere 0.004 0.772
spectral R breast-w 0.056 0.818
gaussian matlab analcatdata aut.p 0.041 0.794
gaussian matlab wdbc 0.007 0.754
gaussian tensorflow breast-cancer-wsc. 0.032 0.760

TABLE V
HIGHEST STANDARD DEVIATIONS IN ACCURACY ACROSS RUNS

Algorithm Toolkit Dataset Stddev
gaussian tensorflow twonorm 0.400
gaussian tensorflow prnn crabs 0.345
gaussian tensorflow ionosphere 0.298
gaussian sklearn breast 0.281
kmeans++ weka australian 0.236
gaussian matlab house-votes-84 0.236
gaussian matlab tokyo1 0.216
gaussian sklearn.0 tol breast 0.213
gaussian matlab twonorm 0.212
gaussian matlab analcatdata cr. 0.206
gaussian matlab wine-recognition 0.205
spectral R appendicitis 0.204
kmeans++ shogun house-votes-84 0.201

Null hypothesis: accuracy does not vary across runs.
In other words, for a certain algorithm and dataset, we set

out to measure non-determinism. To test this hypothesis, we
use Levene’s test as follows: one sample contains the actual
accuracy values for the 30 runs, the other sample has the same
mean, size, and no variance, that is, all 30 elements are equal to
the mean of the first set. We ran this on all datasets. Rejecting
the null hypothesis means that accuracy varies in a statistically
significant way across runs. We report results at p < 0.05.

In Table III we show the number of datasets where variance
is statistically significant at p < 0.05; recall that we have a
total of 162 datasets. We observe that Spectral is the most
stable nondeterministic algorithm; for Spectral, only 93–113
datasets show significant variance. Hierarchical, which should
be deterministic, still has 63–71 datasets with significant
variance. In contrast, K-means, K-means++, and Gaussian
Mixture, have significant variance from run to run.

In Table IV we show how broad the accuracy range (dif-
ference between minimum accuracy and maximum accuracy)
can be. The first three columns show the algorithm, toolkit
and dataset. The last two columns show the minimum and
maximum accuracy attained over the 30 runs. For example,
Gaussian has quite a large range on some datasets: accuracy
on the dataset prnn crabs has a min-max range of more than
1, with one run’s accuracy below 0 and another run having
perfect or (close to perfect) accuracy.

In Table V we show how high the standard deviation of the
accuracy can be across runs. For example, accuracy on the
dataset twonorm can have a standard deviation of 0.4. More

Toolkit	

Multiple	runs	 Accuracy	distribution	

Dataset	

Algorithm	 (variation	across		runs)	

Fig. 2. Testing for variation across runs.

Toolkit	1	 Multiple	runs	

Variation		
across		
toolkits	Dataset	

Algorithm	

Toolkit	2	
Multiple	runs	

Fig. 3. Testing for variation across toolkits.

than a dozen other toolkit/algorithm setups have standard
deviation higher than 0.2.

IV. VARIATION ACROSS TOOLKITS

This testing procedure is shown in Figure 3: two toolkits
implementing the same algorithms are run on the same dataset
multiple times (30 in our case), and a statistical analysis is
performed to compare the two accuracy distributions.

Null hypothesis: For a given algorithm, accuracy does not
vary across toolkits.

To test this hypothesis, we use the Mann-Whitney U test
as follows. We fix the algorithm, e.g., K-means++, and the
dataset. Next, we compare the distributions of accuracy values
pairwise, for all possible toolkits pairs, that is, if we have N
toolkits for a given algorithm, for a given dataset there will
be

(
N
2

)
Mann-Whitney U tests; hence for each algorithm there

will be 162×
(
N
2

)
tests. Rejecting the null hypothesis means

that accuracy varies significantly between toolkits. We report
results at p < 0.05.

In Table VI we show the number of datasets where accuracy
distributions between two toolkits are statistically significant
at p < 0.05. We observe that Gaussian Mixture and K-
means++ induce most differences in toolkit outcomes’ dis-
tributions (generally over 100 out of 162). Even for apcluster
(deterministic), on 40 out of 162 datasets we found statistically
significant differences between Sklearn and R.



TABLE VI
MANN-WHITNEY U-TEST RESULTS FOR TOOLKITS: NUMBER OF

DATASETS WITH SIGNIFICANTLY DIFFERENT ACCURACY DISTRIBUTIONS
(p < 0.05)

Algorithm Toolkits # Datasets
kmeans++ sklearn vs. R 50
kmeans++ sklearn vs. matlab 107
kmeans++ sklearn vs. weka 134
kmeans++ sklearn vs. mlpack 104
kmeans++ sklearn vs. shogun 110
kmeans++ sklearn vs. tensorflow 109
kmeans++ R vs. matlab 104
kmeans++ R vs. weka 134
kmeans++ R vs. mlpack 101
kmeans++ R vs. shogun 108
kmeans++ R vs. tensorflow 115
kmeans++ matlab vs. weka 141
kmeans++ matlab vs. mlpack 105
kmeans++ matlab vs. shogun 120
kmeans++ matlab vs. tensorflow 124
kmeans++ weka vs. mlpack 96
kmeans++ weka vs. shogun 113
kmeans++ weka vs. tensorflow 125
kmeans++ mlpack vs. shogun 15
kmeans++ mlpack vs. tensorflow 57
kmeans++ shogun vs. tensorflow 60
spectral sklearn vs. R 109
kmeans sklearn vs. R 41
kmeans sklearn vs. matlab 9
kmeans sklearn vs. mlpack 8
kmeans sklearn vs. shogun 9
kmeans sklearn vs. tensorflow 9
kmeans R vs. matlab 48
kmeans R vs. mlpack 39
kmeans R vs. shogun 43
kmeans R vs. tensorflow 42
kmeans matlab vs. mlpack 2
kmeans matlab vs. shogun 1
kmeans matlab vs. tensorflow 0
kmeans mlpack vs. shogun 1
kmeans mlpack vs. tensorflow 2
kmeans shogun vs. tensorflow 1
hierarchical sklearn vs. R 53
hierarchical sklearn vs. matlab 58
hierarchical R vs. matlab 57
gaussian sklearn vs. matlab 129
gaussian sklearn vs. weka 146
gaussian sklearn vs. tensorflow 120
gaussian matlab vs. weka 146
gaussian matlab vs. tensorflow 104
gaussian weka vs. tensorflow 120
dbscan sklearn vs. R 0
dbscan sklearn vs. mlpack 7
dbscan R vs. mlpack 7
apcluster sklearn vs. R 40

A. Non-overlaps

In Table VII we show the largest gaps between accuracy
intervals, computed as follows: we find all dataset/algorithm
combinations where the accuracy intervals for two toolkits,
say [ARI1min, ARI1max] and [ARI2min, ARI2max] are non-
overlapping, that is, ARI1min > ARI2max. In other words,
for any run of toolkit 1, its accuracy floor (min.) is higher
than the accuracy ceiling (max.) of any run of toolkit 2. We
call that difference “gap”, i.e., gap = ARI1min − ARI2max.
We show the top-10 gaps in Table VII. Notice that this gap
can be as large as 0.966.

Accuracy

Accuracy

Fig. 4. EM (Gaussian Mixture): differences between toolkits on two datasets,
dermatology and prnn-crabs.

Toolkit	

Multiple	runs	

Variation		
across		

algorithms	Dataset	

Algorithm	1	

Multiple	runs	
Algorithm	2	

Fig. 5. Testing for variation across algorithms.

We found that 1,776 such gaps exist (out of 34,987 runs
of the same algorithm/dataset combinations). This is very
problematic, as it shows how toolkits are not “created equal”
– even after multiple runs, in 1,776 scenarios, a toolkit’s best
accuracy cannot even reach another toolkit’s worst accuracy.

In Figure 4 we show violin plots of toolkits’ accuracy
distributions in the EM algorithm on two datasets. On set
dermatology (top) note the wide ranges of TensorFlow and the
gap between WEKA and Sklearn. On set prnn-crabs (bottom)
note the high-end accuracy of 1 (TensorFlow, MATLAB) and
the consistently low accuracy in WEKA and Sklearn.

V. VARIATION ACROSS ALGORITHMS

This testing procedure is shown in Figure 5: implementa-
tions of two different algorithms but in the same toolkit are



TABLE VII
TOP-10 LARGEST ACCURACY GAPS BETWEEN TOOLKITS

Algorithm Dataset Toolkit 1 Toolkit 2 Gap
Floor Ceiling
(Min) (Max)

gaussian promoters sklearn 1 tensorflow 0.034 0.966
gaussian promoters sklearn 1 tensorflow 0.034 0.966
spectral promoters R 0.962 sklearn 0.001 0.962
spectral analcatdata cred. sklearn 0.84 R -0.002 0.842
kpp breast weka 0.813 sklearn -0.003 0.815
kpp breast weka 0.813 mlpack,matlab,R 0.02 0.792
kpp breast weka 0.813 tensorflow,shogun 0.02 0.792
gaussian promoters sklearn 1 matlab 0.234 0.766
kpp promoters tensorflow 1 weka 0.406 0.594

run on the same dataset multiple times (30 in our case), and a
statistical analysis is performed to compare the two accuracy
distributions.

Null hypothesis: For a given toolkit, accuracy does not vary
across algorithms.

To test this hypothesis, we again use the Mann-Whitney U
test. We fix the toolkit, e.g., MATLAB, and the dataset. Next,
we compare the distributions of accuracy values pairwise,
for all possible algorithm pairs. Rejecting the null hypothesis
implies that, for a given toolkit, algorithms’ accuracy varies
significantly.

In Table VIII we show the number of datasets where
accuracy distributions between two algorithms are signifi-
cantly different. Typically, algorithms’ accuracies differ on
more than 110 datasets; we expected to see such differences
between algorithms. However, we did not expect wide differ-
ences when looking at the same algorithm pairs in different
toolkits. For example, K-means and K-means++ differ on
105/101/115/120 datasets in Sklearn/R/MATLAB/WEKA but
only on 27 datasets in MLpack and only 31 datasets in Shogun.
This again shows that toolkits are not interchangeable (though
users might expect them to be).

VI. TOOLKIT DISAGREEMENT

We next set out to study whether toolkits “agree” or “dis-
agree” on those points that are misclassified w.r.t. ground truth.
Specifically, we are interested in those cases where two toolkits
have relatively high accuracy w.r.t. ground truth, but there are
large disagreements between the toolkits on the remaining,
or misclassified points (i.e., where toolkits’ clustering differs
from ground truth).

We illustrate this in Figure 6. Assuming two toolkits T1
and T2, their clustering of x1, x2, x3, x4 (on the bottom) is
in agreement, and let us assume this clustering agrees with
ground truth as well. We want to measure the disagreement
on the remaining points x5, x6, x7, x8 (on top).

Intuitively, datasets that induce this disagreement between
T1 and T2 on the top points manage to expose differences in
toolkit implementations “at the margin”; since agreement with
ground truth is high, users might expect the toolkits will be
in agreement on the reminaing points, too.

Let ARIT1G and ARIT2G be the accuracy of two different
toolkits on the same algorithm and same dataset. Let ARIT1T2

x5	

x8	x7	

x6	

x1	

x4	x3	

x2	

Disagreement
Agreement

T1	

T2	

Fig. 6. Toolkit disagreement.

be the ARI when comparing the two clusterings (rather than
with ground truth). There were 14,831 ARIT1T2 comparisons.
Out of these, we found 928 cases where:

ARIT1G > ARIT1T2 ∧ARIT2G > ARIT1T2

That is, there were 928 cases where toolkits’ clusterings
disagree with each other more than they disagree with ground
truth – in other words, toolkits disagree strongly on those
points that are not clustered perfectly.

In Table IX we show the top-10 such disagreements, exclud-
ing the trivial cases where one toolkit’s accuracy is 1. These
datasets are particularly important as they manage to “drive
wedges” between toolkits; this has many applications, from
differential toolkit testing to constructing adversarial datasets.

VII. RELATED WORK

There is a surprising scarcity of studies measuring clustering
accuracy/outcome across toolkits and across same-toolkit runs.

Fränti [16] has compared performance on clustering basic
benchmark, and measure performance on four factors: overlap
of clusters, number of clusters, dimensionality and unbalance
of cluster sizes. However, they only consider synthesis data
and their datasets have simple structures. Our work is based
on PMLB which includes mainly real-world datasets allowed
for comparing ML methods comprehensively.

Hamerly [17] has proposed a new algorithm for accelerating
K-means, and performed an evaluation on efficiency similar to



TABLE VIII
MANN-WHITNEY U-TEST RESULTS FOR ALGORITHMS: NUMBER OF

DATASETS WITH SIGNIFICANTLY DIFFERENT ACCURACY DISTRIBUTIONS
(p < 0.05)

Toolkit Algorithms # Datasets
sklearn kmeans vs. kmeans++ 105
sklearn kmeans vs. gaussian 123
sklearn kmeans vs. hierarchical 134
sklearn kmeans vs. spectral 112
sklearn kmeans vs. dbscan 150
sklearn kmeans vs. apcluster 115
sklearn kmeans++ vs. gaussian 132
sklearn kmeans++ vs. hierarchical 153
sklearn kmeans++ vs. spectral 109
sklearn kmeans++ vs. dbscan 155
sklearn kmeans++ vs. apcluster 117
sklearn gaussian vs. hierarchical 145
sklearn gaussian vs. spectral 108
sklearn gaussian vs. dbscan 150
sklearn gaussian vs. apcluster 113
sklearn hierarchical vs. spectral 120
sklearn hierarchical vs. dbscan 155
sklearn hierarchical vs. apcluster 122
sklearn spectral vs. dbscan 122
sklearn spectral vs. apcluster 115
sklearn dbscan vs. apcluster 117
shogun kmeans vs. kmeans++ 31
R kmeans vs. kmeans++ 101
R kmeans vs. hierarchical 139
R kmeans vs. spectral 94
R kmeans vs. dbscan 149
R kmeans vs. apcluster 117
R kmeans++ vs. hierarchical 150
R kmeans++ vs. spectral 97
R kmeans++ vs. dbscan 157
R kmeans++ vs. apcluster 123
R hierarchical vs. spectral 113
R hierarchical vs. dbscan 154
R hierarchical vs. apcluster 123
R spectral vs. dbscan 115
R spectral vs. apcluster 122
R dbscan vs. apcluster 123
tensorflow kmeans vs. kmeans++ 74
tensorflow kmeans vs. gaussian 117
tensorflow kmeans++ vs. gaussian 121
matlab kmeans vs. kmeans++ 115
matlab kmeans vs. gaussian 135
matlab kmeans vs. hierarchical 141
matlab kmeans++ vs. gaussian 146
matlab kmeans++ vs. hierarchical 155
matlab gaussian vs. hierarchical 146
mlpack kmeans vs. kmeans++ 27
mlpack kmeans vs. dbscan 135
mlpack kmeans++ vs. dbscan 130
weka kmeans++ vs. gaussian 120

Kriegel et al.’s (time and memory). Our focus is on accuracy
rather than efficiency.

Chen et al. [18] have compared four clustering algorithms –
hierarchical clustering, K-means, Self-organizing Map (SOM)
and Partitioning around Medoids (PAM) on a single dataset,
mouse genomic data. Unlike us, they varied the K, whereas we
used the ground truth’s K. Our focus is different: varying runs
of the same algorithm, and a breadth of datasets. Abu [19] has
compared four clustering algorithms – K-means, hierarchical,
SOM, and Expectation Maximization (EM), each implemented
in two toolkits LNKnet and Cluster/TreeView; they used a sin-

gle 600-instance dataset, and compared performance/accuracy
on this dataset, and a 200-instance subset thereof. Our setup
is substantially larger and our focus is substantially broader.

Clustering stability has been defined by Tilman et al. [20]
as “solutions [that] are similar for two different data sets that
have been generated by the same (probabilistic) source”. Our
definition of stability is different: similarity of solutions on the
same dataset, but produced by two different runs.

Our own work on SmokeOut [21] also explored the space
of different clustering outcomes across toolkits and runs, but
the goal was to expose outliers and characterize distributions
shapes. Descriptive statistics (min/max) were used for the
comparison, which is concise but lacks statistical rigor. In
contrast, in this paper we introduce and use a statically
rigorous approach for comparing runs, toolkits and algorithms.
SmokeOut was also run on PMLB. Another goal of SmokeOut
was to expose outliers or bimodal distributions in clustering
outcomes across repeated runs – information which is useful
for debugging.

VIII. CONCLUSIONS

We present the first approach for testing clustering imple-
mentations via rigorous statistical analysis. We demonstrate
our approach via statistical analysis of clustering outcomes
across multiple runs, toolkits and algorithms. We found statis-
tically significant variations across all these dimensions, which
might violate users’ determinism and invariance assumptions.
Our results point out the need for improving the correctness
and determinism of clustering implementations.

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF
Grant No. CCF-1629186. Research was sponsored by the
Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] D. Bell, “5 great ai-powered home devices that will improve your life
today,” https://www.t3.com/features/5-great-ai-powered-home-devices-
that-will-improve-your-life-today.

[2] Nvidia, “World’s first functionally safe ai self-driving platform,” https:
//www.nvidia.com/en-us/self-driving-cars/drive-platform/.

[3] PAT RESEARCH, “Top 15 artificial intelligence platforms in 2018,”
2018, https://www.predictiveanalyticstoday.com/artificial-intelligence-
platforms/.

[4] “Cran task view: Cluster analysis & finite mixture models,” November
2018, https://cran.r-project.org/web/views/Cluster.html.

[5] “Matlab file exchange:clustering,” November 2018, https:
//www.mathworks.com/matlabcentral/fileexchange/?term=clustering+
product%3A%22MATLAB%22&utf8=%E2%9C%93.

[6] “Mathworks fast facts,” https://www.mathworks.com/company/aboutus.
html.



TABLE IX
TOP-10 LARGEST DISAGREEMENTS BETWEEN TOOLKITS YET HAVING HIGH AGREEMENT WITH GROUND TRUTH

Algorithm Dataset Toolkit1 Toolkit2
ARIT1G ARIT2G ARIT1T2

spectral promoters sklearnfast 0.889 R 0.962 0.853
gaussian iris weka 0.759 sklearn 0.904 0.693
gaussian wine-recognition weka 0.915 sklearn 0.607 0.568
gaussian analcatdata authorship weka 0.951 sklearn 0.740 0.719
gaussian wine-recognition sklearn 0.607 matlab 0.724 0.469
spectral breast-w sklearnfast 0.809 R 0.552 0.477
gaussian wine-recognition weka 0.915 matlab 0.724 0.718
gaussian iris sklearn 0.904 matlab 0.560 0.550
gaussian iris tensorflow 0.562 sklearn 0.904 0.555
gaussian texture tensorflow 0.694 sklearn 0.742 0.614
gaussian dermatology weka 0.615 matlab 0.695 0.519
kpp analcatdata authorship weka 0.777 shogun 0.718 0.700

[7] M. Hornick, “Oracle r technologies overview,” https://www.oracle.com/
assets/media/oraclertechnologies-2188877.pdf.

[8] Janakiram MSV, “Why do developers find it hard to learn machine
learning?” 2017, https://www.forbes.com/sites/janakirammsv/2018/01/
01/why-do-developers-find-it-hard-to-learn-machine-learning/.

[9] Carlton E. Sapp, “Gartner: Preparing and architecting for machine
learning,” 2017, https://www.gartner.com/binaries/content/assets/
events/keywords/catalyst/catus8/preparing\ and\ architecting\ for\
machine\ learning.pdf.

[10] N. M. do Nascimento, C. Lucena, P. S. C. Alencar, and D. D.
Cowan, “Software engineers vs. machine learning algorithms: An
empirical study assessing performance and reuse tasks,” CoRR, vol.
abs/1802.01096, 2018.

[11] L. Hubert and P. Arabie, “Comparing partitions,” vol. 2, pp. 193–218,
02 1985.

[12] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[13] D. Steinley, “Properties of the hubert-arable adjusted rand index.”
Psychological methods, vol. 9, no. 3, p. 386, 2004.

[14] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correc-
tion for chance,” JMLR, vol. 11, no. Oct, pp. 2837–2854, 2010.

[15] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H.
Moore, “Pmlb: a large benchmark suite for machine learning evaluation
and comparison,” BioData Mining, vol. 10, no. 1, p. 36, Dec 2017.

[16] P. Fränti and S. Sieranoja, “K-means properties on six clustering
benchmark datasets,” Applied Intelligence, vol. 48, no. 12, pp. 4743–
4759, Dec 2018. [Online]. Available: https://doi.org/10.1007/s10489-
018-1238-7

[17] G. Hamerly, Making k-means even faster, pp. 130–140. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.12

[18] G. Chen, S. A. Jaradat, N. Banerjee, T. S. Tanaka, M. S. H. Ko, and
M. Q. Zhang, “Evaluation and comparison of clustering algorithms in
analyzing es cell gene expression data,” Stat. Sinica, pp. 241–262, 2002.

[19] O. Abu Abbas, “Comparison between data clustering algorithm,” Int.
Arab Journal of Information Technology, vol. 5, no. 3, 2008.

[20] T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann, “Stability-based
validation of clustering solutions,” Neural Computation, vol. 16, no. 6,
pp. 1299–1323, 2004.

[21] V. Musco, X. Yin, and I. Neamtiu, “Smokeout: An approach for testing
clustering implementations,” in 12th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2019, 2019, to
appear.


